austriamicrosystems AG

is now
 ams AG

The technical content of this austriamicrosystems datasheet is still valid.

Contact information:

Headquarters:

ams AG
Tobelbaderstrasse 30
8141 Unterpremstaetten, Austria
Tel: +43 (0) 31365000
e-Mail: ams_sales@ams.com

AS1744, AS1745

High-Speed, Low-Voltage, Dual, Single-Supply, 4Ω, SPDT Analog Switches

1 General Description

The AS1744/AS1745 are high-speed, low-voltage, dual single-pole/double-throw (SPDT) analog switches.
Fast switching speeds, low ON-resistance, and low power-consumption make these devices ideal for singlecell battery powered applications.

These highly-reliable devices operate from a +1.8 to +5.5 V supply, are differentiated by inverted logic, and support break-before-make switching.
With low ON-resistance (Ron), Ron matching, and Ron flatness, the devices can accurately switch signals for sample and hold circuits, digital filters, and op-amp gain switching networks.

The devices are available in a 10-pin MSOP package and a $10-$ pin TDFN package.

2 Key Features

- ON-Resistance:
-4Ω (+5V supply)
- 5.5Ω (+3V supply)
- RoN Matching: 0.2Ω (+5 V supply)
- Ron Flatness: 1Ω (+5V supply)
- Supply Voltage Range: +1.8 to +5.5 V
- 1.8V Operation:
- 9.5Ω ON-Resistance over Temperature
- 38ns Turn On Time
- 12ns Turn Off Time
- Current-Handling: 100mA Continuous
- Break-Before-Make Switching
- Rail-to-Rail Signal Handling
- Crosstalk: -90 dB at 1 MHz
- Off-Isolation: - 85 dB at 1 MHz
- Total Harmonic Distortion: 0.1\%
- Operating Temperature Range: -40 to $+85^{\circ} \mathrm{C}$
- Package Types:
- 10-pin MSOP
- 10-pin TDFN

3 Applications

The devices are ideal for use in power routing systems, cordless and mobile phones, MP3 players, CD and DVD players, PDAs, handheld computers, digital cameras, and any other application where high-speed signal switching is required.

Figure 1. Block Diagrams

4 Pinout

Pin Assignments

Figure 2. Pin Assignments (Top View)

Pin Descriptions

Table 1. Pin Descriptions

Pin Number		Pin Name	
AS1744	AS1745		
10	10	COM1	Analog Switch 1 Common
6	6	COM2	Analog Switch 2 Common
3	3	GND	Ground
1	1	IN1	Analog Switch 1 Logic Control Input
5	5	IN2	Analog Switch 2 Logic Control Input
9	2	NC1	Analog Switch 1 Normally Closed Terminal
7	4	NC2	Analog Switch 2 Normally Closed Terminal
2	9	NO1	Analog Switch 1 Normally Open Terminal
4	7	NO2	Analog Switch 2 Normally Open Terminal
8	8	V+	Input Supply Voltage. +1.8 to +5.5V

5 Absolute Maximum Ratings

Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Section 6 Electrical Characteristics on page 4 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2. Absolute Maximum Ratings

Parameter	Min	Max	Units	Comments
$\mathrm{V}+$, IN1, IN2 to GND	-0.3	+7	V	
COM x, NO x, NC x to GND ${ }^{\dagger}$	-0.3	$\mathrm{V}+$ +0.3	V	
COM x, NOx, NC x Continuous Current	-100	+100	mA	
COM x, NOx, NC x Peak Current	-150	+150	mA	Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle
Continuous Power Dissipation (TAMB $=+70^{\circ} \mathrm{C}$)		330	mW	Derate at $4.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$
Electro-Static Discharge		1000	V	HBM Mil-Std883E 3015.7 methods
Latch Up Immunity		100	mA	Norm: JEDEC 17
Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$	
Junction Temperature		150	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$	
Package Body Temperature		+260	${ }^{\circ} \mathrm{C}$	The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/JEDEC J-STD-020C "Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices"

${ }^{\dagger}$ Signals on pins COM1, COM2, NO1, NO2, NC1, or NC2 that exceed $\mathrm{V}+$ or GND are clamped by internal diodes. Limit forward-diode current to the maximum current rating.

6 Electrical Characteristics

$V+=+4.5$ to $5.5 \mathrm{~V}, V_{I H}=+2.4 \mathrm{~V}, V I L=+0.8 \mathrm{~V}$, TAMB $^{2}=$ TMIN 2 to $T_{M A X}$ (unless otherwise specified). Typ Values @TAMB $=+25^{\circ} \mathrm{C}$.
Table 3. +5V Supply Electrical Characteristics

 Table 4. +3V Supply Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
Analog Switch							
Vcomx VNOx, VNCx	Analog Signal Range			0		V+	V
Ron	ON-Resistance	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{ICOM} x=10 \mathrm{~mA} \\ & \mathrm{VNO} \text { or } \mathrm{VNCx}=0 \text { to } \mathrm{V}+ \end{aligned}$	TAMB $=+25^{\circ} \mathrm{C}$		5	5.5	Ω
			TAmb $=$ Tmin to Tmax			8	
$\Delta \mathrm{RoN}$	ON-Resistance Match Between Channels ${ }^{1}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{ICOMx}=10 \mathrm{~mA} \\ & \mathrm{VNO} \text { or } \mathrm{VNCx}=0 \text { to } \mathrm{V}+ \end{aligned}$	TAMB $=+25^{\circ} \mathrm{C}$		0.1	0.2	Ω
			TAMB $=$ TMIN to Tmax			0.4	
Rflat(on)	ON-Resistance Flatness ${ }^{2}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{ICOM} x=10 \mathrm{~mA} \\ & \mathrm{VNO} \text { or } \mathrm{VNCx}=0 \text { to } \mathrm{V}+ \end{aligned}$	TAMB $=+25^{\circ} \mathrm{C}$		1.5	2	Ω
			TAMB $=$ Tmin to Tmax			2.5	
INOX(OFF), INCx(OFF)	NOx or NCx OffLeakage Current ${ }^{3}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{VCOMx}=1 \text { or } 3 \mathrm{~V} \text {, } \\ \mathrm{VNO} \text { or } \mathrm{VNCx}=3 \text { or } 1 \mathrm{~V} \end{gathered}$	TAMB $=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	0.1	nA
			Tamb $=$ Tmin to Tmax	-0.3		0.3	
ICOMx(OFF)	COMx Off-Leakage Current ${ }^{3}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{VCOMx}=1 \text { or } 3 \mathrm{~V} \\ \mathrm{VNO} \text { or } \mathrm{VNCx}=3 \text { or } 1 \mathrm{~V} \end{gathered}$	TAMB $=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	0.1	nA
			TAMB $=$ TMIN to TMAX	-3		3	
ICOMx(ON)	COMx On-Leakage Current ${ }^{3}$	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{VCOMx}=1 \text { or } 3 \mathrm{~V}, \\ & \mathrm{VNO} \text { or } \mathrm{VNCx}=1 \text { or } 3 \mathrm{~V} \end{aligned}$	TAMB $=+25^{\circ} \mathrm{C}$	-0.4	± 0.1	0.4	nA
			TAMB $=$ Tmin to Tmax	-4		4	
Logic Input: (INX)							
VIH	Input Logic High			2.0			V
VIL	Input Logic Low					0.4	V
ІІн,IIL	Input Leakage Current	$\mathrm{VIN} x=0$ or +	.5V	-100	5	100	nA
Switch Dynamic Characteristics							
ton	Turn On Time ${ }^{3}$	VNOx or $\mathrm{VNCx}^{2}=2 \mathrm{~V}$, RLOAD $=$ 300Ω, Cload $=35$ pF, Figure 12	TAMB $=+25^{\circ} \mathrm{C}$		17	23	ns
			TAmb $=$ Tmin to Tmax			28	
toff	Turn Off Time ${ }^{3}$	$\mathrm{V}_{\mathrm{NO}} \mathrm{or} \mathrm{VNCx}^{2}=2 \mathrm{~V}$, RLOAD $=$ 300Ω, Cload $=35$ pF, Figure 12	TAMB $=+25^{\circ} \mathrm{C}$		6	8	ns
			TAMB $=$ Tmin to TMAX			10	
tBBM	Break-Before-Make ${ }^{3}$	VNOX or $\mathrm{VNCx}^{2}=2 \mathrm{~V}$, RLOAD $=$ 300Ω, Cload $=35$ pF, Figure 13	TAMB $=+25^{\circ} \mathrm{C}$		11		ns
			TAMB $=$ Tmin to TMAX	1			
Q	Charge Injection	VGen $=1.5 \mathrm{~V}$, Rgen $=0$, Cload	= 1.0nF, Figure 14		0		pC
CNOx(OFF), CNCx(OFF)	NOx, NCx OffCapacitance	VNOx or $\mathrm{VNCx}^{\text {a }}$ = GND, $\mathrm{f}=1$	MHz , Figure 15		20		pF
Ccomx(ON)	COMx OnCapacitance	VCOMx $=\mathrm{GND}, \mathrm{f}=1 \mathrm{MH}$	Hz , Figure 15		56		pF
Viso	Off-Isolation ${ }^{4}$	$\mathrm{f}=10 \mathrm{MHz}$, RLOAD $=50 \Omega$, CLOAD $=5 \mathrm{pF}$, Figure 16			-52		dB
		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{RLOAD}=50 \Omega$, CLOA	AD $=5 \mathrm{pF}$, Figure 16		-85		
Vст	Crosstalk ${ }^{5}$	$\mathrm{f}=10 \mathrm{MHz}$, RLOAD $=50 \Omega$, CLO	$A D=5 \mathrm{pF}$, Figure 16		-52		dB
		$\mathrm{f}=1 \mathrm{MHz}$, RLOAD $=50 \Omega$, CLOA	$A D=5 p F$, Figure 16		-90		
Power Supply							
$1+$	Positive Supply Current	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{VIN}=0$ or +3.6 V			0.01	1.0	$\mu \mathrm{A}$

1. $\Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(\mathrm{MIN})$.
2. Flatness is defined as the difference between the maximum and the minimum value of ON-resistance as measured over the specified analog signal ranges.
3. Guaranteed by design.
4. Off-Isolation $=20 \log 10(\mathrm{Vcom} x / \mathrm{VNO} x), \mathrm{Vcom} x=$ output, $\mathrm{VNO}=$ input to off switch.
5. Between any two switches.

7 Typical Operating Characteristics

Figure 3. Frequency Response

Figure 5. Ron vs. VCOM and Temperature (VDD $=5 \mathrm{~V}$)

Figure 7. Ron vs. Vсом

Figure 4. THD vs. Frequency

Figure 6. RON vs. VCOM and Temperature (VDD $=3 V$)

Figure 8. ton/toff vs. Temperature ($V+=5 \mathrm{~V}$)

Figure 9. ton/toff vs. Supply Voltage

Figure 10. Charge Injection

8 Detailed Description

The AS1744/AS1745 are low ON-resistance, low-voltage, dual analog SPDT switches that operate from a single +1.8 to +5.5 V supply.

CMOS process technology allows switching of analog signals that are within the supply voltage range (GND to $\mathrm{V}+$).

ON-Resistance

When powered from a +5 V supply, the low Ron (4Ω max) allows high continuous currents to be switched in a wide range of applications. All devices have low Ron flatness ($1 \Omega, \max$) so they can meet or exceed the low-distortion audio requirements of modern portable audio devices.

Bi-Directional Switching

Pins NOx, NCx, and COMx are bi-directional, thus they can be used as inputs or outputs.

Analog Signal Levels

Analog signals ranging over the entire supply voltage ($V+$ to GND) can be passed with very little change in ON-resistance (see Typical Operating Characteristics on page 6).

Logic Inputs

The AS1744/AS1745 logic inputs (INx) can be driven up to +5.5 V regardless of the supply voltage value. For example, with a +3.3 V supply, $\mathrm{IN}+$ may be driven low to GND and high to +5.5 V . This allows the devices to interface with +5 V systems using a supply of less than 5 V .

9 Application Information

Power-Supply Sequencing

Proper power-supply sequencing is critical for proper operation. The recommended sequence is as follows:

1. V+
2. $\mathrm{NO} x, \mathrm{NCx}, \mathrm{COM} x$

Always apply $\mathrm{V}+$ before applying analog signals, especially if the analog signal is not current-limited. If the above sequence is not possible, and if the analog inputs are not current-limited to less than 30 mA , add a small-signal diode as shown in Figure 11 (D1). If the analog signal can dip below GND, add diode D2. Adding these diodes will reduce the analog range to a diode-drop (about 0.7 V) below $\mathrm{V}+$ (for D 1), and a diode-drop above ground (for D 2).
Note: Operation beyond the absolute maximum ratings (see page 3) may permanently damage the devices.

Overvoltage Protection

ON-resistance increases slightly at lower supply voltages.
Figure 11. Overvoltage Protection Using 2 External Blocking Diodes

Adding diode D2 to the circuit shown in Figure 11 causes the logic threshold to be shifted relative to GND. Diodes D1 and D2 also protect against overvoltage conditions.
For example, in the circuit shown in Figure 11, if the supply voltage goes below the absolute maximum rating, and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage will result.

Note: The supply voltage $(\mathrm{V}+)$ must not exceed the absolute maximum rating of +7 V .

Power Supply Bypass

Power supply connections to the devices must maintain a low impedance to ground. This can be done using a bypass capacitor, which will also improve noise margin and prevent switching noise propagation from the $\mathrm{V}+$ supply to other components.

Layout Considerations

High-speed switches require proper layout and design procedures for optimum performance.

- Reduce stray inductance and capacitance by keeping traces short and wide.
- Ensure that bypass capacitors are as close to the device as possible.
- Use large ground planes where possible.

Timing Diagrams and Test Setups

Figure 12. Switching Time

Figure 13. Break-Before-Make Interval

Figure 14. Charge Injection

Figure 15. NOx, NCx, and COMx Capacitance

Figure 16. Off-Isolation, On-Loss, and Crosstalk

Notes:

1. Measurements are standardized against short-circuit at all terminals.
2. Off-isolation is measured between COMx and the off $\mathrm{NCx} / \mathrm{NOx}$ terminal of each switch. Off-isolation $=$ $20 \log ($ Vout/Vin).
3. Crosstalk is measured from one channel to all other channels.
4. Signal direction through the switch is reversed; worst values are recorded.

Package Drawings and Markings

The devices are available in a $10-\mathrm{pin}$ MSOP package and a $10-\mathrm{pin}$ TDFN package.
Figure 17. 10-pin MSOP Package

Symbol	Typ	\pm Tol	Symbol	Typ	\pm Tol
A	1.10	Max	b	0.23	$+0.07 /-0.08$
A1	0.10	± 0.05	b1	0.20	± 0.05
A2	0.86	± 0.08	c	0.18	± 0.08
D	3.00	± 0.10	c1	0.15	$+0.03 /-0.02$
D2	2.95	± 0.10	$\theta 1$	3.0°	$\pm 3.0^{\circ}$
E	4.90	± 0.15	$\theta 2$	12.0°	$\pm 3.0^{\circ}$
E1	3.00	± 0.10	$\theta 3$	12.0°	$\pm 3.0^{\circ}$
E2	2.95	± 0.10	L	0.55	± 0.15
E3	0.51	± 0.13	L1	0.95 BSC	-
E4	0.51	± 0.13	aaa	0.10	-
R	0.15	$+0.15 /-0.08$	bbb	0.08	-
R1	0.15	$+0.15 /-0.08$	ccc	0.25	-
t1	0.31	± 0.08	e	0.50 BSC	-
t2	0.41	± 0.08	S	0.50 BSC	-

Notes:

1. All dimensions are in millimeters, angles in degrees, unless otherwise specified.
2. Datums B and C to be determined at datum plane H.
3. Dimensions D and $E 1$ are to be determined at datum plane H.
4. Dimensions D2 and E2 are for top package; dimensions D and E1 are for bottom package.
5. Cross section A-A to be determined at 0.13 to 0.25 mm from lead tip.
6. Dimensions D and D2 do not include mold flash, protrusion, or gate burrs.
7. Dimensions E1 and E2 do not include interlead flash or protrusion.

Figure 18. 10-pin TDFN Package (3.0x3.0mm)

DETAILB ODD TERMINAL SIDE

Variations				
Symbol	Min	Typ	Max	Notes
D BSC		3.00		1,2
E BSC		3.00		1,2
D2	2.20		2.70	1,2
E2	1.40		1.75	1,2
L	0.30	0.40	0.50	1,2
N		10		1,2
ND		5		$1,2,5$

Notes:

1. Dimensioning and tolerancing are compliant with ASME Y14.5M-1994.
2. Dimensions are in millimeters, angles in degrees $\left({ }^{\circ}\right)$.
3. N is the total number of terminals.
4. The terminal 1 identifier and terminal numbering convention shall conform to JESD 95-1 SPP-012. Details of terminal 1 identifier are optional, but must be located within the zone indicated. The terminal 1 identifier may be either a mold, embedded metal or mark feature.
5. Dimension b applies to metallized terminal and is measured between 0.15 and 0.30 mm from terminal tip.
6. ND refers to the maximum number of terminals on D side.
7. Variation shown in Figure 18 is for illustration purposes only.
8. For variation identifier dimension details, refer to the Dimensions table.
9. For a complete set of dimensions for each variation, refer to the Variations table.
10. Unilateral coplanarity zone applies to the exposed heat sink slug and the terminals.
11. For a rectangular package, the terminal side of the package is determined by:

- Type 1: Terminals are on the short side of the package.
- Type 2: Terminals are on the long side of the package.

12. Variations specified as NJR (non JEDEC registered), with an additional dash number (e.g., $-1,-2$) are packages currently not registered with JEDEC.
13. When more than one variations exist for the same profile height, body size (DxE), and pitch, then those variations will be denoted by an additional dash number (i.e., $-1,-2$) for identification. The new variations shall be created based on any or all of the following factors: terminal count, terminal length, and exposed pad sizes.

10 Ordering Information

The devices are available as the standard products shown in Table 5.
Table 5. Ordering Information

Type	Description	Delivery Form	Package
AS1744G	Dual SPDT Switch	Tube	10-pin MSOP
AS1744G-T	Dual SPDT Switch	Tape and Reel	$10-$-pin MSOP
AS1744V-T †	Dual SPDT Switch	Tape and Reel	$10-$ pin TDFN
AS1745G	Dual SPDT Switch	Tube	$10-$ pin MSOP
AS1745G-T $^{\text {AS1745V-T }^{\dagger}}$	Dual SPDT Switch	Tape and Reel	$10-$ pin MSOP

[^0]
Copyrights

Copyright © 1997-2007, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered \circledR^{\circledR}. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.
All products and companies mentioned are trademarks or registered trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or lifesustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Contact Information

Headquarters

austriamicrosystems AG
A-8141 Schloss Premstaetten, Austria
Tel: +43 (0) 31365000
Fax: +43 (0) 313652501

For Sales Offices, Distributors and Representatives, please visit:
http://www.austriamicrosystems.com/contact

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ams manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1
TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118
FSA2275AUMX

[^0]: ${ }^{\dagger}$ Available upon request. Contact austriamicrosystems, AG for details.

