AS1345

18V, High Efficiency, DC/DC Step-Up

Converter

General Description

The AS1345 high efficiency DC/DC step-up converter contains an internal N -channel and an internal P-channel output isolation switch.
The device operates from a 2.9 V to 5.0 V supply and can boost voltages up to 18 V .

A hysteretic control scheme is used to provide the highest operating efficiency over a wide range of input and output load conditions. The internal MOSFET switches reduce the external component count and a high switching frequency allows the use of tiny surface mount components.

The AS1345 employ a factory set current limit to reduce ripple and external component size in low output current applications. With a 500 mA current limit the AS1345 is capable of providing $20 \mathrm{~mA} @ 18 \mathrm{~V}$ output.

Figure 1:
Available Products

Devices	Peak Coil Current	Output
AS1345A	100 mA	Adjustable or fixed
AS1345B	200 mA	Adjustable or fixed
AS1345C	350 mA	Adjustable or fixed
AS1345D	500 mA	Adjustable or fixed

Built-in safety features protect the internal switches and output components from fault conditions. Additional power-saving attributes include a very low quiescent current and a true shutdown mode.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits \& Features

The benefits and features of AS1345, 18V, High Efficiency, DC/DC Step-Up Converter are listed below:

Figure 2:
Added Value of Using AS1345

Benefits	Features
- Supports Lithium primary and re-chargeable batteries	- Input Voltage Range: 2.9 V to 5.0 V
- Supports a variety of end applications	- Adjustable Output Voltage Range: 5.0V to 18 V - Output Current up to 40 mA
- Allows optimization of circuit depending on output power demands	- Inductor Peak Currents: 100, 200,350 and 500 mA
- Battery life improved	- 90\% Efficiency
- Battery supply isolated during shutdown	- True Shutdown
- Fault tolerant	- Short Circuit and Thermal Protection
- Small chipscale package	- Packages: - 8-pin ($2 \times 2 \mathrm{~mm}$) TDFN - 8-bumps ($1.570 \mathrm{~mm} \times 0.895 \mathrm{~mm}$) WL-CSP with 0.4 mm pitch

Applications

The AS1345 is ideal for:

- Small and low current demand LCD panels as well as for polymer LEDs (OLED)
- Cell phones, PDAs
- Readers
- Mobile terminals
- 3D shutter glasses

Block Diagram

The functional blocks of this device are shown below:

Figure 3:
AS1345 Block Diagram

Pin Assignment

Figure 4:
Pin Diagram (Top View)

Figure 5:
Pin Description

Pin Number		Pin Name	Description
TDFN	WLP		
1	A1	VDD	Supply Voltage. Connect to a 2.9 V to 5.0 V input supply. Bypass this pin with a $10 \mu \mathrm{~F}$ capacitor.
2	A2	EN	Enable Pin. Logic controlled shutdown input, 1.8V CMOS compatible; 1 = Normal operation $0=$ Shutdown On request a $100 \mathrm{k} \Omega$ pull-down resistor can be enabled (factory set).
3	A3	FB	Feedback Pin. Feedback input to the gm error amplifier. For an adjustable output voltage connect a resistor divider to this pin. The output can be adjusted from 5.0 V to 18 V by: $\text { Vout }=\text { VREF } \times(1+\text { R2/R3 })$ If the fixed output voltage version is used, connect this pin to Vout.
4	A4	POK	POK. Open Drain Output. POK remains low while Vout is less than 90% of nominal Vout. Connect a $100 \mathrm{k} \Omega$ pull-up resistor from this pin to VdD.
5	B4	SWIN	Shutdown Disconnect Switch In. Input pin of the internal P-channel MOSFET.

Pin Number		Pin Name	
TDFN	WLP		Description
6	B3	SWOUT	Shutdown Disconnect Switch Out. Output pin of the internal P-channel MOSFET. Connect to power inductor and decouple to GND with a 10 μ F low ESR ceramic capacitor. When the input disconnect feature is not desired, SWOUT should be connected to SWIN and VDD.
7	B2	LX	Inductor. The drain of the internal N-channel MOSFET. Connect to power inductor and to anode of a schottky diode.
8	B1	GND	Ground

Absolute Maximum Ratings

Stresses beyond those listed in the table below may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 6:
Absolute Maximum Ratings

Parameter		Min	Max	Unit	Comments
Electrical Parameters					
VDD, SWIN, SWOUT to GND		-0.3	7	V	
LX, FB to GND		-0.3	20	V	
Input Current (latch-up immunity)		-100	100	mA	JEDEC 78
SWIN to SWOUT Current Limit			1	A	
Electrostatic Discharge					
Electrostatic Discharge HBM		± 2		kV	MIL 883 E method 3015
Temperature Ranges and Storage Conditions					
Junction temperature			110	${ }^{\circ} \mathrm{C}$	
Storage temperature range	WL-CSP	-55	125	${ }^{\circ} \mathrm{C}$	
	TDFN	-55	150	${ }^{\circ} \mathrm{C}$	
Package thermal data	WL-CSP		60		Junction-to-ambient thermal resistance is very dependent on application and board-layout. In
	TDFN		97	${ }^{\circ} \mathrm{C} / \mathrm{W}$	situations where high maximum power dissipation exists, special attention must be paid to thermal dissipation during board design.
Package body temperature	WL-CSP		260	${ }^{\circ} \mathrm{C}$	IPC/JEDEC J-STD-020
	TDFN ${ }^{(2)}$				IPC/JEDEC J-STD-020
Relative humidity non-condensing		5	85	\%	
Moisture sensitivity level	WL-CSP	1			Represents an unlimited floor life time
	TDFN	1			Represents an unlimited floor life time

Note(s):

1. The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/JEDEC J-STD-020"Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices".
2. The lead finish for Pb-free leaded packages is "Matte Tin" ($100 \% \mathrm{Sn}$).

Electrical Characteristics
All limits are guaranteed. The parameters with Min and Max values are guaranteed by production tests or SQC (Statistical Quality Control) methods.

Figure 7:
$\mathbf{V}_{\text {DD }}=\mathbf{V}_{\text {SHDNN }}=\mathrm{V}_{\text {SWIN }}=3.7 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=15 \mathrm{~V}, \mathrm{CIN}=$ COUT $=10 \mu \mathrm{~F}$, Typical Values $@ \mathrm{~T}_{\text {AMB }}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
TAMB	Operating temperature range		-40		85	${ }^{\circ} \mathrm{C}$
TJ	Operating junction temperature range		-40		110	${ }^{\circ} \mathrm{C}$
Input						
VDD	Supply voltage range	SWIN connected to VDD	2.9		5.0	V
	Minimum startup voltage	VDD $=$ SWIN		2.7		V
VUVLO	VDD undervoltage lockout	VDD decreasing (50 mV Hysteresis)		2.7		V
Regulation						
Vout	Adjustable output voltage range	External FB divider	5		18	V
	Feedback voltage tolerance	Tolerance of FB resistors not included	-3		3	\%
	Fixed output voltage	Internal FB divider		12		V
				15		
				17		
VFb	Feedback voltage	For adjustable Vout only		1.25		V
	Feedback input current			10	1000	nA
	Line regulation	$\mathrm{VDD}=3.5 \mathrm{~V}$ to 3.7V		200		mV
	Load regulation	VOUT $=15 \mathrm{~V}$, ILOAD $=0 \mathrm{~mA}$ to 5 mA		50		mV
η	Efficiency	$\begin{aligned} & \mathrm{L}=22 \mu \mathrm{H}, \mathrm{VDD}=\mathrm{VSWIN}= \\ & 3.7 \mathrm{~V}, \text { VOUT }=15 \mathrm{~V}, \\ & \text { ILOAD }=10 \mathrm{~mA} \end{aligned}$		90		\%

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Operating Current						
ISHDN	Shutdown current @ VDD	Vshdnn $=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
	Shutdown current @ SWIN				1	
lQ	Quiescent current	No switching, VFB $=1.5 \mathrm{~V}$		25		$\mu \mathrm{A}$
IdDLOAD	Load current	Vout $=15 \mathrm{~V}, \mathrm{ILOAD}=5 \mathrm{~mA}$		25		mA
ILIMIT	Coil peak current limit	AS1345A		100		mA
		AS1345B		200		mA
		AS1345C		350		mA
		AS1345D		500		mA
Switches						
$\mathrm{R}_{\text {NMOS }}$	NMOS resistance			0.3		Ω
$\mathrm{R}_{\text {PMOS }}$	PMOS resistance			0.15		Ω
POK Output						
	POK output voltage 'low'	POK sinking 1mA		0.01	0.2	V
	POK output voltage 'high'	POK leakage $1 \mu \mathrm{~A}$	VDD		$\begin{aligned} & \text { VDD } \\ & -0.1 \end{aligned}$	V
	POK output high leakage current	$\mathrm{POK}=3.7 \mathrm{~V}$			1	$\mu \mathrm{A}$
	POK threshold	Rising edge, referenced to Vout(Nom)		90		\%
Shutdown						
VshDNH	SHDN input 'high'	$2.9 \mathrm{~V}<\mathrm{VDD}<5.0 \mathrm{~V}$, no load	1.26			V
VshdnL	SHDN input 'low'				0.55	V
ISHDN	SHDN input current		-1		1	$\mu \mathrm{A}$
Soft Start						
IPRE	Pre-charge current			100		mA
Thermal Shutdown						
	Thermal shutdown			150		${ }^{\circ} \mathrm{C}$
	Thermal shutdown hysteresis			10		${ }^{\circ} \mathrm{C}$

Typical Operating Characteristics

Vout $=15 \mathrm{~V}$

Figure 8:
Efficiency vs. IOUT; $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$, $\mathrm{I}_{\text {LIMIT }}=100 \mathrm{~mA}$

Figure 9:
Efficiency vs. IOUT; $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$, I ${ }_{\text {LIMIT }}=500 \mathrm{~mA}$

Figure 10:
Efficiency vs. $I_{\text {OUT }}{ }^{\circ} \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {LIMIT }}=100 \mathrm{~mA}$

Figure 11:
Efficiency vs. $I_{\text {OUT }} \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}, \|_{\text {LIMIT }}=500 \mathrm{~mA}$

Figure 12:
Efficiency vs. $\mathrm{V}_{\text {IN }}$; $\mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA}$, $\mathrm{I}_{\text {LIMIT }}=100 \mathrm{~mA}$

Figure 13:
Efficiency vs. $\mathrm{V}_{\text {IN }} ; \|_{\text {LOAD }}=5 \mathrm{~mA} / 20 \mathrm{~mA}$, $\|_{\text {LIMIT }}=500 \mathrm{~mA}$

Figure 14:
$\mathrm{V}_{\text {OUT }}$ vs. I OUTi $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$, I LIMIT $=100 \mathrm{~mA}$

Figure 15:
$\mathrm{V}_{\text {OUT }}$ vs. $\mathrm{I}_{\text {OUT }} \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$, I IIMIT $=100 \mathrm{~mA}$

Figure 16:
$\mathrm{V}_{\text {OUT }}$ vs. I OUT $\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$, I LIMIT $=500 \mathrm{~mA}$

Detailed Description

The AS1345 is a compact step-up DC/DC converters that operates from a 2.9 V to 5.0 V supply. Consuming only $25 \mu \mathrm{~A}$ of Quiescent current. These devices include an internal MOSFET switch with a low on-resistance. A true shutdown feature disconnects the battery from the load and reduces the supply current to $0.05 \mu \mathrm{~A}$ (typ). These DC/DC converters are available with either a fixed output or are adjustable up to 18 V . Four current-limit options are available: $100 \mathrm{~mA}, 200 \mathrm{~mA}, 350 \mathrm{~mA}$ and 500 mA .

Figure 17:
Typical Application Diagram

Modes of Operation

The AS1345 features an advanced current-limited control scheme operating in hysteretic mode. An internal P-channel MOSFET switch connects VDD to SWIN to provide power to the inductor when the converter is operating. When the converter is shut down, this switch disconnects the input supply from the inductor (see Figure 17). To boost the output voltage an N-channel MOSFET switch turns on and allows current to ramp up in the inductor. Once this current reaches the current limit, the switch turns off and the inductor current flows through D1 to supply the output. The switching frequency varies depending on the load and input voltage and can be up to 10 kHz .

Shutdown

Drive EN low to enter shutdown mode. During shutdown the supply current drops to $0.05 \mu \mathrm{~A}$ (typ), the output is dis-connected from the input, and LX enters a high impedance state. The capacitance and load at the output set the rate at which Vout decays. EN can be pulled as high as 6V regardless of the input and output voltages.

With a typical step-up converter circuit, the output remains connected to the input through the inductor and output rectifier, holding the output voltage to one diode drop below VDD when the converter is shutdown and allowing the output to draw power from the input.
The AS1345 features a True-Shutdown mode, disconnecting the output from the input with an internal P-channel MOSFET switch when shut down. This eliminates power draw from the input during shutdown mode.

Start-up and Inrush Limiting

If the ENABLE pin is high, the AS1345 uses a multi-stage start-up sequence. With increasing supply voltage, first the power-on circuitry becomes active and some internal blocks are initiated. If the supply exceeds the under-voltage-lockout threshold (2.7V typ), the pre-charge-phase is initiated. The capacitor at the SWOUT pin is charged to VIN, and the capacitor at Vout is charged to VIN-VSD. During this phase the current is limited to 100 mA typical. After the completion of the pre-charge-phase, the AS1345 enters into switching mode. Here the specified current-limit $\mathrm{I}_{\text {PEAK }}$ is used. The circuit operates at maximum frequency until the desired Vout is reached. Then AS1345 switches to normal hysteretic operation mode.
If the load current is too high ($>50 \mathrm{~mA}$) during the start-up-phase, the attainment of normal operation mode might be delayed or not done at all.

Adjustable Output Voltage

The output voltage of the AS1345 is adjustable from 5.0 V to 18 V by using a resistor voltage-divider (see Figure 18 and Figure 19). Select R1 from $10 \mathrm{k} \Omega$ to $600 \mathrm{k} \Omega$ and calculate R 2 with the following equation:

Vout $=$ Vref (1 + R2/R3) (EQ1)
Where: $\operatorname{VREF}=1.25 \mathrm{~V}$
Vout can range from 5.0 V to 18 V
For best accuracy, ensure that the bias current through the feedback resistors is at least $2 \mu \mathrm{~A}$.

The AS1345 can also be used with a fixed output voltage. When using one of these parts, connect FB directly to the output (see Figure 20 and Figure 21).

For improved regulation speed and lower ripple C3 should be applied. For best ripple performance always the adjustable variant of the AS1345 together with C3 should be used. Other measures to reduce the ripple could be to select a low peak current $\mathrm{I}_{\text {PEAK }}$ and increase C4 and to decrease the value of L .

Figure 18:
AS1345 with Adjustable Output Voltage, with Output Disconnect

Figure 19:
AS1345 with Adjustable Output Voltage, without Output Disconnect

Figure 20:
AS1345 with Fixed Output Voltage, with Output Disconnect

Figure 21:
AS1345 with Fixed Output Voltage, without Output Disconnect

Power OK Operation

If desired the POK functionality can be used. In this case a resistor R1 ($\sim 100 \mathrm{k}$) has to be applied between the POK pin and VIN, because the POK output is an open drain type. If the POK functionality is not used the pin should be unconnected.

During shut-down the POK pin is high impedance to save current. Therefore it shows VIN if connected to VIN with a resistor or is floating otherwise. During start-up the POK goes to LOW. During normal operation it is usually HIGH but it goes to LOW if for some reason VOUT drops below 90% of the nominal output voltage.

Thermal Shutdown

To prevent the AS1345 from short-term misuse and overload conditions the chip includes a thermal overload protection. To block the normal operation mode all switches will be turned off. The device is in thermal shutdown when the junction temperature exceeds $150^{\circ} \mathrm{C}$ typ. To resume the normal operation the temperature has to drop below $140^{\circ} \mathrm{C}$ typ. A good thermal path should be provided to dissipate the heat generated within the package, especially at higher output power. To dissipate as much heat as possible from the package into a copper plane with as much area as possible, it's recommended to use multiple vias in the printed circuit board.

Continuing operation in thermal overload conditions may damage the device, and therefore, is considered a bad practice.

Inductor Selection

For best efficiency, choose an inductor with high frequency core material, such as ferrite, to reduce core losses. The inductor should have low $D C R$ ($D C$ resistance) to reduce the $I^{2} R$ losses, and must be able to handle the peak inductor current without saturating. A $10 \mu \mathrm{H}$ to $22 \mu \mathrm{H}$ inductor with greater than 500 mA current rating and less than $500 \mathrm{~m} \Omega \mathrm{DCR}$ is recommended. When smaller peak currents are selected, the inductor current specification can be reduced accordingly.

Figure 22:
Recommended Inductors

Part Number	Value	Current	Resistance	Size (ins)	Supplier
ELJLA100KF	$10 \mu \mathrm{H}$	600 mA	0.71Ω	1210	Panasonic www.panasonic.com
ELJLA220KF	$22 \mu \mathrm{H}$	420 mA	1.9Ω	1210	
ELJPA100KF2	$10 \mu \mathrm{H}$	400 mA	0.35Ω	1210	
ELJPA220KF2	$22 \mu \mathrm{H}$	290 mA	0.66Ω	1210	
ELJPA100KF	$10 \mu \mathrm{H}$	240 mA	0.5Ω	1210	
ELJPA150KF	$15 \mu \mathrm{H}$	220 mA	0.74Ω	1210	
ELJPA220KF	$22 \mu \mathrm{H}$	185 mA	1.15Ω	1210	
ELJPC100MF3	$10 \mu \mathrm{H}$	140 mA	0.58Ω	1008	
ELJPC220MF3	$22 \mu \mathrm{H}$	100 mA	1.22Ω	1008	
LQH32PN100MNO	$10 \mu \mathrm{H}$	750 mA	0.38Ω	1210	Murata Manufacturing Company www.murata.com
LQH32PN150MNO	$15 \mu \mathrm{H}$	600 mA	0.57Ω	1210	
LQH32PN220MNO	$22 \mu \mathrm{H}$	500 mA	0.81Ω	1210	
LQH3NPN100NGO	$10 \mu \mathrm{H}$	500 mA	0.38Ω	1212	
LQH3NPN150NGO	$15 \mu \mathrm{H}$	370 mA	0.91Ω	1212	
LQH3NPN220NGO	$22 \mu \mathrm{H}$	340 mA	1.1Ω	1212	
LQH2MCN100M52	$10 \mu \mathrm{H}$	200 mA	2.27Ω	0806	
LQH2MCN150M52	$15 \mu \mathrm{H}$	150 mA	3.5Ω	0806	
LQH2MCN220M52	$22 \mu \mathrm{H}$	130 mA	5.5Ω	0806	

Capacitor Selection

The convertor requires three capacitors. Ceramic X5R or X7R types will minimize ESL and ESR while maintaining capacitance at rated voltage over temperature. The Vin capacitor should be $10 \mu \mathrm{~F}$. The Vout capacitor should be between $1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$. A larger output capacitor should be used if lower peak to peak output voltage ripple is desired. A larger output capacitor will also improve load regulation on Vout. See table below for a list of capacitors for input and output capacitor selection.

Figure 23:
Recommended Capacitors

Part Number	Value	Voltage	TC Code	Size (ins)	Supplier
GRM31CR71E106KA12L	10رF	25 V	X7	1206	Murata Manufacturing Company www.murata.com
GRM31CR71C106KAC7L	10رF	16V	X7	1206	
GRM31CR71A106KA01L	10رF	10 V	X7	1206	
GRM21BR70J106KE76L	$10 \mu \mathrm{~F}$	6.3 V	X7	0805	
GRM31CR71E475KA88L	$4.7 \mu \mathrm{~F}$	25V	X7	1206	
GRM21BR71C475KA73L	$4.7 \mu \mathrm{~F}$	16 V	X7	0805	
GRM188R71E105KA12D	$1 \mu \mathrm{~F}$	25 V	X7	0603	
GRM188R71C105KA12D	$1 \mu \mathrm{~F}$	16V	X7	0603	

Schottky Diode Selection

The selection of the external diode depends on the application. If lout is very low most of the time, and Vout is high, select a diode with a low reverse current for best efficiency. For lower Vout and higher Iout, select a diode with a lower $V_{\text {FORWARD }}$ and $\mathrm{R}_{\text {FORWARD }}$.

Figure 24:
Recommended Diodes

Part Number	Reverse Voltage	Average Rectified Current	Forward Voltage	Reverse Leakage Current	Package	Supplier
MBR0540	40V	500 mA	$\begin{gathered} 460 \mathrm{mV} \text { @ } \\ 500 \mathrm{~mA} \end{gathered}$	$1 \mu \mathrm{~A} @ 20 \mathrm{~V}$	SOD123	Fairchild Semiconductor www.fairchildsemi.com
B140HW	40V	1000mA	$\begin{gathered} 460 \mathrm{mV} \text { @ } \\ 500 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0.35 \mu \mathrm{~A} @ \\ 20 \mathrm{~V} \end{gathered}$	SOD123	Diodes Inc www.diodes.com
PMEG2010AEB	20V	1A	$\begin{gathered} 200 \mathrm{mV} \text { @ } \\ 500 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 320 \mu \mathrm{~A} @ \\ 20 \mathrm{~V} \end{gathered}$	SOD523	NXP Semiconductors www.nxp.com
CRS04	40V	1A	$\begin{gathered} 450 \mathrm{mV} \text { @ } \\ 500 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 40 \mu \mathrm{~A} @ \\ 20 \mathrm{~V} \end{gathered}$	3-2A1A (Toshiba)	Toshiba www.toshiba-compone nts.com
CRS06	20V	1A	$\begin{gathered} 325 \mathrm{mV} @ \\ 500 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 250 \mu \mathrm{~A} @ \\ 20 \mathrm{~V} \end{gathered}$	3-2A1A (Toshiba)	

PCB Layout

Carefully printed circuit layout is important for minimizing ground bounce and noise. Keep the GND pin and ground pads for the input and output capacitors as close together as possible. Keep the connection to LX as short as possible. Locate the feedback resistors as close as possible to the FB pin and keep the feedback traces routed away from noisy areas such as LX.

EMI and overall performance quality are affected by the PCB layout. The high speed operation of the AS1345 demands careful attention to board layout. Stated performance will be difficult to achieve with careless layout. Figure 25 identifies the high current paths during an operation cycle involving the switching of the N -channel and P -channel internal switches. The current paths between SWIN, VIN, C1, C2, C4, L1, D1 and GND should be short and wide for lowest intrinsic resistive loss and lowest stray inductance.

A large ground pin copper area will help to lower the chip temperature. A multilayer board with a separate ground plane is ideal, but not absolutely necessary.

Figure 25:
AS1345 - Inductor Current Paths

Package Drawings \& Markings
The product is available in a 8-pin (2x2) TDFN and 8-bump ($1.570 \mathrm{~mm} \times 0.895 \mathrm{~mm}$) WL-CSP package.

Figure 26:
8-bump WL-CSP with 0.4 mm Pitch

Note(s):

1. ccc Coplanarity.
2. All dimensions in $\mu \mathrm{m}$.

Figure 27:
Package Marking

Tracecode	Marking Code
$X X X X$	$z z$

Figure 28:
8 -pin (2x2) TDFN Package

Note(s):

1. Dimensions \& tolerancing conform to ASME Y14.5M-1994.
2. All dimensions are in millimeters. Angles are in degrees.
3. Coplanarity applies to the terminal.
4. Radius on terminal is optional.
5. N is the total number of terminals.

Figure 29:
Package Marking

Trace Code	Marking Code
$X X X$	$z z$

Ordering \& Contact Information

The device is available as the standard products listed in the table below.

On request, all devices can be factory set to enable a $100 \mathrm{k} \Omega$ pull-down resistor for the EN pin.

Figure 30:
Ordering Information

Ordering Code	Package	Marking	ILIMIT	Output	Delivery Form	Delivery Quantity
AS1345A-BWLT-AD	8-balls WL-CSP	BK	100 mA	Adj.	Tape \& Reel	1000 pcs/reel
AS1345A-BWLT-12	8-balls WL-CSP	BS	100 mA	1.2 V	Tape \& Reel	1000 pcs/reel
AS1345A-BWLT-15	8-balls WL-CSP	CA	100 mA	1.5 V	Tape \& Reel	1000 pcs/reel
AS1345A-BWLT-17	8-balls WL-CSP	Cl	100 mA	1.7V	Tape \& Reel	1000 pcs/reel
AS1345B-BWLT-AD	8-balls WL-CSP	CB	200 mA	Adj.	Tape \& Reel	1000 pcs/reel
AS1345D-BWLT-AD	8-balls WL-CSP	BN	500 mA	Adj.	Tape \& Reel	1000 pcs/reel
AS1345D-BWLT-15	8-balls WL-CSP	BG	500mA	1.5 V	Tape \& Reel	1000 pcs/reel
AS1345D-BWLT-17	8-balls WL-CSP	BH	500mA	1.7V	Tape \& Reel	1000 pcs/reel
AS1345A-BTDT-AD	8-pin TDFN	BI	100mA	Adj.	Tape \& Reel	1000 pcs/reel
AS1345B-BTDT-AD	8-pin TDFN	BJ	200mA	Adj.	Tape \& Reel	1000 pcs/reel
AS1345C-BTDT-AD	8-pin TDFN	CD	350 mA	Adj.	Tape \& Reel	1000 pcs/reel
AS1345D-BTDT-AD	8-pin TDFN	CL	500mA	Adj.	Tape \& Reel	1000 pcs/reel

Buy our products or get free samples online at:
www.ams.com/ICdirect
Technical Support is available at:
www.ams.com/Technical-Support
Provide feedback about this document at:
www.ams.com/Document-Feedback
For further information and requests, e-mail us at:
ams_sales@ams.com
For sales offices, distributors and representatives, please visit:
www.ams.com/contact

Headquarters

ams AG
Tobelbader Strasse 30
8141 Premstaetten
Austria, Europe

Tel: +43 (0) 31365000
Website: www.ams.com

RoHS Compliant \& ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.
ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Copyrights \& Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.
Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.
ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Revision Information

Changes from 1-55 (2015-Apr-29) to current revision 1-56 (2016-Dec-28) Page

Updated Figure 30

Note(s):

1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
2. Correction of typographical errors is not explicitly mentioned.

Content Guide

1 General Description
2 Key Benefits \& Features
2 Applications
3 Block Diagram
4 Pin Assignment
6 Absolute Maximum Ratings
7 Electrical Characteristics
9 Typical Operating Characteristics
14 Detailed Description
14 Modes of Operation
15 Shutdown
15 Start-up and Inrush Limiting
15 Adjustable Output Voltage
18 Power OK Operation
18 Thermal Shutdown
19 Inductor Selection
20 Capacitor Selection
21 Schottky Diode Selection
22 PCB Layout
23 Package Drawings \& Markings
25 Ordering \& Contact Information
27 RoHS Compliant \& ams Green Statement
28 Copyrights \& Disclaimer
29 Document Status
30 Revision Information

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:

Click to view products by ams manufacturer:

Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

