NUMBER	GS-12-1108	Product Specification		FC
TITLE	TRX10GDP0311	A1 (SFP+ LR IT Module)	PAGE 1 of 22 AUTHORIZED BY	REVISION A DATE
			A. Lehmann CLASSIFICATION UNRESTR	25 Feb 2013

Product Specification 10 GBd SFP+ 1310 nm Industrial Temperature Module TRX10GDP0311A1

Product Features:

- Hot pluggable SFP+ optical transceiver
- Data rate transparent from 9.95 to 11.3 Gbps
- Excellent EMI performance
- Transmission distance up to 10 km SM fiber
- -40 °C to +85 °C case operating temperature
- 1310 nm DFB laser
- Duplex LC connector
- Laser Class 1
- RoHS 6/6 compliant

Applications:

- 10G Ethernet 10GBASE-LR/LW
- 10G Fibre Channel 1200-SM-LL-L

FCI's SFP+ optical transceiver TRX10GDP0311A1 is compliant with the SFP+ MSA specifications (SFF-8431, SFF-8432 and Diagnostic Monitor Function SFF-8472) and with 10GBASE-LR/LW per IEEE 802.3 as well as 1200-SM-LL-L per 10G Fibre Channel. It is RoHS 6/6 compliant per Directive 2002/95/EC and laser class 1 safety compliant per IEC/CDRH. The sub-Watt power consumption and the excellent EMI performance allows system designs with high port density.

Supported Standards

Application	Standard	Data Rate
10G Ethernet LAN/WAN	IEEE 802.3 10GBASE-LR/LW	10.3125 / 9.953 Gbps
10G Fibre Channel	1200-SM-LL-L	10.518 Gbps

NUMBER	GS-12-1108	Product Specification		FCI
TITLE	TRX10GDP0311	A1 (SFP+ LR IT Module)	PAGE 2 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013

Table of Contents

Table of Contents	2
Maximum Ratings	3
General Recommended Operating Conditions	3
General Characteristics	3
Transmitter Characteristics	4
Data Input	
Recommended Operating Conditions Data Input Optical Output	4 4
Receiver Characteristics	5
Recommended Operating Conditions Optical Input	5
Optical Input	5
Data Output	5
Low Speed Interface Characteristics	6
General Conditions Low Speed	6
Static Characteristics	6
Timing Characteristics	7
Monitor Characteristics	7
Метогу Мар	8
Register Overview	
Memory Contents	9
Register Address A0 (Module Identification and Informations)	9
Register Address A2 (Monitoring Registers)	12
Application Information	
Connector Pinning	
Electrical Pin Definition	
Application Schematics	17
Digital Optical Monitoring	
Module Outline	19
Module Safety & Compliance	20
ESD & Electromagnetic Compatibility	20
Eye Safety	21
Ordering Information	22

NUMBER		
	GS-12-110	8

FC
SION

	PAGE	REVISION
	3 of 22	Α
TDV10CDD0211A1 (SEDu LD IT Modulo)	AUTHORIZED BY	DATE
TRATOGDF03TTAT (SFF+ LRTT Module)	A. Lehmann	25 Feb 2013
		TED

Maximum Ratings

Stress beyond any maximum rating may result in a permanent damage to the device. Characteristics are guaranteed only under recommended operating conditions.

Parameter	Conditions	Symbol	Min	Max	Units
Storage Temperature		ϑ_{St}	-40	+90	°C
Operating Case Temperature		ϑc	-40	+90	°C
Operating Relative Humidity	Non condensing	RH	0	85	%
Power Supply Voltage		V _{CCT/R}	-0.5	4.0	V
DC Voltage at High Speed Pins	At hot-plugging	VD	-0.3	V _{cc} +0.3	V
Differential Input Swing	Differential peak-to-peak amplitude	V _{INmax}		1.5	V _{pp}
Voltage on Low Speed Inputs/Open Drain Outputs	SCL, SDA, RS0, RS1, Tx-Dis, Tx_FAULT, Rx_LOS	V _{I/O}	-0.5	V _{cc} +0.5	V
Sink Current Low Speed Output	SDA, INT_L/RST_L, Tx_FAULT, Rx_LOS	I _{SINK}		10	mA
Static Discharge Voltage on	Human body model per JEDEC JESD22-A114-B			2	kV
Pins	Charged device model per JEDEC JESD22-C101C			500	V
Static Discharge Voltage on High Speed Signal Pins	Human body model per JEDEC JESD22-A114-B			1	kV

Note: Chassis ground is internally isolated from circuit ground

General Recommended Operating Conditions

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Operating Case Temperature		ϑ_{Case}	-40	35	+85	°C
Power Supply Veltage		V _{CCT}	3.135	3.30	3.465	V
Power Supply voltage		V _{CCR}	3.135	3.30	3.465	V
Power Supply Noise	f ≤ 1MHz	V			$0.02V_{CC}$	V _{pp}
Power Supply Noise	1MHz < f ≤ 10MHz	V CCAC			0.03V _{CC}	V _{pp}

General Characteristics

Unless otherwise noted under the complete recommended operating conditions.

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Power Consumption Module	Total			0.726	1.213	W
Supply Current Module	@ V _{CCT/R}	IVCCTRX		220	350	mA
Maximum Back Current	At hot plug in	IVCCTX			500	mA
Maximum Feak Current		IVCCRX			330	mA
Current Pamp	At bot plug in	dl _{vcctx} /dt			50	mΑ/μs
Current Kallip	At not plug in	dl _{vccrx} /dt			50	mA/μs

JM	BE	ΞF	2	

N

	00-12-1100	roduct opecification		
	TITLE		PAGE	REVISION
				A
				DATE
	IKA IUGDPUSTIA		A. Lehmann	25 Feb 2013
-				CTED

Transmitter Characteristics

Data Input

Unless otherwise noted under the complete recommended operating conditions.

TYPE

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Differential Input Resistance		R_{diff}	80	100	120	Ω
Input Coupling Capacitance	per lane	Сĸ	64	100	144	nF
Differential Input S-	Z _{ref} = 100Ω f = 0.01 – 4.1 GHz	SDD11			$-12+2\sqrt{\frac{f}{1GHz}}$	dB
parameter	Z _{ref} = 100Ω f = 4.1 – 11.1 GHz	50011		100 144	dB	
Differential to Common Mode Conversion ¹⁾	Z _{ref} = 25Ω f = 0.01 – 11.1 GHz	SCD11			-10	dB

Recommended Operating Conditions Data Input

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Nominal Data Rate	PRBS 31; 8B/10B;	DR	9.95	10.3125	10.52	Gbd
Common Mode Input Voltage		VIDCM	-0.3		4	V
Common Mode AC Input Voltage	RMS		0		25	mV
Differential Peak-to-Peak- Input Voltage		V_{ID}	150		800	$\mathrm{mV}_{\mathrm{pp}}$
Data Dependent Input Jitter	Peak-to-peak	DDJ	0		0.1	UI
Uncorrelated Jitter	RMS	UJ	0		0.027	UI
Total Input Jitter	Peak-to-peak, 10 ⁻¹² -points	TJ	0		0.28	UI

Optical Output

Unless otherwise noted over complete lifetime under the general recommended operating conditions and recommended data input signal conditions specified above.

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Optical Return Loss		ORL _{Tx}			12	dB
Center Wavelength		λ_{TRP}	1260	1310	1355	nm
Spectral Width	-20dB-Width	$\Delta\lambda_{\text{TRP20}}$			1	nm
Side Mode Suppression Ratio		SMSR	30			dB
Optical Output Power	Operational (Tx enabled)	P _{Tx}	-7.2		0.5	dBm
Oplical Output Power	Off-State (e.g. Tx_Dis=H)	P _{Tx}			-30	dBm
Optical Medulation Amplitude	Begin of Life	D	442	700		μW_{pp}
Oplical Modulation Amplitude		FOMA	381			μW_{pp}
Transmitter and Dispersion Penalty		TDP	0		2	dB
Extinction Ratio		ER	3.5	5		dB
Relative Intensity Noise		RIN			-128	dB/Hz
Total Output Jitter	Peak-to-Peak, 10 ⁻¹² -points	TJ	0		0.5	UI
Transmitter Eye Mask	Peak-to-Peak, 10 ⁻¹² -points X1, X2, X3, Y1, Y2, Y3	Eye Opening	0.25, 0).40, 0.45).28, 0.40	, 0.25,)	UI

NUMBER	GS-12-1108	Product Specification		FCJ
TITLE	TRX10GDP0311	A1 (SFP+ LR IT Module)	PAGE 5 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013

Receiver Characteristics

Recommended Operating Conditions Optical Input

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Data Rate	PRBS 31; 8B/10B;	DR	9.95	10.3125	10.52	Gbd
Center Wavelength		λc	1260	1310	1355	nm
Average Input Power		Plavg	-15.6 [*]		0.5	dBm
Opitcal Modulation Amplitude	Peak-to-Peak	OMA	55			μW_{pp}
Data Dependent Input Jitter	Peak-to-Peak	DDJ	0		0.1	UI
Uncorrelated Jitter	RMS	UJ	0		0.027	UI
Total Input Jitter	Peak-to-Peak, 10 ⁻¹² -points	TJ	0		0.28	UI

⁷For informational purposes only. If the average power drops below, the operational condition of OMA cannot be satisfied anymore.

Optical Input

Unless otherwise noted under the general recommended operating conditions and recommended optical input signal conditions specified above.

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Optical Return Loss		ORL _{Rx}			12	dB
Receiver Sensitivity	PRBS 2 ³¹ -1, BER < 1*10 ⁻¹² @10.3125GBd	OMA _{sens}		15	55	μW_{pp}
Stressed Receiver Sensitivity	PRBS 2 ³¹ -1, BER < 1*10 ⁻¹² @ 10.3125GBd	OMA _{sensSt}			93	μW _{pp}
Receiver Overload	PRBS 2 ³¹ -1, BER < 1*10 ⁻¹²	P _{sat(OMA)}	0.5			dBm
Loss of Signal Detect Lovels	Assert-Level	PLOSA	-30	-22		dPm
Loss of Signal Detect Levels	De-Assert-Level	PLOSD		-20	-17	ubiii
Loss of Signal Hysteresis		Hyst	0.5	2		dB

Data Output

Unless otherwise noted under the general recommended operating conditions and recommended optical input signal conditions specified above.

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Differential Output Resistance		R _{diff}	80	100	120	Ω
Termination Mismatch	f = 1MHz	ΔRI	-5	0	5	%
Output Coupling Capacitance		Ск	64	100	144	nF
Differential Output S-	R _{ref} = 100Ω f = 0.01 – 4.1 GHz	20022			$-12+2\sqrt{\frac{f}{1GHz}}$	dB
parameter	R _{ref} = 100Ω f = 4.1 – 11.1 GHz	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$-6.3 + 13 \cdot \log_{10} \left(\frac{f}{5.5 GHz} \right)$	dB		
Common Mode Output Return Loss	R _{ref} = 25Ω f = 0.01 – 2.5 GHz	SCC22			$-7 + \frac{1.3 \cdot f}{1GHz}$	dB
	f = 2.5 – 11.1 GHz	$\frac{1}{1 \text{MHz}} \qquad \frac{\Delta R_{\text{i}}}{\Delta R_{\text{i}}} = \frac{50}{0} \qquad \frac{100}{100} \qquad \frac{120}{120}$ $\frac{1}{1 \text{MHz}} \qquad \frac{\Delta R_{\text{i}}}{C_{\text{K}}} = \frac{5}{0} \qquad \frac{5}{5}$ $\frac{C_{\text{K}}}{64} = \frac{100}{100} \qquad \frac{144}{144}$ $\frac{1}{100} = \frac{144}{144}$ $\frac{1}{100} = \frac{1}{144}$ $\frac{1}{100} = \frac{1}{100}$ \frac	dB			

NUMBER	
	GS-12-1108

25 Feb 2013

TITLE

TRX10GDP0311A1 (SFP+ LR IT Module)

TYPE

CLASSIFICATION	
UNRESTRIC	TED

6 of 22

A. Lehmann

PAGE

AUTHORIZED BY

Data Output continued

Unless otherwise noted under the general recommended operating conditions and recommended optical input signal conditions specified on the page before.

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Differential Peak-to-Peak Output Amplitude	R _{Load} = 100 ohm	V _{OSPP}	350	530	800	mV_{pp}
Output AC Common Mode Voltage	RMS				7.5	mV
Output Rise and Fall Time	20 % to 80 %	t _R , t _F	28			ps
Deterministic Jitter	Peak-to-Peak	DJ			0.42	UI(p- p)
Total Jitter	See SFP+ MSA	TJ			0.7	UI(p- p)

Low Speed Interface Characteristics

General Conditions Low Speed

Unless otherwise noted in this section the general recommended operating conditions are true.

Parameter	Conditions	Symbol	Min	Тур	Max	<u>Units</u>
Power Supply Voltage		V _{CCT}	2	3.3	3.465	V
High-Level Input Voltage		V _{IH}	2		V _{CCT} + 0.3	V
Low-Level Input Voltage	TX_DIS, R30, R31	V _{IL}	-0.3		0.8	V
High-Level Output Voltage		V _{OH}			V _{CCT} + 0.3	V
Low-Level Output Voltage	1X_FLI, KX_LOS	V _{OL}	-0.3			V

Static Characteristics

Unless otherwise noted under the complete recommended operating conditions and general conditions low speed.

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Open-Drain Leackage Current	Open-Drain Output at Off-State (High). Tx_FLT, Rx_LOS	I _{QH}	0		1	μA
Low Level Ou tput Voltage	I _{OL_max} = 4 mA	V _{OL}	0		0.4	V
High Input Current Tx Dis	Tx_Dis internally pulled-up to	I _{IH}	-329		66	μA
Low Input Current Tx Dis	V _{CCT} by R=4,46510,5kΩ	١	-845		-221	μA
High Input Current RS1,RS0	RS0, RS1, internally pulled-up to	I _{IH}	-50		11	μA
Low Input Current RS1,RS0	V _{CCT} by R≥30kΩ	IIL	-127		1	μA
Mod_ABS Resistance	Pull-Down to V_{EE} within Module	R_{Mad}	0		1	Ω

NUMBER	GS-12-1108	Product Specification		FCj
TITLE	TRX10GDP0311	A1 (SFP+ LR IT Module)	PAGE 7 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013
				RICTED

Timing Characteristics

Unless otherwise noted under the complete recommended operating conditions.

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Module Initialization Time	After Hot plug	t _{start}			300	ms
Tx Disable Assert Time	Assert to10% P _{Tx}	t _{Off}			10	μs
Tx Disable De-Assert Time	De-Assert to 90% P _{Tx}	t _{On}			2	ms
Tx Fault Assert Time		t _{FLT}			1	ms
Tx Fault Reset Time	Hold time of Tx_Dis to reset Tx- Fault	tT _{RST}			10	μs
Rx –LOS Assert DelayTime		t _{LOSA}			100	μs
Rx –LOS De-Assert DelayTime		t _{LOSD}			2	ms

Monitor Characteristics

Unless otherwise noted under the general recommended operating conditions.

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Temperature Monitor Error		Fϑ	-3	0	3	°C
Supply Voltage Monitor Error		F _{VCC}	-3	0	3	%
Rx Power Monitor Error	P _{in} = -15 dBm to 0.5 dBm	F _{PTx}	-3	0	3	dB
Tx Power Monitor Error		F _{PRx}	-3	0	3	dB
Laser Bias Current Monitor Error		FIBIAS	-10	0	10	%

NUMBER	GS-12-1108	Product Specification		FCJ
TITLE TRX10GDP0311A1 (SFP+ LR IT Module)		PAGE 8 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013	
				RICTED

Memory Map

Register Overview

Communication is done by a serial 2-wire interface compatible to the I2C bus protocol. Refer to SFF-8472 for a more detailed explanation of the registers itself:

Base Address A0h				
Register Content				
0 - 95	Serial Transceiver ID as defined in SFP MSA			
96 - 127	FCI Specific			
128 - 255	Reserved			

Base Address A2h				
Register	Content			
0 - 55	Alarm & Warnings Thresholds & Limits			
56 - 95	External calibration constants (not used)			
96 – 119	Values from real time diagnostic monitoring			
128 – 247	Customer specific, writable area			
248 - 255	Reserved			

NUMBER	GS-12-1108	Product Specification		FCI
TITLE	TRX10GDP0311	A1 (SFP+ LR IT Module)	PAGE 9 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013

Memory Contents

In this chapter the contents of the memory is described in detail.

Register Address A0 (Module Identification and Informations)

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex
0	Identifier	Type of transceiver	SFP or SFP+	03
1	Ext. Identifier	Extended identifier of type of transceiver	GBIC/SFP function is defined by two-wire interface ID only	04
2	Connector	Code for connector type	LC	07
3				20
4				00
5				00
6	Transcoivor	Codo for electronic or entical compatibility		00
7	Hanscelver	code for electronic of optical compatibility	100DA3L-LK	00
8				00
9				00
10				00
11	Encoding	Code for high speed serial encoding algorithm	64B/66B	06
12	BR, Nominal	Nominal signaling rate, units of 100MBd	10.3GBd	67
13	Rate Identifier	Type of rate select functionality	Unspecified	00
14	Length(SMF, km)	Link length supported for single mode fiber, units of km	10km	0A
15	Length (SMF)	Link length supported for single mode fiber, units of 100 m	100*100m	64
16	Length (50um)	Link length supported for 50 um OM2 fiber, units of 10 m	0m	00
17	Length (62.5um)	Link length supported for 62.5 um OM1 fiber, units of 10 m	0m	00
18	Length (cable)	Link length supported for copper or direct attach cable, units of m	0m	00
19	Length (OM3)	Link length supported for 50 um OM3 fiber, units of 10 m	0m	00

Bytes 0 to 19: Basic ID Field Area

NUMBER	
	GS-12-1108

Product Specification

TYPE

TRX10GDP0311A1 (SFP+ LR IT Module)

	FC
PAGE	REVISION
10 of 22	Α
AUTHORIZED BY	DATE
A. Lehmann	25 Feb 2013

Bytes 20 to 59: Vendor Information Area

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex
20				46
21				43
22				49
23				20
24				4D
25				65
26				72
27	Vandar Nama	SED vondor name (ASCII)	FCI MargaOptics	67
28	venuor name	SFP vendor name (ASCII)	FCI MergeOptics	65
29				4F
30				70
31				74
32				69
33				63
34				73
35				20
36	Transceiver	Code for electronic or optical compatibility	Unallocated	00
37	7 8 Vendor OUI		ECI Deutschland GmbH	00
38		SFP vendor IEEE company ID	MergeOptics	0A
39				0D
40			Ť	54
41			R	52
42			X	58
43			1	31
44			0	30
45			G	47
46			D	44
47	Vendor PN	Part number provided by SFP vendor (ASCII)	P	50
40				30
50			1	33
51			1	31
52				20
53				20
54				20
55				20
56			A	65
57		Revision level for part number provided by	1	30
58	Vendor Rev.	vendor (ASCII)	A	65
59			1	30
		I		

NUMBER	
NONDER	
	~~

GS-12-1108

Product Specification

FCJ

TRX10GDP0311A1 (SFP+ LR IT Module)

TYPE

AGE	REVISION
11 of 22	Α
UTHORIZED BY	DATE
A. Lehmann	25 Feb 2013
LASSIFICATION	

UNRESTRICTED

С

Bytes 59 to 63: Rest of ID Field Area

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex
60	Wavalangth	Laser wavelength (Passive/Active Cable	1210	05
61	wavelength	Specification Compliance)	131000	1E
62	Unallocated			00
63	CC_BASE	Check code for Base ID Fields (addresses 0 to 62)		××*

* For informational purposes only. Checksum shall be calculated automatically and may vary due to register contents.

Bytes 64 to 95: Extended ID Field Area

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex
64	Ontinue	Indicates which optional transceiver signals	Power Level2, no cooling, no linear Rx Output	02
65	Options	are implemented	No Rate Select, Support of Tx-Dis ,Tx-FLT & LOS	1A
66	BR, max	Upper bit rate margin, units of %	2%	02
67	BR, min	Lower bit rate margin, units of %	8%	08
68			E	45
69			S	53
70			Y _u (tenth digit of year)	3y _u
71			Y ₁ (once digit of year: 20 Y _u Y ₁)	3γ,
72			cw _u (tenth digit of calendar week)	3cw _u
73			Cw _I (tenth digit of calendar week)	3 Cw _i
74			-	2D
75	Vender CN	Seriel number provided by yonder (ASCII)	Z ₄ (tenthousandth digit of week counter)	3Z4
76	vendor SN	Serial number provided by vendor (ASCII)	Z_3 (thousandth digit of week counter)	3Z3
77			Z ₂ (hundredth digit of week counter)	3Z ₂
78			Z ₁ (tenth digit of week counter)	3Z ₁
79			Z ₀ (once digit of week counter)	3Z ₀
80				20
81				20
82				20
83				20
84		Vendor's manufacturing	date, digit of tenth of the year	3x
85		digit of onces of the year		3x
86		upper digit of month		3x
87	Data codo	lower digit of month		3x
88	Date code	upper	digit of day	3x
89		lower	digit of day	3x
90		upper digit	of lot or space	3x
91		lower digit	of lot or space	3x
92	Diagnostic Monitoring Type	Indicates which type of diagnostic monitoring is implemented (if any) in the transceiver	Alarm/warning for all monitored, soft TX_DISABLE, soft TX_FAULT monitoring and soft RX_LOS implemented	68
93	Enhanced Options	Indicates which optional enhanced features are implemented (if any) in the transceiver	Digital diagnostic monitoring implemented; Internally calibrated; Received power measurement type average power	FO
94	SFF-8472 Compliance	Indicates which revision of SFF-8472 the transceiver complies with.	Includes functionality described in Rev 10.4 of SFF- 8472.	04
95	CC_EXT	Check code for the Extended ID Fields (addresses 64 to 94)	Automatically calculated checksum	xx

NUMBER	GS-12-1108	Product Specification		FCJ
TITLE	TRX10GDP0311	A1 (SFP+ LR IT Module)	PAGE 12 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013
				RICTED

Bytes 96 to 255: Vendor Specific Area

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex
96 to 127	Vendor Specific	Vendor specific area FCI used area		хх
128 to 255	Reserved	Reserved for SFF-8079 All bits that are unallocated or reserved for SFF-8472 shall be set to zero and/or ignored. Bits labeled as reserved or optional for other usage, such as for SFF-8079, shall be implemented per such other documents, or set to zero and/or ignored if not implemented. If optional features for SFF- 8472 are implemented, they shall be implemented as defined in SFF-8472. If they are not implemented then write hits will be ignored, and state hits shall be set to zero.		00

Register Address A2 (Monitoring Registers)

Under the Register addressed by A2 all to the monitoring related information and the monitor values, alarm and warning flags are located.

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex
0	Tomp High Alarm	Most significant Byte at lower address	9F°C	55
1	Temp nigh Alarm	Lower significant Byte at higher address	85 0	00
2	Tomp Low Alarm	Most significant Byte at lower address	40°C	D8
3	Temp Low Alarm	Lower significant Byte at higher address	-40 C	00
4	Temp High	Most significant Byte at lower address	22°C	52
5	Warning	Lower significant Byte at higher address	82 C	00
6	Temp Low	Most significant Byte at lower address	27%C	DA
7	Warning	Lower significant Byte at higher address	-37 C	00
8	Voltage High	Most significant Byte at lower address	2.614	8C
9	Alarm	Lower significant Byte at higher address	3.6V	A0
10	Voltage Low	Most significant Byte at lower address	21/	75
11	Alarm	Lower significant Byte at higher address	3V	30
12	Voltage High	Most significant Byte at lower address		87
13	Warning	Lower significant Byte at higher address	3.465V	5A
14	Voltage Low	Most significant Byte at lower address	2 1251/	7A
15	Warning	Lower significant Byte at higher address	5.1557	76
16	Riac High Alarm	Most significant Byte at lower address	100~1	C3
17	Blas High Alarm	Lower significant Byte at higher address	100MA	50
18	Dias Low Alarm	Most significant Byte at lower address	1004	00
19	BIdS LOW AIdTII	Lower significant Byte at higher address	100μΑ	32
20	Bias High	Most significant Byte at lower address	20m A	9C
21	Warning	Lower significant Byte at higher address	ooma	40
22	Bias Low	Most significant Byte at lower address	500.14	00
23	Warning	Lower significant Byte at higher address	συσμα	FA

Bytes 0 to 55: Alarm and Warning Thresholds

٩U	IM	в	Е	R	

Product Specification

FCI

TRX10GDP0311A1 (SFP+ LR IT Module)

TYPE

PAGE	REVISION		
13 of 22	Α		
AUTHORIZED BY	DATE		
A. Lehmann	25 Feb 2013		

Alarm and Warning Thresholds continued

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex
24	Tx Power High	Most significant Byte at lower address	1.4125mW/(1.5dPm)	37
25	Alarm	Lower significant Byte at higher address	1.412511100 (1,500111)	2D
26	Tx Power Low	Most significant Byte at lower address	120 2000 (0.2dpm)	04
27	Alarm	Lower significant Byte at higher address	120.2µW (-9,20Bill)	B2
28	Tx Power High	Most significant Byte at lower address	1 122mW (0 EdBm)	2B
29	Warning	Lower significant Byte at higher address	1.122mw (0.50Bm)	D4
30	Tx Power Low	Most significant Byte at lower address	151 AUM (9 2dpm)	05
31	Warning	Lower significant Byte at higher address	151.4µvv (-8.20Bm)	EA
32	Rx Power High	Most significant Byte at lower address	1.412 Em) $M/(1.$ EdDm)	37
33	Alarm	Lower significant Byte at higher address	1.412511W (1,50B11)	2D
34	Rx Power Low	Most significant Byte at lower address	28.8004 (15.41dBm)	01
35	Alarm	Lower significant Byte at higher address	28.8µW (-15.41dBm)	20
36	Rx Power High	Most significant Byte at lower address	1 122mW (0 EdBm)	2B
37	Warning	Lower significant Byte at higher address	1.122mw (0.50Bm)	D4
38	Rx Power Low	Most significant Byte at lower address		01
39	Warning	Lower significant Byte at higher address	50.5μw (-14.40Bm)	6B
40 to 55	Unallocated	Reserved by SFF for future monitored quantities	Not used	00

Bytes 56 to 95: Monitor Calibration Constant

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex	
56		Single precision floating point calibration data		00	
57		- Rx optical power. Bit7 of byte 56 is MSB. Bit 0	Factor a_4 of polynom fourth order	00	
58	KX_PVVK(4)	of byte 59 is LSB. Rx_PWR(4) should be set to	a ₄ =0 (since internally calibrated)	00	
59		zero for "internally calibrated" devices.		00	
60		Single precision floating point calibration data		00	
61		- Rx optical power. Bit 7 of byte 60 is MSB. Bit	Factor a_3 of polynom fourth order	00	
62	KX_PVVK(3)	0 of byte 63 is LSB. Rx_PWR(3) should be set to	a ₃ =0 (since internally calibrated)	00	
63		zero for "internally calibrated" devices		00	
64		Single precision floating point calibration data		00	
65	Rx_PWR(2)	Rx_PWR(2)	$Rx_PWR(2) Rx_pWR(2) Rx_pWR(2) should be set to a_2=0 (since internally calibrated) a_2=0 (since inte$	Factor a_2 of polynom fourth order	00
66				a ₂ =0 (since internally calibrated)	00
67		zero for "internally calibrated" devices.		00	
68		Single precision floating point calibration data		3F	
69		Rx optical power. Bit 7 of byte 68 is MSB, bit 0	Factor a_1 of polynom fourth order	80	
70	RX_PVVR(1)	of byte 71 is LSB. Rx_PWR(1) should be set to 1	a ₁ =1 (since internally calibrated)	00	
71		for "internally calibrated" devices.		00	
72		Single precision floating point calibration data		00	
73		Rx optical power. Bit 7 of byte 72 is MSB, bit 0	Offset a ₀ of polynom fourth order	00	
74	KX_PVVK(U)	of byte 75 is LSB. Rx_PWR(0) should be set	$a_0=0$ (since internally calibrated)	00	
75	to zero for "internally	to zero for "internally calibrated" devices.		00	

General Rx-Power Calibration Equation with constants above:

$$P = a_0 + a_1 \cdot n_{AD} + a_2 \cdot n_{AD}^2 + a_3 \cdot n_{AD}^3 + a_4 \cdot n_{AD}^4$$

NUMBER	

FCJ

TRX10GDP0311A1 (SFP+ LR IT Module)

TYPE

AGE	REVISION
14 of 22	Α
UTHORIZED BY	DATE
A. Lehmann	25 Feb 2013
LASSIFICATION	
	TED

UNRESTRICTED

С

Monitor Calibration Constants continued

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex
76		Fixed decimal (unsigned) calibration data, laser bias current. Bit 7 of byte 76 is MSB, bit 0 of	Byte 76 represents integer, Lower Byte 77 is the	01
77	Tx_I(Slope)	byte 77 is LSB. Tx_I(Slope) should be set to 1 for "internally calibrated" devices	1	00
78		Fixed decimal (signed two's complement) calibration data, laser bias current. Bit 7 of	Signed twos's complement, Byte 78 represents	00
79	Tx_I(Offset)	byte 78 is MSB, bit 0 of byte 79 is LSB. Tx_l(Offset) should be set to zero for "internally calibrated" devices.	integer, Lower Byte 79 is the fraction down to 1/256. Since internally calibrated 0	00
80		Fixed decimal (unsigned) calibration data, transmitter coupled output power. Bit 7 of	Byte 80 represents integer, Lower Byte 81 is the	01
81	Tx_PWR(Slope)	byte 80 is MSB, bit 0 of byte 81 is LSB. Tx_PWR(Slope) should be set to 1 for "internally calibrated" devices.	fraction down to 1/256. Since internally calibrated 1	00
82		Fixed decimal (signed two's complement) calibration data, transmitter coupled output	Signed twos's complement, Byte 82 represents	00
83	Tx_PWR(Offset)	power. Bit 7 of byte 82 is MSB, bit 0 of byte 83 is LSB. Tx_PWR(Offset) should be set to zero for "internally calibrated" devices.	integer, Lower Byte 83 is the fraction down to 1/256. Since internally calibrated 0	00
84	T (Slope)	Fixed decimal (unsigned) calibration data, internal module temperature. Bit 7 of byte 84 fraction down to 1/256 Sin		01
85	i (Siope)	is MSB, bit 0 of byte 85 is LSB. T(Slope) should be set to 1 for "internally calibrated" devices	1	00
86		Fixed decimal (signed two's complement) calibration data, internal module temperature.	Signed twos's complement, Byte 86 represents	00
87	T (Offset)	Bit 7 of byte 86 is MSB, bit 0 of byte 87 is LSB. T(Offset) should be set to zero for "internally calibrated" devices.	integer, Lower Byte 87 is the fraction down to 1/256. Since internally calibrated 0	00
88		Fixed decimal (unsigned) calibration data, internal module supply voltage. Bit 7 of byte	Byte 88 represents integer, Lower Byte 89 is the	01
89	V (Slope)	88 is MSB, bit 0 of byte 89 is LSB. V(Slope) should be set to 1 for "internally calibrated" devices.	fraction down to 1/256. Since internally calibrated 1	00
90		Fixed decimal (signed two's complement) calibration data, internal module supply	Signed twos's complement, Byte 90 represents	00
91	V (Offset)	voltage. Bit 7 of byte 90 is MSB. Bit 0 of byte 91 is LSB. V(Offset) should be set to zero for "internally calibrated" devices.	integer, Lower Byte 91 is the fraction down to 1/256. Since internally calibrated 0	00
92		All bits that are unallocated or reserved fo	r SFF-8472 shall be set to zero and/or ignored.	00
93	Upallocated	Bits labeled as reserved or optional for other us	age, such as for SFF-8079, shall be implemented per	00
94	Shanocated	8472 are implemented, they shall be implemented, they write bits will be i	gnored, and state bits shall be set to zero.	00
95	Checksum	Check sum for the Monitor Calibration Constants Fields (addresses 0 to 94)	Automatically calculated checksum	xx [*]

* For informational purposes only. Checksum shall be calculated automatically and may vary due to register contents.

NUMBER	
	GS-12-1108

TYPE

FCJ

TRX10GDP0311A1 (SFP+ LR IT Module)

	-
PAGE	REVISION
15 of 22	Α
AUTHORIZED BY	DATE
A. Lehmann	25 Feb 2013
CLASSIFICATION UNRESTRIC	TED

Bytes 96 to 119: A/D Values and Status Bits

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex
96	Tomporaturo	Internally measured module temperature.	Temperature MSB (LSB=1°C)	xx
97	remperature	Signed 2 Complement.	Temperature LSB (LSB=1/256°C)	XX
98	Valtaga	Internally measured supply voltage in	Voltage MSB	XX
99	voitage	transceiver	Voltage LSB (LSB=100µV)	XX
100	Laser Bias	Internally measured TX Bias (Laser Bias)	Tx Bias MSB	xx
101	Current	Current.	Tx Bias LSB (LSB=2µA)	xx
102	Tu Devuer		Tx Power MSB	XX
103	TX Power	Internally measured 1x output power.	Tx Power LSB (LSB=100nW)	xx
104	Du Dower	Internelly measured by input neuron	Rx Power MSB	ХХ
105	KX Power	internally measured RX input power.	Rx Power LSB (LSB=100nW)	xx
106	Upplloasted	Deserved for future discretion definitions		00
107	Unallocated	Reserved for future diagnostic definitions		00
108	Uppllocated	Deserved for future discretion definitions		00
109	Unanocated	Reserved for future diagnostic definitions		00
110	Optional Status/Control Bits	States and Controls of Tx-Dis, Rate	e Select, Tx-Alarm, Rx-LOS, Data Ready	xx
111	Reserved	Reserved	for SFF-8079.	00
112	Alarm Elago	Alarm Bits High and Low for	Temp, Vcc, Tx Bias and Tx Power	XX
113	Aldrin Flags	Alarm Bits High and Low for R	x Power, Rest reserved Alarm Bits	XX
114	Upallocated			00
115	onanocateu			00
116	Warning Flags	Warning Bits High and Low fo	r Temp, Vcc, Tx Bias and Tx Power	XX
117	warning Flags	Warning Bits High and Low for	Rx Power, Rest reserved Alarm Bits	xx
118	Extended Control/Status			xx
119	Unallocated			00

Bytes 120 to 247: User EEPROM Area

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex
120 - 247	User EEPROM	User writab	le EEPROM area	XX

Bytes 246 to 255: Vendor Specific Control Area

Register Byte Dec.	SFF-Name	General Description	Module Contents Meaning	Contents in Hex
120 - 247	Vendor Specific	Vendor specifi	c control functions	XX

NUMBER	GS-12-1108	Product Specification		FCI
TITLE			PAGE 16 of 22	
TRX10GDP0311A1 (SFP+ LR IT Module)		AUTHORIZED BY A. Lehmann	DATE 25 Feb 2013	
				CTED

Application Information

Connector Pinning

Electrical Pin Definition

PIN	Logic	Symbol	Name / Description	Note
1		VeeT	Module Transmitter Ground	1
2	LVTTL-O	TX_Fault	Module Transmitter Fault, Open drain output, needs an pull-up resistor on Host- Board	
3	LVTTL-I	TX_Dis	Transmitter Disable; Turns off transmitter laser output, internally pulled-up with 4,7k Ω to 10k Ω to V _{CCT}	
4	LVTTL-I/O	SDA	2-Wire Serial Interface Data Line	2
5	LVTTL-I	SCL	2-Wire Serial Interface Clock	2
6		MOD_ABS	(=MOD_DEF0) Module Absent, shorted to module ground	
7	LVTTL-I	RS0	Receiver Rate Select, internally pulled-up to V_{CCT} with $\ge 30 k\Omega$	
8	LVTTL-O	RX_LOS	Receiver Loss of Signal Indication, Open drain output, needs an pull-up resistor on Host-Board	
9	LVTTL-I	RS1	Transmitter Rate Select, internally pulled-up to V_{CCT} with $\ge 30 k\Omega$	
10		VeeR	Module Receiver Ground	1
11		VeeR	Module Receiver Ground	1
12	CML-O	RD-	Receiver Inverted Data Output	
13	CML-O	RD+	Receiver Data Output	
14		VeeR	Module Receiver Ground	1
15		VccR	Module Receiver 3.3 V Supply	
16		VccT	Module Transmitter 3.3 V Supply	
17		VeeT	Module Transmitter Ground	1
18	CML-I	TD+	Transmitter Non-Inverted Data Input	
19	CML-I	TD-	Transmitter Inverted Data Input	
20		VeeT	Module Transmitter Ground	1

1. Module ground pins Vee are isolated from the module case.

2. Shall be pulled up with 1k-10k ohms to a voltage between 3.13 V and 3.47 V on the host board.

NUMBER	GS-12-1108	Product Specification		FC
TITLE	TRX10GDP0311	A1 (SFP+ LR IT Module)	PAGE 17 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013
				CTED

Application Schematics

Recommended electrical connections to transceiver are shown below. Pull-ups: 1k – 10k ohms.

NUMBER	GS-12-1108	Product Specification		FCJ
TITLE	TRX10GDP0311	A1 (SFP+ LR IT Module)	PAGE 18 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013
			CLASSIFICATION UNRESTF	RICTED

Digital Optical Monitoring

The transceiver offers the ability to monitor important module parameter during operation. All five parameters listed below are continuously monitored for getting information about the current module status. All data is calibrated internally; there is no need for external post processing.

Temperature

Internally measured temperature data is represented as two's complement of a signed 16-bit value in increments of 1/256 °C over a range of -40 to +100 °C. Accuracy is better than +/-3 °C.

Supply Voltage (VCC)

Internally measured supply voltage. Represented as a 16-bit unsigned integer with the voltage defined as the full 16 bit value (0 – 65535) with LSB equal to 100 μ Volt, which yields to a total range of 0 to +6.55 Volts. Accuracy is better than +/-3 %.

Laser Bias Current

The DFB laser bias current is represented as a 16 bit unsigned integer with the current defined as the full 16bit value (0 – 65535) with LSB equal to 2 μ A. Accuracy is better than +/-10 %.

Optical Transmitter Power

TX output power measurement is based on internal monitor diode feedback. Represented as a 16-bit unsigned integer with the power defined as the full 16 bit value (0 – 65535) with LSB equal to 0.1 μ W. Accuracy is better than +/-3 dB over a range of Pavg_{min} to Pavg_{max}.

Receiver Optical Power

RX input power measurement is based on photodiode average current. Represented as a 16-bit unsigned integer with the power defined as the full 16 bit value (0 – 65535) with LSB equal to 0.1 μ W. Accuracy is better than +/-3 dB over a range of -15 dBm to 0.5 dBm.

Note: The specified characteristics are met within the recommended range of operating conditions regarding temperature and voltage.

NUMBER	GS-12-1108	Product Specification		FCJ
TITLE	TRX10GDP0311	A1 (SFP+ LR IT Module)	PAGE 19 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013
				CTED

Module Outline

All dimensions shown are in millimeters.

NUMBER	GS-12-1108	Product Specification		FCJ
TITLE	TRX10GDP0311	A1 (SFP+ LR IT Module)	PAGE 20 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013
				RICTED

Module Safety & Compliance

FCI's SFP+ LR module is designed to meet international standards and requirements. The module is RoHS compliant according to the European Parliament requirements on the restriction of the use of hazardous substances in electrical and electronic equipment (RoHS). The module optical output power meets Class 1 requirements for laser safety.

Requirements	Standard	
Module Safety	IEC 60950-1:2001 EN 60950-1:2001	
RoHS Compliance	RoHS 6/6 Directive 2002/95/EC Amendment 4054 (2005/747/EC)	
Laser Safety (Class 1)	CDRH 21 CFR 1040.10 and 1040.11 (according FDA) IEC 60825-1 Rev2 2007 (according IEC)	

ESD & Electromagnetic Compatibility

Requirements	Standard	Value
EMI (Emission)	FCC Part 15 B EN 55022 Class B CISPR 22 30 MHz … 40 GHz	At least 6 dB margin to Class B limit
EMI (Immunity)	IEC 61000-4-3, 10 MHz … 1 GHz	No bit errors at sensitivity limit
ESD (Electrical connector)	EIA/JESD22-A114-B MIL-STD 883C Method 3015.7	≥ 2 kV ≥ 1 kV (SFI signals)
ESD (Module case)	Air Discharge EN61000-4-2, Criterion B	≥ 15 kV
ESD (Module case)	Contact Discharge EN61000-4-2, Criterion B	

NUMBER	GS-12-1108	Product Specification		FCJ	
TRX10GDP0311A1 (SFP+ LR IT Module)		PAGE 21 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013		

Eye Safety

This laser based singlemode transceiver is a Class 1 product. It complies with IEC 60825-1 Edition 2 and FDA performance standards for laser products (21 CFR 1040.10 and 1040.11) except for deviations pursuant to Laser Notice 50, dated July 26, 2001.

CLASS 1 LASER PRODUCT

To meet laser safety requirements the transceiver shall be operated within the Absolute Maximum Ratings.

Note: All adjustments have been made at the factory prior to shipment of the devices. No maintenance or alteration to the device is required. Tampering with or modifying the performance of the device will result in voided product warranty. Failure to adhere to the above restrictions could result in a modification that is considered an act of "manufacturing", and will require, under law, recertification of the modified product with the U.S. Food and Drug Administration (ref. 21 CFR 1040.10 (i)).

LASER EMISSION DATA

Wavelength	1310 nm	
Maximum total output power (as defined by IEC: within 7 mm aperture at 70 mm distance)	15.6 mW / 11.9 dBm	
Beam divergence (full angle) / NA (half angle)	11° / 0.1 rad	

NUMBER	GS-12-1108	Product Specification		FCJ
TRX10GDP0311A1 (SFP+ LR IT Module)		PAGE 22 of 22 AUTHORIZED BY A. Lehmann	REVISION A DATE 25 Feb 2013	

Ordering Information

Application	Standard	Part Number
10G Ethernet LAN/WAN	IEEE 802.3 10GBASE-LR/LW	TRX10GDP0311A1
10G Fibre Channel	10GFC 1200-SM-LL-L	TRX10GDP0311A1

REVISION RECORD

Rev	Page	Description	<u>EC#</u>	Date
Α		Initial version.		04 Dec 2012

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fibre Optic Transmitters, Receivers, Transceivers category:

Click to view products by Amphenol manufacturer:

Other Similar products are found below :

HFBR-1532ETZ FTLX3813M354 STV.2413-574-00262 TRPRG1VA1C000E2G TOTX1350(V,F) FTLX3813M349 SCN-1428SC FWLF-1519-7D-49 TORX1355(V,F) LTK-ST11MB HFD8003-002/XBA HFD3020-500-ABA FTLF1429P3BCVA S6846 SCN-2638SC FTL410QE4N FTLC9555FEPM SCN-1570SC SCN-1601SC SCN-1338SC SFPPT-SR3-01 HFD8003-500-XBA SCN-1383SC FTLC9555SEPM 2333569-1 LNK-ST11HB-R6 FTLX6875MCC FTL4C1QL3L FTL4C1QE3L FTL4C1QL3C 1019682 1019683 1019705 HFBR-1415Z OPF693-2 FWLF16217D57 AFBR-5803ATQZ AFBR-5803ATZ PLR135/T9 TGW-Q14BB-FCQ AFBR-5803AZ TQS-Q1LH8-XCA03 TQS-Q1LH8-XCA05 TQS-Q1LH8-XCA10 TQS-Q1LH9-2CA HFBR-1414Z HFBR-1527Z HFBR-1528Z HFBR-2406Z HFBR-2505AZ