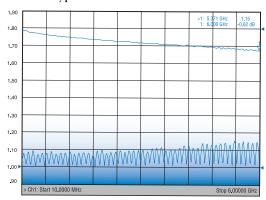
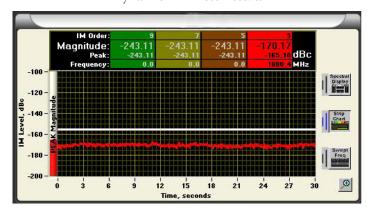
SPPIM Low Loss, Low PIM Coaxial Cables

Flexible, Low PIM, Plenum Rated Jumper Cables


- -160 dBc PIM for optimal system performance
- UL listed, type CMP (plenum), UL file #E-170516
- Super flexible for ease of installation
- Corrugated copper outer conductor providing greater than 100dB of shielding
- Durable FEP outer jacket is suitable for both indoor and outdoor use

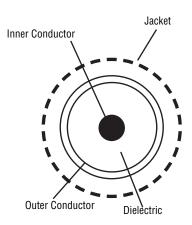
SPP-250-LLPL, SPP-375-LLPL, SPP-500-LLPL 50 Ohm low loss, low PIM cable assemblies


- Available in any required connector configuration and length
- Large selection of standard configurations for quick delivery
- Check inventory at StockCheck on our website
- Available connector interfaces: SMA, N, 7-16 DIN, 4.1/9.5 mini DIN, 4.3/10.0 DIN
- 100% tested for static and dynamic PIM, VSWR and inserion loss
- Serial marker band includes PIM, VSWR & IL test data which is retained and accessible on the Times website
- 10 year Times Microwave warranty

Typical VSWR & Insertion Loss

SPP250NMNM1.0M

Dynamic PIM Test Results



-

SPPTM Coaxial Cables

Cable Construction

Inner Conductor:

 \bullet SPP-250-LLPL: Solid bare copper

• SPP-375-LLPL: BCCAl • SPP-500-LLPL: BCCAl

Dielectric: Expanded PTFE

Outer Conductor: Seam welded corrugated copper tube

Jacket: FEP

Physical Specifications	SPP-2	50-LLPL	SPP-3	75-LLPL	SPP-5	00-LLPL
Jacket: FEP; OD: in(mm)	0.280	(7.1)	0.402	(10.2)	0.500	(13.4)
Outer Conductor: Corrugated Copper Tube; OD: in(mm)	0.250	(6.3)	0.380	(9.6)	0.472	(12.1)
Dielectric: LD PTFE OD: in(mm)	0.190	(4.8)	0.285	(7.1)	0.370	(9.4)
Center Conductor: OD: in(mm)	0.068	(1.7)	0.100	(2.7)	0.136	(3.5)
Bend Radius: in(mm)	1.25	(32)	1.38	(35)	1.50	(38)
Bending Moment: ft-lbs (N-m)	0.8	(1.0)	1.7	(2.0)	2.0	(2.4)
Tensile Strength: lb (kg)	150	(68.2)	175	(79.5)	210	(95.5)
Flat Plate Crush Strength: lb/in (kg/mm)	100	(1.8)	100	(1.8)	110	(2.0)
Weight: lbs/1000 ft (kg/km)	66	(78)	115	(127)	200	(167)
Environmental Specifications						
Installation Temperature Range °C/°F	-55/+200	(-67/+392°)	-55/+200	(-67/+392°)	-55/+200	(-67/+392°)
Storage Temperature Range °C/°F	-55/+200	(-67/+392°)	-55/+200	(-67/+392°)	-55/+200	(-67/+392°)
Operating Temperature Range °C/°F	-55/+200	(-67/+392°)	-55/+200	(-67/+392°)	-55/+200	(-67/+392°)
Electrical Specifications						
Velocity of Propagation: %	-	76%	7	76%	7	76%

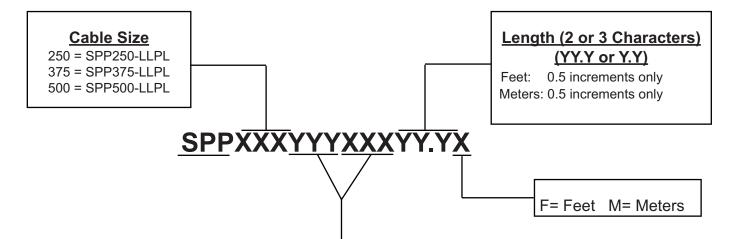
76%		76%		76%				
50 Ohms 50 Ohms		50 Ohms						
27.0	(8.2	2)	27.5	5 (8	3.4)	29.0	((8.8)
0.067	(0.2	(2)	0.06	7 (0.	.22)	0.069	((0.23)
	>100 >100		>100					
3.0	(9.8	34)	1.30	(4.	.26)	0.82	(2	2.70)
2.00	(6.5	6)	1.52	(4.	.98)	1.00	(3	3.28)
dB/100 ft	(dB/100m)	Kw	dB/100 ft	(dB/100m)	Kw	dB/100ft	(dB/100m) Kw
3.8 4.8 5.3 8.1 8.6 9.0 9.2	(12.5) (15.8) (17.4) (26.6) (21.1) (29.5) (30.1) (44.4)	0.81 0.73 0.47 0.45 0.43 0.42	3.2 3.6 5.5 5.8 6.1 6.3	(8.4) (10.6) (11.7) (18.1) (19.1) (20.1) (20.5) (30.7)	1.67 1.50 0.97 0.92 0.87 0.85	2.8 3.2 4.9 5.2 5.4 5.6	(7.4) (9.3) (10.4) (16.1) (17.0) (17.9) (18.3) (27.5)	2.63 2.07 1.87 1.20 1.14 1.08 1.05 0.70
	27.0 0.067 3.0 2.00 dB/100 ft 3.8 4.8 5.3 8.1 8.6 9.0 9.2	50 Ohms 27.0 (8.3 0.067 (0.2 >100 3.0 (9.8 2.00 (6.5 dB/100 ft (dB/100m) 3.8 (12.5) 4.8 (15.8) 5.3 (17.4) 8.1 (26.6) 8.6 (21.1) 9.0 (29.5) 9.2 (30.1)	50 Ohms 27.0 (8.2) 0.067 (0.22) >100 3.0 (9.84) 2.00 (6.56) dB/100 ft (dB/100m) Kw 3.8 (12.5) 1.01 4.8 (15.8) 0.81 5.3 (17.4) 0.73 8.1 (26.6) 0.47 8.6 (21.1) 0.45 9.0 (29.5) 0.43 9.2 (30.1) 0.42	50 0 hms	50 0hms 50 0hms 27.0 (8.2) 27.5 (8.2) 0.067 (0.22) 0.067 (0.22) >100 >100 >100 3.0 (9.84) 1.30 (4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	50 0hms 50 0hms 27.0 (8.2) 27.5 (8.4) 0.067 (0.22) 0.067 (0.22) >100 >100 >100 3.0 (9.84) 1.30 (4.26) 2.00 (6.56) 1.52 (4.98) dB/100ft (dB/100m) Kw dB/100ft (dB/100m) Kw 3.8 (12.5) 1.01 2.5 (8.4) 2.11 4.8 (15.8) 0.81 3.2 (10.6) 1.67 5.3 (17.4) 0.73 3.6 (11.7) 1.50 8.1 (26.6) 0.47 5.5 (18.1) 0.97 8.6 (21.1) 0.45 5.8 (19.1) 0.92 9.0 (29.5) 0.43 6.1 (20.1) 0.87 9.2 (30.1) 0.42 6.3 (20.5) 0.85	50 0hms 50 0hms 5 27.0 (8.2) 27.5 (8.4) 29.0 0.067 (0.22) 0.067 (0.22) 0.069 >100 >100 > 0.82 2.00 (6.56) 1.52 (4.98) 1.00 dB/100 ft (dB/100m) Kw dB/100ft (dB/100m) Kw dB/100ft 3.8 (12.5) 1.01 2.5 (8.4) 2.11 2.3 4.8 (15.8) 0.81 3.2 (10.6) 1.67 2.8 5.3 (17.4) 0.73 3.6 (11.7) 1.50 3.2 8.1 (26.6) 0.47 5.5 (18.1) 0.97 4.9 8.6 (21.1) 0.45 5.8 (19.1) 0.92 5.2 9.0 (29.5) 0.43 6.1 (20.1) 0.87 5.4 9.2 (30.1) 0.42 6.3 (20.5) 0.85 5.6	50 0hms 50 0hms 50 0hms 27.0 (8.2) 27.5 (8.4) 29.0 (0.22) 0.067 (0.22) 0.067 (0.22) 0.069 (0.22) >100 >100 >100 >100 3.0 (9.84) 1.30 (4.26) 0.82 (2.2) 2.00 (6.56) 1.52 (4.98) 1.00 (3.2) dB/100 ft (dB/100m) Kw dB/100ft (dB/100m) Kw dB/100ft (dB/100m) 3.8 (12.5) 1.01 2.5 (8.4) 2.11 2.3 (7.4) 4.8 (15.8) 0.81 3.2 (10.6) 1.67 2.8 (9.3) 5.3 (17.4) 0.73 3.6 (11.7) 1.50 3.2 (10.4) 8.1 (26.6) 0.47 5.5 (18.1) 0.97 4.9 (16.1) 8.6 (21.1) 0.45 5.8 (19.1) 0.92 5.2 (17.0)

Connectors (solder body) (Connectors with BLK suffix packed 100 pieces per bulk pack)

N Male Straight	TC-SPP250-NM-LP (3190-2833BLK)	TC-SPP375-NM-LP (3190-2951BLK)	TC-SPP500-NM-LP (3190-2946BLK)
N Male Right Angle	TC-SPP250-NM-RA-LP (3190-2834BLK)	-	-
N Female	TC-SPP250-NF-LP (3190-2851BLK)	TC-SPP375-NF-LP (3190-306BLK)	TC-SPP500-NF-LP (3190-3011BLK)
N Female Bulkhead	TC-SPP250-NF-BH-LP (3190-2835BLK)	-	-
7-16 DIN Male Straight	TC-SPP250-716M-LP (3190-2853BLK)	TC-SPP375-716M-LP (3190-2940BLK)	TC-SPP500-716M-LP (3190-2945BLK)
7-16 DIN Female Straight	TC-SPP250-716F-LP (3190-3002BLK)	TC-SPP375-716F-LP (3190-6119BLK)	-
7-16 DIN Male Right Angle	TC-SPP250-716M-RA-LP (3190-2854BLK)	-	-
SMA Male Straight	TC-SPP250-SM-LP (3190-2947BLK)	-	-
SMA Male Right Angle	TC-SPP250-SM-RA-LP (3190-3006BLK)	-	-
4.1/9.5 mini DIN Male Straight	TC-SPP250-4195M-LP (3190-3014BLK)	-	-
4.1/9.5 mini DIN Right Angle	TC-SPP250-4195M-RA-LP (3190-3027BLK)	-	-
4.3/10.0 DIN Male Straight	TC-SPP250-4310M-LP (3190-6144BLK)	-	TC-SPP500-4310M-LP (3190-6213BLK)
4.3 /10.0 DIN Male Straight (Snap-on)	TC-SPP250-4310MS-LP (3190-6201BLK)	-	-
4.3 /10.0 DIN Male Right Angle	TC-SPP250-4310M-RA-LP (3190-6180BLK)	-	-
4.3 /10.0 DIN Female Straight	TC-SPP250-4310F-LP (3190-6197RLK)	-	-

[•] Jumpers available in any length with most popular connector combinations

• iBwave VEX files available at www.iBwave.com



SPPTM Coaxial Cables

Smart Part Number Key for SPP Low PIM Jumpers

ex. SPP250NMNMR2.0M (N Male to N Male right angle, 2 meters)

Electrical:

- Insertion Loss not to exceed (1.1 x published attenuation + 2 x 0.15dB)
- VSWR

Maximum of 1.25:1 up to 3 GHz Maximum of 1.35:1 up to 6 GHz

PIM: (measured using two +43 dBm carriers)

- IM_{3:} < -160dBc (static and dynamic)
- IM₃· SMA's < -155dBc (static and dynamic)
- IM_{3:} QMA's < -140dBc (static only)

Connec	Connector	
DF =	7/16 DIN Female	l ı
DFB =	7/16 DIN Female bulkhead	
DM =	7/16 DIN Male	
DMR =	7/16 DIN Male right angle	
NF =	N Female	
NFB =	N Female bulkhead	
NM =	N Male	
NMR =	N Male right angle	
SM =	SMA Male	
SMR=	SMA Male right angle	
41M =	4.1/9.5 mini DIN Male	
41R=	4.1/9.5 mini DIN Male right angle	Sacand
43F=	4.3/10.0 DIN Female	Second
43M=	4.3/10.0 DIN Male	Connector

4.3/10.0 DIN male (snap-on)

4.3/10.0 DIN male right angle

First

Many assembly configurations are available from stock. Refer to the on-line <u>StockCheck</u> for specific configurations.

-◆

43S=

43R=

SPPTM Coaxial Cables

About TIMES MICROWAVE SYSTEMS

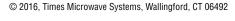
Times Microwave Systems, was founded in 1948 as the Times Wire and Cable Company. Today, the company specializes in the design and manufacture of high performance flexible, semi-flexible and semi-rigid coaxial cable, connectors and cable assemblies. With over 60 years of leadership in the design, development, and manufacture of coaxial products for defense microwave systems, Times Microwave Systems is the acknowledged leader, offering high tech solutions for today's most demanding applications.

Cable assemblies from Times Microwave Systems are used as interconnects for microwave transmitters, receivers, and antennas on airframes, missiles, ships, satellites, and ground based communications systems, and as leads for test and instrumentation applications.

As a highly specialized and technically focused company, Times Microwave Systems has been able to continually meet the challenges of specialty engineered transmission lines for both the military and commercial applications, drawing upon our:

- Thousands of unique cable and connector designs
- Exceptional RF and microwave design capability
- Precise material and process controls
- Unique in-house testing capabilities including RF shielding/leakage, vibration, moisture/vapor sealing, phase noise and flammability
- Years of MIL-T-81490, MIL-C-87104, and MIL-PRF-39012 experience
- ISO 9001 Certification
- AS-9100 Certification

In 2010, Times Microwave Systems introduced its Times-ProtectTM line of lightning and surge protection solutions to address the challenging needs of wireless systems in the 21st century.


With over 60 years of Times Microwave Systems aerospace cable and connector technology experience and unparalleled design expertise, Times Microwave Systems' staff of Field Applications Engineers can help to provide the right solution for your interconnect applications.

World Headquarters: 358 Hall Avenue, Wallingford, CT 06492 • Tel: 203-949-8400, 1-800-867-2629 Fax: 203-949-8423 International Sales: +1 203-949-8503 • +1 800-867-2629

China Sales: TMC Building 4, No. 318 Yuanshan Road, Xinzhuang Industrial Park, Shanghai, China 201108 Tel: 86-21-5176-1209 Fax: 86-21-64424098 www.timesmicrowave.com

SPP-02/17

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Coaxial Cables category:

Click to view products by Amphenol manufacturer:

Other Similar products are found below:

89880-003-1000 9116-010-U500 1322R-010-1000 1807A-B59-U1000 2020K8421-9X-CS3417 9251-010-1000 9275-010-U1000 275604-000 9659-010-1000 980704-001 CF2823-000 33312-010-500 CZ1589-000 5022W0809-0CS3263 10610-4-4 EF8108-000 1673B TIN100 672525-001 735A1-008-1000 8212-010-U500 8263 010U500 480414-000 5024A1311-0 1281S5 010250 1530A 010U1000 9248 010U1000 9244 0101000 1694A 0081000 8241F J5C1000 7805R 008100 9116SB 0101000 9271 0061000 1613A 0101000 1807A B591000 89207 010100 9058 0101000 8241A 0101000 DA7805R 0101000 C6424 1369R 004500 7915R 0101000 7809WB 0101000 M17/17600002/500 1260AM 0101000 833101-000 1152A-A8R-500 9907-E4X-U1000 3092A-X7E-500 4505R-010-1000 4694R-010-1000