

AS3630

8A Supercap Flash Driver

General Description

The AS3630 is an inductive high efficient 4MHz dual DCDC step up converter with several sources. It supports the charging of a Supercap, its voltage balancing and a highly efficient DCDC step up from the Supercap to the LED and from VIN to the LED to power the flash LED with up to 8A. The AS3630 supports the pre-charging of the Supercap (to VIN) to reduce the startup time for the flash without reducing the lifetime of the Supercap.

The system concept supports an immediate torch function without first charging the Supercap.

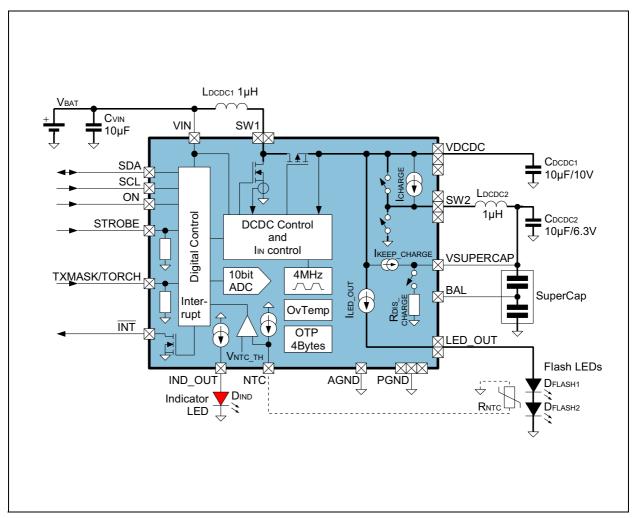
The AS3630 includes flash timeout, over- undervoltage, overtemperature and LED short circuit protection.

The AS3630 is controlled by an I²C interface for adjustment of the currents and timings, set the end of charge voltage and measure the Supercap and LED parameters through the internal ADC. A dedicated TXMASK/TORCH input can be used for a torch button -or- reducing the battery current if a RF PA is operated at the same time (TX Masking). A hardware enable pin -ON can be used as a reset input.

The AS3630 is available in a space-saving WL-CSP 5x5 balls package measuring only 2.5x2.5x0.6mm and operates over the -30°C to +85°C temperature range.

Figure AS3630 – 1: Key Benefits and Features

Benefits	Features
Reduce Supercap size	Dual high efficiency boost converter with soft start allows small coils
Instantaneous Torch operation for improved user experience	Immediate Torch functions with charging of the Supercap
Tiny external coils	4MHz fixed frequency DCDC
System Safety	10bit ADC converter for system monitoring with Protection functions: Automatic Flash Timeout timer to protect the LED Overvoltage and undervoltage Protection LED (NTC) and device Overtemperature Protection LED short/open circuit protection
Improved thermal performance (ground = heat sink)	Flash LED(s) cathode connected to ground:

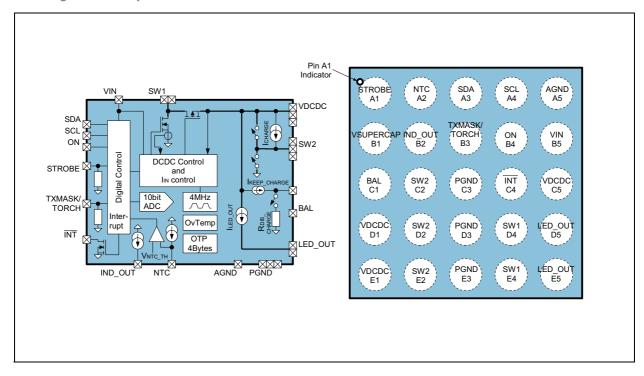


Benefits	Features
Fine control of current to fit to applications	LED currents (fully adjustable by interface) • 8A for 33ms and 6A for 120ms (Flash), 2.9mA - 272mA for torch • 1mA-8mA indicator current
Full control and hardware ON pin for easier system integration	I ² C Interface with Interrupt output and ON pin

Applications

The device is ideal for Flash/Torch for mobile phones, DSC and Tablets.

Figure AS3630 – 2: Typical Operating Circuit



Typical Operating Circuit: Shows the main function blocks of the AS3630.

Pin Assignment

Figure AS3630 – 3: Pin Assignments (Top View)

Pin Description

Figure AS3630 – 4: Pin Description

Pin Number	Pin Name	Description
A1	STROBE	Digital input with pulldown to control strobe time for flash function ¹
A2	NTC	LED temperature sensor input - connect to NTC and connect its GND with a separate ground wire to AGND
A3	SDA ²	Digital input, open drain output - serial data input/output for I ² C interface (needs external pullup resistor)
A4	SCL ²	Digital Input ³ - serial clock input for I ² C mode
A5	AGND	Analog ground - connect to ground (GND)
B1	VSUPERCAP	Supercap connection
B2	IND_OUT	Indicator LED current source output
В3	TXMASK/TORCH	 "TXMASK" Connect to RF power amplifier enable signal - reduces currents during flash to avoid a system shutdown due to parallel operation of the RF PA and the flash driver. "TORCH" Operate torch current level without using the I²C interface to operate the torch without need to start a camera processor (if the I²C is connected to the camera processor.
B4	ON	Digital Input active high - a logic 1 enables of the AS3630; a logic 0 resets the AS3630
B5	VIN	Positive supply voltage input - connect to supply and make a short connection to input capacitor CVIN and to coil L _{DCDC1}
C1	BAL	Supercap balance pin - balances both single capacitors inside the Supercap
C2	SW2	DCDC converter 2 switching node - make a short connection to the coil L _{DCDC2} and connect all SW2 pins together on top plane
C3	PGND	Power ground - connect to ground (GND) and connect all PGND pins together on top plane
C4	ĪNT	Open drain interrupt output - active low (needs external pullup resistor)
C5	VDCDC	DCDC converter 1 and 2 output capacitor - make a short connection to CVOUT1 and connect all VDCDC pins together as short as possible

Pin Number	Pin Name	Description
D1	VDCDC	DCDC converter 1 and 2 output capacitor - make a short connection to CVOUT1 and connect all VDCDC pins together as short as possible
D2	SW2	DCDC converter 2 switching node - make a short connection to the coil L _{DCDC2} and connect all SW2 pins together on top plane
D3	PGND	Power ground - connect to ground (GND) and connect all PGND pins together on top plane
D4	SW1	DCDC converter 1 switching node - make a short connection to the coil L _{DCDC1} and connect all SW1 pins together on top plane
D5	LED_OUT	Flash LED current source output and connect all LED_OUT pins together on top plane
E1	VDCDC	DCDC converter 1 and 2 output capacitor - make a short connection to CVOUT1 and connect all VDCDC pins together as short as possible
E2	SW2	DCDC converter 2 switching node - make a short connection to the coil L _{DCDC2} and connect all SW2 pins together on top plane
E3	PGND	Power ground - connect to ground (GND) and connect all PGND pins together on top plane
E4	SW1	DCDC converter 1 switching node - make a short connection to the coil L _{DCDC1} and connect all SW1 pins together on top plane
E5	LED_OUT	Flash LED current source output and connect all LED_OUT pins together on top plane

^{1.} Application Information: The pin STROBE is usually connected directly to the camera processor.

^{2.} When SCL and SDA exchanged, the AS3630 uses a different I²C address and the functionality of SCL/SDA is also exchanged - see "I²C Address Selection" on page 43.

^{3.} Only input: The AS3630 does not perform clock stretching.

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Operating Conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure AS3630 – 5: Absolute Maximum Ratings

Parameter	Min	Max	Units	Comments
VIN, SDA, SCL, ON, STROBE, TXMASK/TORCH, INT, IND_OUT, NTC and BAL to GND	-0.3	+7.0	V	
SDA, SCL, ON, STROBE, TXMASK/TORCH, INT, IND_OUT, NTC to GND	-0.3	VIN + 0.3	V	
V _{DCDC} , SW1, SW2, V _{DCDC} , LED_OUT and VSUPERCAP to GND	-0.3	+11	V	
V _{DCDC} to SW1 V _{DCDC} to SW2 V _{DCDC} to LED_OUT VSUPERCAP to BAL	-0.3		V	Diode between • V _{DCDC} and SW1 • V _{DCDC} and SW2 • V _{DCDC} and LED_OUT • VSUPERCAP and BAL
AGND, PGND to GND	0.0	0.0	V	Connect AGND and PGND to GND directly below the ball (short connection required)
Input Pin Current without causing latchup	-100	+100 +I _{IN}	mA	Norm: EIA/JESD78
Continu	ous Powe	er Dissipatio	n (T _A = +7	0°C)
Continuous power dissipation		2770	mW	P _T ¹
Continuous power dissipation derating factor		37	mW/ºC	P _{DERATE} ²
	Electro	static Discha	arge	
ESD HBM		±2000	V	Norm: JEDEC JESD22-A114F
ESD MM		±100	V	Norm: JEDEC JESD 22-A115-B

Parameter	Min	Max	Units	Comments				
Temperature Ranges and Storage Conditions								
Junction Temperature		+125	°C	+150°C internally limited only during flash (max. 20000s)				
Storage Temperature Range	-55	+125	°C					
Humidity	5	85	%	Non condensing				
Body Temperature during Soldering		+260	°C	According to IPC/JEDEC J-STD-020				
Moisture Sensitivity Level (MSL)	٨	1SL 1		Represents a max. floor life time of unlimited				

^{1.} Depending on actual PCB layout and PCB used.

^{2.} P_{DERATE} derating factor changes the total continuous power dissipation (P_{T}) if the ambient temperature is not 70°C. Therefore for e.g. $T_{AMB}=85$ °C calculate P_{T} at 85°C $= P_{T} - P_{DERATE} * (85$ °C - 70°C)

Electrical Characteristics

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

 V_{VIN} = +2.5V to +4.8V, T_{AMB} = -30°C to +85°C, unless otherwise specified. Typical values are at V_{BAT} = +3.7V, T_{AMB} = +25°C, unless otherwise specified.

Figure AS3630 – 6: Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units			
	General Operating Conditions								
V _{VIN}	Supply Voltage		2.5	3.7	4.8	V			
I _{SHUTDOWN}	Shutdown Current	AS3630 off, V_{BAT} <3.7V, $T_{AMB} \le 50$ °C, ON=0		0.5	2.0	μΑ			
I _{STANDBY}	Standby Current	AS3630 off, V_{BAT} <3.7V, $T_{AMB} \le 50$ °C, ON=1		1.0	10	μΑ			
IPRE_ CHARGE_ LOW_POWER	Supercap pre-charging current	mode_setting = Supercap pre-charge and charge_current = 00b		2		μΑ			
T _{AMB}	Operating Temperature		-30	25	85	°C			
		DCDC1/2 Step Up Converter							
V _{DCDC}	DCDC Boost output Voltage (pin V _{DCDC})	DCDC1 (L _{DCDC1}) and/or DCDC2 (L _{DCDC2}) is in operation			10	V			
η	Efficiency	DCDC1 (L _{DCDC1}) or DCDC2 (L _{DCDC2})		90		%			
f _{CLK}	Operating Frequency	All internal timings are derived from this oscillator	-10%	4.0	+10%	MHz			
max_duty	DCDC1/2 maximum duty cycle			84		%			
Rsw_P1	DCDC Switch SW1 - V _{DCDC}			100		mΩ			
Rsw_n1	DCDC Switch SW1 - GND			100		mΩ			
Rsw_p2	DCDC Switch SW2 - V _{DCDC}			70		mΩ			
Rsw_n2	DCDC Switch SW2 - GND			100		mΩ			

Symbol	Parameter	Condit	Min	Тур	Max	Units		
Supercap Charger / Discharge								
			0	4.469	4.57	4.671	V	
			1	4.557	4.66	4.763	V	
			2	4.646	4.75	4.855	V	
			3	4.724	4.83	4.936	V	
			4	4.820	4.93	5.036	V	
			5	4.900	5.01	5.12	V	
		Programmable in 90mV steps by	6	4.995	5.11	5.219	V	
VSUPERCAP_	End of charge voltage for	register end_of_charge_vo	7	5.082	5.2	5.31	V	
EOC ¹	Supercap	Itage above 5.5V max. 60000s	8	5.170	5.29	5.402	V	
		during lifetime of AS3630	9	5.258	5.38	5.494	V	
			Ah	5.345	5.47	5.585	V	
			Bh	5.433	5.56	5.677	V	
			Ch	5.526	5.65	5.774	V	
			Dh	5.616	5.74	5.868	V	
			Eh	5.704	5.83	5.96	V	
			Fh	5.793	5.92	6.053	V	
	Pre-charging	Pre-charging and transition (to charge) of Supercap - see	charge_current =00b, low quiescent current mode	100	200	300		
ISUPERCAP_ CHARGE	current of	Supercap Charging/Discharg	01b	380	500	650	mA	
	Supercap ²	e/Pre-charge to VIN; final charging	10b	570	750	975		
		to Vsupercap_eoc is controlled by coil1_peak	11b	760	1000	1300		
IKEEP_ CHARGE	Keeping Supercap charged current	During torch, charge operation keep VSUF if keep_sc_charged =		10		mA		
Rdis_ charge	Discharge resistance for VSUPERCAP	mode_setting = 001 and discharge Super			250*2		Ω	

Symbol	Parameter	Condit	Min	Тур	Max	Units	
		LED Currer	nt Sources				
		Limited lifetime max mode_setting = flast current specified for flash LEDs	h operation;	10		(2x) 3000	
luso our	LED_OUT Current	mode_setting = torc	ch operation	10		460	mA
ILED_OUT	set by led_current	mode_setting = PWI duty cycle defined b		10		303.9 * duty cycle	
			Accuracy, Δl	-10		+10	%
ILED_OUT_ RIPPLE	LED_OUT ripple current	I _{LED} =2500mA, BW=2	20MHz		200		mApp
VFLASH_ COMP	- Source voltage	Minimum Voltage between VSUPERCAP and LED_OUT to generate the	led_current_ra nge =00b or 01b			0.4	V
	Compilation	programmed current (led_current)	10b			0.5	
IIND_OUT	Indicator Current	Set by ind_current	Range	1.0		8.0	mA
		in 1mA steps	Accuracy, Δl	-20		+20	%
VLED_OUT	LED_OUT- forward voltage	led_current_range =	= 00b10b	2.6 x2		4.4 x2	V
VLLD_OOT	measured on pin LED_OUT	led_current_range =	2.6 x2		4.325 x2	V	
		AD	C				
Resolution					10		bits
			ADC Code	'000h '		'3FFh'	
		BAL, VIN, IND_OUT, F TXMASK/TORCH, STI		0.0		5.866	V
	ADC input range;	VSUPERCAP		0.0		6.666	V
Range	channel selected by ADC_channel	NTC		0.0		2.2	V
		V _{DCDC}		0.0		11	V
		LED_OUT				12.1	
		Tjunc (AS3630 juncti round (((4 * ADC_D9			-1.05042)		°C

Symbol	Parameter	Condit	ions	Min	Тур	Max	Units	
Averaging	ADC internal averaging filter	Number of conversion measurement (avera measurements can be immediately, at begi end of flash - see AD		4				
	Protection and Fault Detection Functions							
V _{VOUTMAX}	V _{DCDC} overvoltage protection	DCDC Converter Ove Protection	ervoltage	9.3		10.0	V	
	Current Limit for	Set by coil1_peak	Range	500		3500	mA	
ILDCDC1	coil L _{DCDC1} (Pin SW1) measured at 75% PWM duty cycle ³	and coil1_txmask_curr _red during TXMask	Accuracy, ΔI	-10		+10	%	
	Current Limit for	at Set by coil2_peak	Range	1000		6000	mA	
ILDCDC2	coil L _{DCDC2} (Pin SW1) measured at 75% PWM duty cycle ³		Accuracy, ΔI	-10		+10	%	
V _{LEDSHORT}	Flash LED short circuit detection voltage	Voltage measured or monitored once the is at or above a minin "Short/Open LED Pro fault_led" on page 3	LED_OUT current mum current - otection -		1.45		V	
T _{OVTEMP}	Overtemperature Protection	Junction ten	pperature		144		°C	
T _{OVTEMP} HYST	Overtemperature Hysteresis	Junction ten	iperature		5		°C	
	Clack Time court	Cathor	Range	4		760	ms	
TFLASHTIMEO UT	t _{FLASHTIMEO} UT Flash Timeout Set by flash_timeout	Accuracy, Δt	-10% -2ms		+10% +2ms			
	Hardamas Italia	Falling V _{VIN}		2.3	2.4	2.5	V	
V _{UVLO}	Lockout Rising V _{VIN}			V _{UVLO} +0.05	V _{UVLO} +0.1	V _{UVLO} +0.15	V	

Symbol	Parameter	Condit	Min	Тур	Max	Units	
	Pro	tection and Fault Det	ection Functions	- NTC			
			0		off		
			1	34.4	40	45.6	μΑ
			2	72	80	88	μΑ
			3	110	120	130	μΑ
			4	147	160	173	μΑ
			5	184	200	216	μΑ
			6	220	240	260	μΑ
Інтс	NTC Current	Adjustable by NTC_current in	7	257	280	303	μΑ
INIC	Source	40μA steps, V(NTC) ≤ 1.7V	8	294	320	346	μΑ
			9	331	360	389	μΑ
			Ah	368	400	432	μΑ
			Bh	404	440	476	μΑ
			Ch	441	480	519	μΑ
			Dh	478	520	562	μΑ
			Eh	515	560	605	μΑ
			Fh	552	600	648	μΑ
Vntc_th	Threshold for overtemperature	If ntc_on=1 and the drops below VNTC_TH, or PWM operation of stopped	any flash/torch		1.0		V
		Digital In	terface				
V _{IH}	High Level Input Voltage	Pins SDA, SCL, ON, S	FROBE and	1.28		V _{VIN}	V
V _{IL}	Low Level Input Voltage	TXMASK/TORCH		0.0		0.5	V
V _{OL}	Low Level Output voltage	Pin INT and SDAat 2r	Pin INT and SDAat 2mA			0.2	V
I _{LEAK}	Leakage current V _{VIN} or GND	Pins SDA, SCL, ON		-1.0		+1.0	μΑ
Rpulldown	Pulldown current to GND	Pins TXMASK/TORCH, STROBE	1.8V on pad		35		kΩ
t DEBTORCH	torch debounce time	TXMASK/TORCH inpu	ut in torch mode		7.5		ms

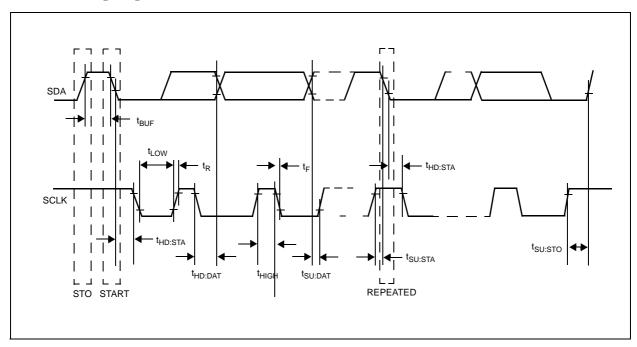
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
t DEBTXMASK	debounce timer	TXMASK/TORCH input in TXMask mode - see "TXMASK" on page 28		2.1		μs			
	I ² C Mode Timings (page 14)								
f _{SCLK}	SCL Clock Frequency		0		400	kHz			
t _{BUF}	Bus Free Time Between a STOP and START Condition		1.3			μs			
t _{HD:STA}	Hold Time (Repeated) START Condition ⁴		0.6			μs			
t _{LOW}	LOW Period of SCL Clock		1.3			μs			
t _{HIGH}	HIGH Period of SCL Clock		0.6			μs			
t _{SU:STA}	Setup Time for a Repeated START Condition		0.6			μs			
t _{HD:DAT}	Data Hold Time ⁵		0		0.9	μs			
t _{SU:DAT}	Data Setup Time ⁶		100			μs			
t _R	Rise Time of Both SDA and SCL Signals		20 + 0.1C _B		300	ns			
t _F	Fall Time of Both SDA and SCL Signals		20 + 0.1C _B		300	ns			
t _{SU:STO}	Setup Time for STOP Condition		0.6			μs			
C _B	Capacitive Load for Each Bus Line	C _B — total capacitance of one bus line in pF			400	pF			
C _{I/O}	I/O Capacitance (SDA, SCL)				10	pF			

^{1.} In pre-charge the Supercap is always charged close to V_{VIN} ; therefore $VSUPERCAP_EOC \ge V_{VIN}$ is possible

^{2.} In order to reduce the total charging time of the Supercap, it is recommended to keep the Supercap pre-charged at VIN (can be enabled/disable by mode_setting)

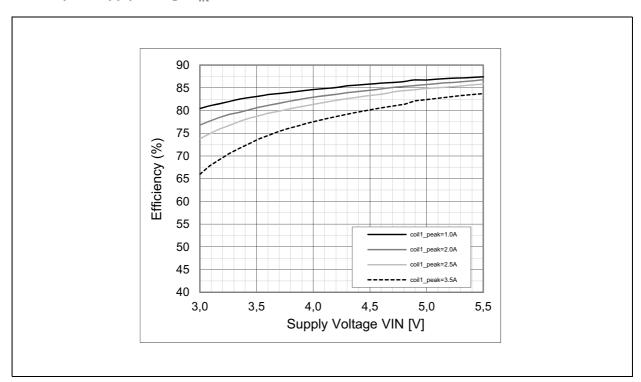
^{3.} Due to slope compensation of the current limit, the current limit changes with duty cycle

^{4.} After this period, the first clock pulse is generated.


^{5.} A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V_{IHMIN} of the SCL signal) to bridge the undefined region of the falling edge of SCL.

^{6.} A fast-mode device can be used in a standard-mode system, but the requirement $t_{SU:DAT} = to 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_R \max + t_{SU:DAT} = 1000 + 250 = 1250$ ns before the SCL line is released.

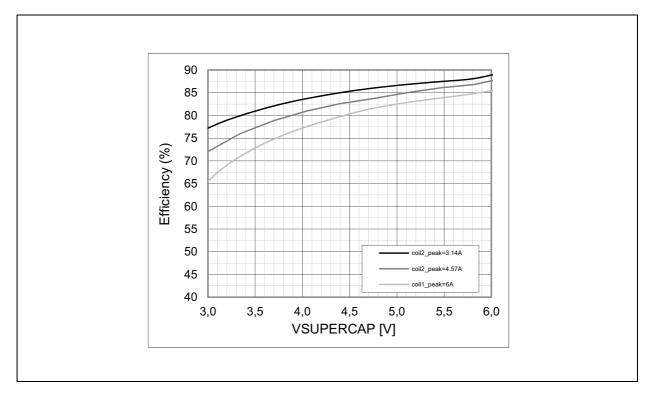
Timing Diagrams


Figure AS3630 – 7: I²C Mode Timing Diagram

Typical Operating Characteristics

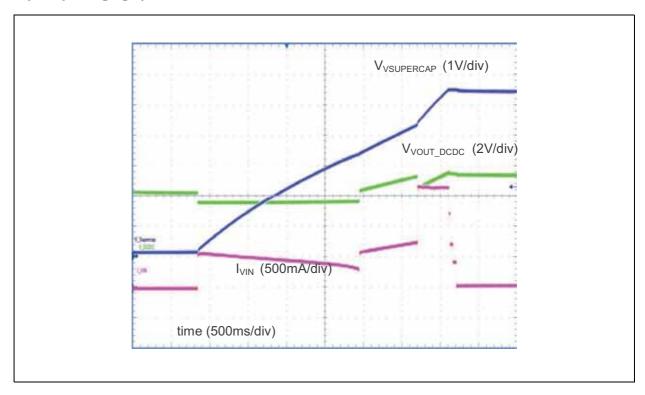
All measurements are performed at V_{VIN} =3.7V and T_{AMB} =25°C. LED = LXCL-LW07.

Figure AS3630 – 8: Efficiency vs. Supply Voltage V_{IN} for DCDC1



Efficiency vs. Supply Voltage: Shows efficiency (P_{OUT}/P_{IN}) of internal DCDC1 (V_{IN} to V_{DCDC}) vs. different supply

voltages.


Figure AS3630 – 9: Efficiency vs. V_{SUPERCAP} for DCDC2

Efficiency vs. Supply Voltage: Shows efficiency (P_{OUT}/P_{IN}) of internal DCDC2 $(V_{SUPERCAP}$ to $V_{DCDC})$ vs. voltage on $V_{SUPERCAP}$ while discharging from 6V down to 3V.

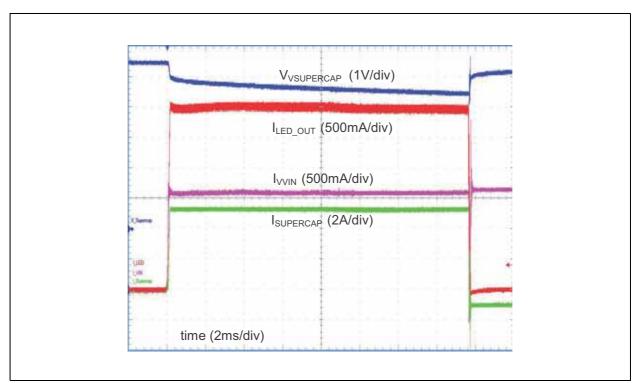
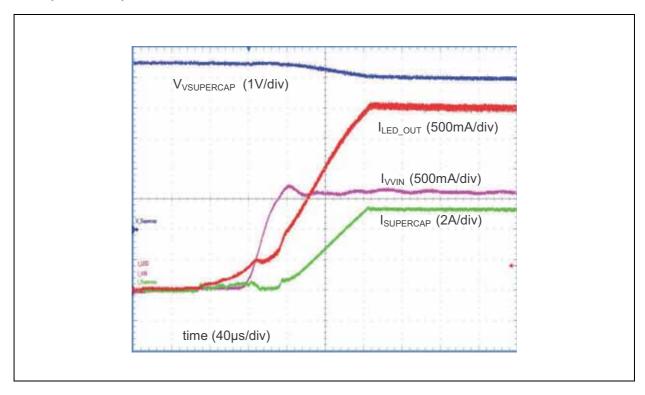


Figure AS3630 – 10: Supercap Charging Cycle

Supercap charging cycle: Shows all phases for charging of the Supercap starting from Pre-charge to transitions to charge until end of charge.


Figure AS3630 – 11: Complete Flash Cycle

Complete flash cycle: Shows a complete LED flash cycle, flash time=16ms, I_{LED_OUT}=3A, automatic re-charge enabled at end of flash cycle.

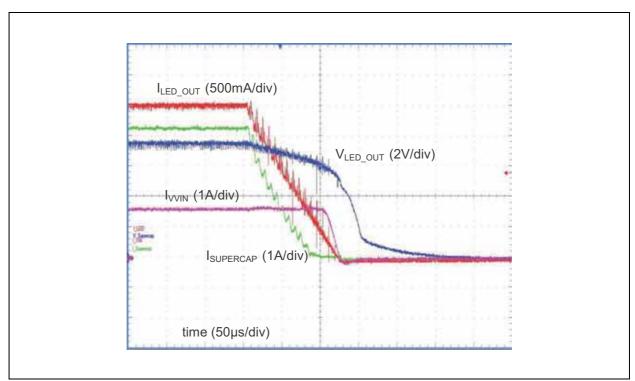
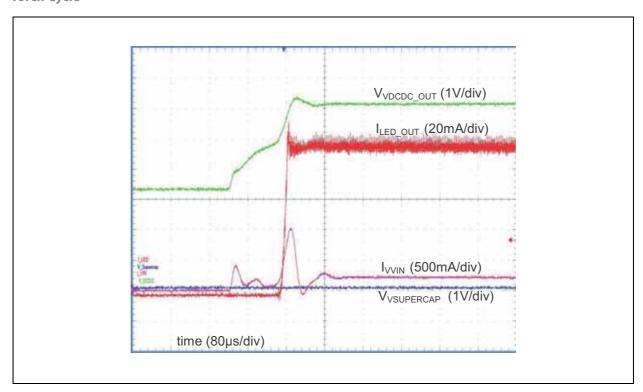


Figure AS3630 – 12: Startup of Flash Cycle

Startup flash cycle: Shows detailed (zoomed) of startup of a flash cycle, I_{LED OUT}=3A.


Figure AS3630 – 13: Shutdown of Flash Cycle

Shutdown flash cycle: Shows detailed (zoomed) of rampdown of a flash cycle, I_{LED OUT}=2.5A.

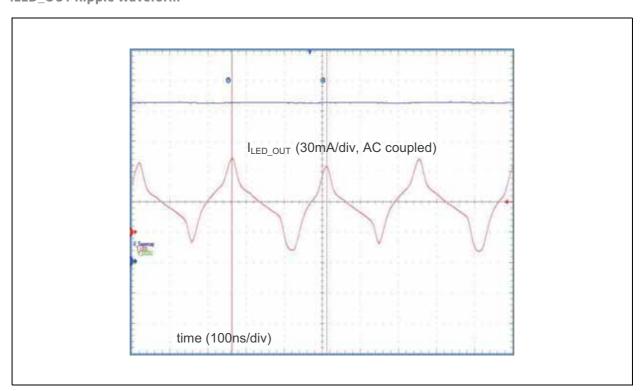
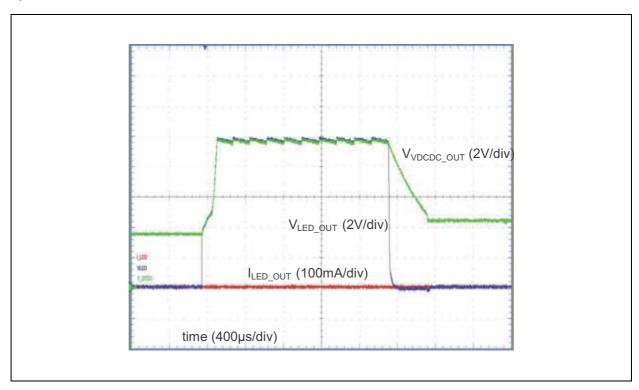


Figure AS3630 – 14: Torch Cycle

Torch cycle: Shows a torch operation. To operate the torch no charging of the Supercap is required (see voltage on VSUPERCAP), I_{LED OUT}=100mA.


Figure AS3630 – 15: ILED_OUT Ripple Waveform

 $\textbf{ILED_OUT ripple:} Current \ ripple \ measured \ on \ ILED \ during \ flash \ with \ I_{LED_OUT} = 2A.$

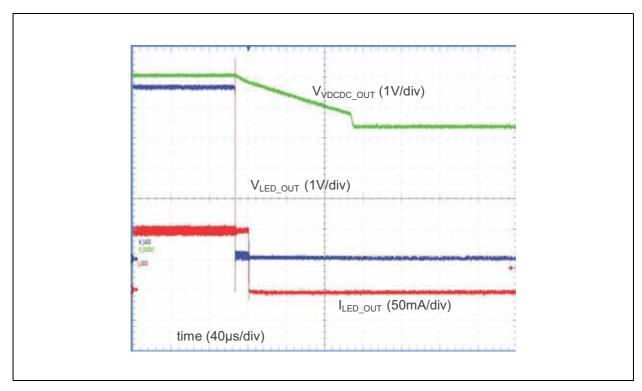
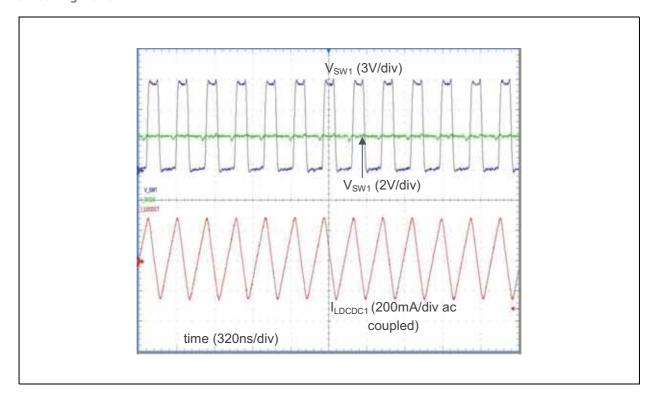


Figure AS3630 – 16: Open LED Detection Waveform

Open LED detection: Detailed measurement for detection of an open LED (LED disconnected) in torch mode.


Figure AS3630 – 17: Short LED Detection Waveform

Short LED detection: Detailed measurement for detection of a shorted LED (short during operation).

Figure AS3630 – 18: Switching Waveform

Switching waveform: Detailed measurement of the DCDC converters in operation during flash.

Detailed Descriptions

The AS3630 is a highly efficient dual DCDC Supercap charger charging and balancing the Supercap and operating a LED flash at up to 8A current.

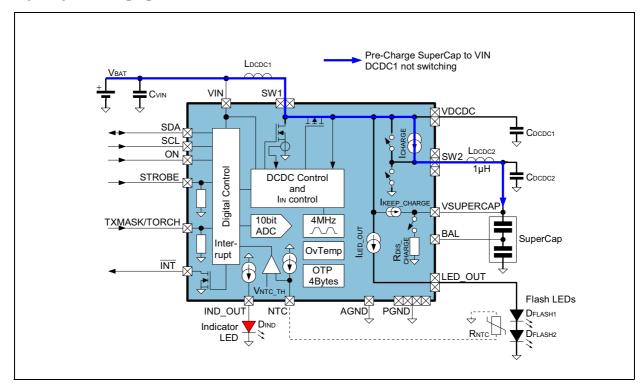
The principle of operation of a AS3630 is as follows:

- 1. Charge the Supercap on VSUPERCAP to e.g. 5.5V see Supercap Charging/Discharge/Pre-charge to VIN
- 2. Torch (or PWM) operation of the LED does not depend on a charge Supercap see "Torch/PWM Operation" on page 25.
- Use DCDC1 to step up from VIN to V_{DCDC} to source one part of the LED_OUT current; in parallel use DCDC2 to step up from -VSUPERCAP to V_{DCDC} to source the remaining part of the flash current - see Flash Operation.

Using this approach a very high current flash operation can be performed using considerable low current from the battery (usually batteries have a defined strict current limit, so the full flash current cannot be supplied directly from the battery only).

Supercap Charging/Discharge/Pre-charge to VIN
The charging of the Supercap is performed in following steps:

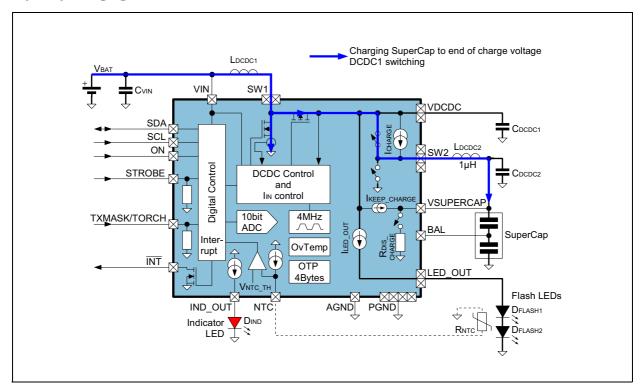
 Pre-Charge - (see Figure below): Charge the Supercap close to VIN - initiated by setting mode_setting = Supercap pre-charge¹, ²:


The switch between SW1 and V_{DCDC} is closed and I_{CHARGE} (set by charge_current) is used to control the charging current. Use charge_current=00b for a special low power mode only consuming $I_{PRE_CHARGE_LOW_POWER}$.

^{1.} This mode is usually used during standby of the system - the Supercap is kept at VIN; this will reduce the charging time, when the camera is operated and the Supercap has to be charged to its final end of charge voltage (e.g. 5.5V)

^{2.} In pre-charge the Supercap is always charged close to V_{VIN} ; therefore VSUPERCAP_EOC $\geq V_{VIN}$

Figure AS3630 – 19: Supercap Pre-charging



Transition³ between pre-charge -> charge: Once the voltage on VSUPERCAP is close to V_{VIN} and mode_setting = "Supercap charge", the DCDC1 converter is started and the current source I_{CHARGE} between V_{DCDC} and VSUPERCAP is used to finally charge VSUPERCAP to V_{VIN}

^{3.} To avoid a current peak at VIN if the VSUPERCAP is connected to VIN, but its voltage is still below VIN

Figure AS3630 – 20: Supercap Charging

- Charging (see Figure above): Once the voltage on VSUPERCAP \geq VIN and mode_setting = "Supercap charge", the main charging can start: The DCCD1 converter is $operated \, and \, the \, switch \, between \, V_{DCDC} \, and \, SW2 \, is \, closed.$ The charging current in this phase is defined by the L_{DCDC1} peak current limit (programmed by coil1_peak). Once the voltage on VSUPERCAP reaches end_of_charge_voltage⁴, the peak current through L_{DCDC1} is reduced to 500mA. Charging is finished when the voltage on VSUPERCAP again reaches end_of_charge_voltage. Then the flash status_eoc is set and if enabled by status_eoc_mask, INT is pulled low. If keep_sc_charged=1, AS3630 will continuously check the voltage on VSUPERCAP if it drops below end_of_charge_voltage and automatically recharge the Supercap with 5mA.
- Keep charge: Even in torch or PWM operation⁵ of the LED connected to LED_OUT the charge on VSUPERCAP can be maintained by setting keep_sc_charged=1. Then the current source I_{KEEP_CHARGE} will be used to charger VSUPERCAP from V_{DCDC} (without exceeding end_of_charge_voltage).

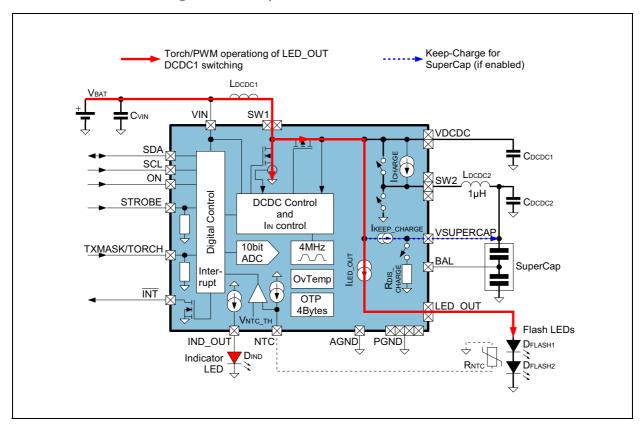
^{4.} In pre-charge the Supercap is always charged close to VVIN; therefore VSUPERCAP_EOC \geq VVIN

^{5.} In these modes DCDC2 is not used as LED_OUT can be driven directly with DCDC1 from VIN.

- Shutdown: Setting mode_setting="shutdown or external torch mode (leave Supercap charged)" will keep the Supercap charged and disables the balancing circuit.It can be forced on if bal_force_on is set. If the voltage voltage on V_{DCDC} is above 5.35V, the Supercap will be discharged until V_{DCDC} is below 5.3V before shutdown mode is entered.
- Shutdown and Discharge: Setting mode_setting="shutdown and discharge Supercap" will slowly discharge the Supercap through RDIS_CHARGE⁶.
- Pre-Charge after Charge or Flash: Setting mode_setting="pre charge Supercap (to VIN)" will discharge the Supercap to approximately V_{VIN} -0.3V by using RDIS_CHARGE. Afterwards the Supercap is charged to V_{VIN} as shown in Figure 19.

Note: If the Supercap is charged above 5.5V it will be discharged to 5.5V even if the mode is set to "shutdown or external torch mode (leave Supercap charged)" to protect the Supercap. If during pre-charge, transition or charging operation, the junction temperature exceed T_{OVTEMP}, the operation is temporarily stopped and automatically resumes, when the junction temperature has dropped below T_{OVTEMP+YST}.

The Supercap balancing circuit keeps both parts of the Supercap at the same voltage level - see Balancing Circuit - Pin BAL.

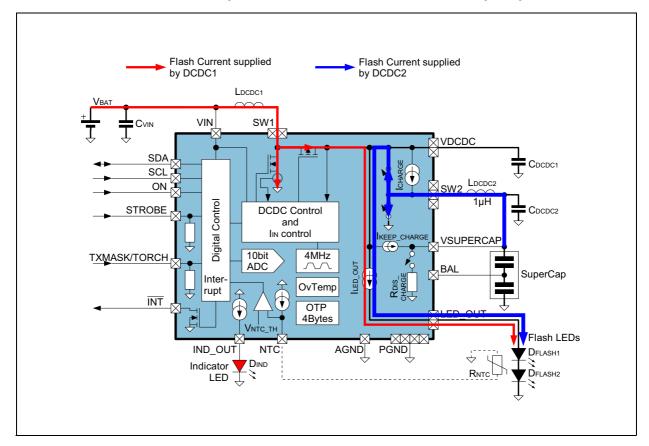

^{6.} Implemented by a resistor between VSUPERCAP and BAL and another resistor between BAL and GND.

Torch/PWM Operation

Due to its concept, a torch or PWM operation can be performed without even charging the Supercap (this allows instantaneous video light or torch light):

Figure AS3630 – 21: Immediate Torch (=Video Light) or PWM Operation

After setting mode_setting = "Torch" or "PWM Operation"⁷ the step-up DCDC1 converter is used to generate -V_{DCDC} sufficiently high enough to drive the I_{LED_OUT} current (controlled by led_current). If keep_sc_charged (page 51)=1, VSUPERCAP is charged by the current source I_{KEEP_CHARGE} (without exceeding end_of_charge_voltage) to maintain the charge on the Supercap during this operating mode.


 $^{7.} In PWM \ operation \ the \ current \ source \ I_{LED_OUT} \ is \ PWM \ modulated \ with \ a \ duty \ cycle \ set \ by \ led_out_pwm.$

Flash Operation

Additionally the step up converter DCDC1 (from VIN using L_{DCDC1}), the step up converter DCDC2 (from Supercap using L_{DCDC2}) is used in parallel operating at high efficiency for the flash operation. This allows to reduce the current for each of the DCDC's and therefore the size of the Supercap and/or current required from battery:

Figure AS3630 – 22: Flash DCDC1 and DCDC2 Parallel Operation to Reduce Current and Size of Supercap

The flash operation is enabled by mode_setting = "Flash" and the timeout timer (register flash_timeout) defines the maximum flash duration.

<u>Note</u>: If the voltage on VSUPERCAP drops below 2.55V, DCDC2 is automatically stopped (and the flash current is supplied by DCDC1 only).

Once the flash is finished, the AS3630 will automatically select the operating mode according to register mode_after_flash (see page 51) shown in Figure 26:

Figure AS3630 – 23: Automatically Selected Operating Mode After Flash

mode_after_flash (see page 51)	mode_setting updated to	Mode selected after flash has been finished
00	000b	Shutdown of AS3630, but leave Supercap at the voltage at the end of the flash
01	001b	Shutdown AS3630 and discharge Supercap
10	010b	Discharge the Supercap to approximately VVIN-0.3V by using RDIS_CHARGE. Afterwards the Supercap is charged to VVIN as shown in Figure 19 and kept at this voltage
11	011b	Supercap is automatically recharged to end_of_charge_voltage

DCDC1 / DCDC2 Operating Principle During Flash

In order to supply the required LED output current during flash operation, DCDC1 (from VIN) and DCDC2 (from Supercap) are used in parallel as shown in Figure 22.

Three different operating modes are used (automatically selected by the AS3630):

- DCCD1 alone can deliver the full flash current. I_{DCDC1}<coil1_peak, I_{DCDC2}=0A DCDC1 is regulated to deliver the flash LED current alone; no current is used from DCDC2 or the Supercap.
- DCDC1 and DCDC2 together deliver the flash current.
 I_{DCDC1} hits coil1_peak, I_{DCDC2}<coil2_peak
 DCDC1 is operating in peak current limit (controlled by coil1_peak) and DCDC2 is controlled to deliver the remaining current for the LED. DCDC2 peak current is below the setting coil2_peak.
- DCDC1 and DCDC2 together cannot deliver the full flash current.
 I_{DCDC1} hits coil1_peak, I_{DCDC2} hits coil2_peak
 In this operating mode both peak current settings together (coil1_peak and coil2_peak) are not able to
 - together (coil1_peak and coil2_peak) are not able to deliver the programmed led_current. Therefore both DCDCs are operating in coil current limit and the LED current is the resulting sum of these two currents. If the register bit curr_limit_curr_red is set, led_current is ramped down⁸ until DCDC2 leaves peak current limit and operation continuous at mode 2. (DCDC1 and DCDC2 together deliver the flash current) and led_current_min is set to the reduced LED current.
- 4. If the voltage on VSUPERCAP drops below 2.4V, DCDC2 is disabled and the flash current drops to the current supplied by DCDC1 only.

8A Supercap Flash Driver

 $^{8. \} fault_current_reduced \ is \ set \ to \ indicate \ this \ condition.$

<u>Note</u>: If DCDC1 shall not be used during flash (the whole current has to be delivered by DCDC2 using the Supercap only, no current from VIN) set the registers as follows:

txmask_torch_mode = 01b (TXMASK/TORCH is used as TXMask input),

pull TXMASK/TORCH to '1',

coil1_peak = 000b.

The AS3630 will then always operate in TXMask mode and switch off DCDC1 (as coil1_peak = 000b).

Battery and Flash LED Current Reductions in Flash Mode

Current Reduction by VIN Measurements In Flash Mode
Due to the load of the flash driver and the ESR of the battery
(especially critical at low temperatures), the voltage on the
battery drops. If the voltage drops below the system reset
threshold, the system would reset. To prevent this condition the
AS3630 monitors the battery voltage and keeps it above
vin_low_v as follows:

During flash, if the voltage on VIN drops below the threshold defined by vin_low_v, coil1_peak current is reduced thus reducing the current from the battery and preventing a system shutdown. Due to the unique regulation scheme (see DCDC1 / DCDC2 Operating Principle During Flash) more current is automatically used from the Supercap and therefore the flash current is kept constant.

This function can be disabled by setting vin_low_v = 000b.

DCDC1 and DCDC2 in Current Limit

See DCDC1 / DCDC2 Operating Principle During Flash operating mode 3.

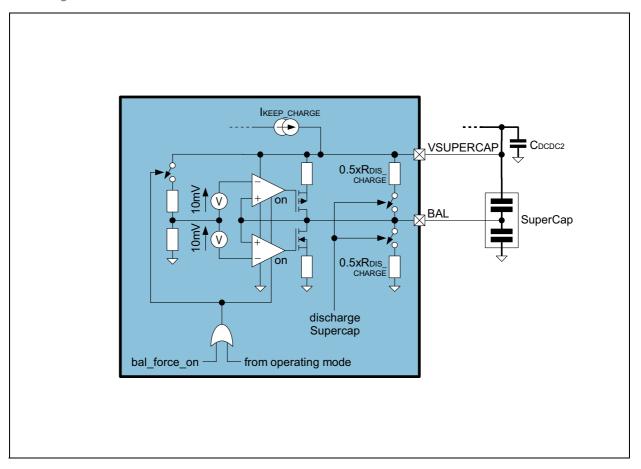
TXMASK

The coil L_{DCDC1} current limit is usually defined by coil1_peak. If this current is too high to allow parallel operation of another high power load (e.g. the RF power amplifier) without overloading of the battery, the TXMask function can be used.

Set txmask_torch_mode = 01b (TXMASK/TORCH is used as TXMask input) and connect the enable line of the other high power load to the AS3630 pin TXMASK/TORCH.

In the event of TXMASK/TORCH=1 during flash, the coil1_peak current is instantaneously reduced by coil1_txmask_curr_red steps (coding as for coil1_peak). If coil1_peak minus coil1_txmask_curr_red steps would be negative DCDC1 is switched off during TXMask.

Once TXMASK/TORCH=0, the coil peak current is ramped to the previous programmed value of coil1_peak.


Continuous LED Current Ramp Down During Flash

If the register led_current_rampdown is set, the LED current
during flash is continuously ramped down. This has the benefit
of using the Supercap energy most efficiently.

Balancing Circuit - Pin BAL

Figure AS3630 – 24: Balancing Circuit

The internal balancing circuit (Figure 24) keeps the voltage between VSUPERCAP-BAL to BAL-GND equal in order to avoid overvoltage on one of the capacitors inside the Supercap. It is powered from VSUPERCAP, therefore it can operate even if there is no voltage on VIN.

The Supercap balancing circuit is active in pre-charge, transition, charge, keep charge and discharge. It can be forced on in flash and shutdown if bal_force_on is set.

Operating Mode and LED Currents

Currents and operating modes are selected according to the following figure:

Figure AS3630 – 25: Operating Mode and Current Settings

AS3630 Configuration			guration	Operating Mode and Currents			
ON, SCL, SDA	TXMASK/TORCH	STROBE	mode_setting	Condition	Mode	Supercap State	LED_OUT output current
×	× No supply on VIN (0V)		Shutdown				
0=NO	Х	Х	Х	VIN supplied	All registers are reset to their default values	Discharging	0
ADS þr	Х	Х		txmask_torch_m ode not 10	Standby	Keep voltage as is if mode_setting =000b, discharging if mode_setting=00 1b	0mA
SCLK ar	0	Χ	000b, 001b	txmask_torch_m ode =10	External torch mode		
d on pins	1	Х		txmask_torch_m ode =10			led_current ¹ limited to 460mA
accepte	Х	Х	010b		Pre-charge	Pre-charge Supercap to VIN	0mA
ON=1; I ² C commands are accepted on pins SCLK and SDA	х	х	011b		Charge	Charge Supercap to end_of_charge_v oltage	0mA

AS3630 Configuration			guration	Operating Mode and Currents			
ON, SCL, SDA	TXMASK/TORCH	STROBE	mode_setting	Condition	Mode	Supercap State	LED_OUT output current
	Х	X	100b		Torch light mode	If keep_sc_charged =0 keep voltage on Supercap as is; if keep_sc_charged t =1 charge Supercap to end_of_charge_v oltage with IKEEP_CHARGE - Figure 21 on page 25 led (1/ 3303 mc led (1/ 3	led_current ¹ limited to 460mA
ON=1; I ² C commands are accepted on pins SCLK and SDA	pins SCLK and SDA	х	101b		PWM operation: Use for indicator with the main flash LED or low current PWM operation ²		led_current ³ limited to 303.9mA PWM modulated by led_out_pwm (1/164/16 @ 31.25kHz, 1/32, 3/32 @ 15.625kHz)
ted or	ted or	0			Torch operation sync to STROBE -		0mA
are accep	X	1	110b		see Figure 32 on page 35		led_current ¹ limited to 931mA
ands a		Х		strobe_on = 0	Flash mode;	Supercap is	
ON=1; I²C comma	4	0- > 1		strobe_on = 1 and strobe_type = 0	flash duration defined by flash_timeout	discharged using DCDC2 to LED_OUT - Figure 22 on	
	0 or 1 ⁴	111b	strobe_on = 1 and strobe_type = 1	Flash mode; flash duration defined by STROBE input; timeout defined by flash_timeout	page 26 mode selected after flash: see Figure 23 on page 27	led_current for flash duration	

^{1.} If led_current_range=10 will use led_current_range=00.

^{2.} The low current mode is a general purpose PWM mode to drive less current through the LED in average, but keep the actual pulsed current in a range where the light output from the LED is still specified.

^{3.} Will use led_current_range=00.

^{4.} If txmask_torch_mode=01b then the DCDC1 peak coil current is changed depending on input TXMASK/TORCH - see section "TXMASK" on page 28

Current Ranges

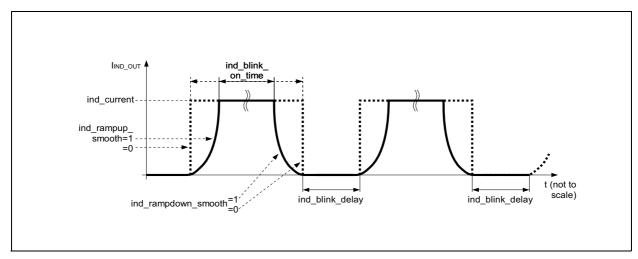
Depending on operating mode (mode_setting (see page 51)) the current settings according to Figure 26 are possible⁹:

Figure AS3630 – 26: LED Current Selections

led_current_range	External Torch Mode or Torch Mode	PWM Operation	Flash Operation	Torch operation sync to STROBE
00 (10-2500mA range)	Ok, but limited to 460mA	Ok, but limited to 303.9mA	Ok	Ok, but limited to 931mA
01 (10-250mA range) Ok		Will use 00 range (10-303.9mA)	Ok	Ok
10 (2500-3000mA range)	Will use 00 range (10mA - 460mA)	Will use 00 range (10-303.9mA)	Ok	Will use 00 range (10mA - 931mA)

SOFTSTART / Soft Ramp Down

During startup and ramp down the LED current is smoothly ramped up and ramped down. Additionally the DCDC converter on VIN has a startup mechanism to minimize or eliminate battery input current overshoots.


Indicator Blinking Function

Setting ind_on=1 enabled the indicator current source on pin IND_OUT. If ind_blink_delay=00 or ind_blink_on_time= 00, the current source is constantly enabled with a current defined by ind_current. All other conditions enable the indicator blinking feature as shown in Figure 27 controlled by ind_blink_on_time, ind_rampup_smooth, ind_rampdown_smooth, ind_blink_delay and ind_current. Smooth current rampup and rampdown is done using PWM modulation.

^{9.} The LED current is limited by hardware to protect the LEDs under any condition.

Figure AS3630 – 27: Indicator Blinking Function Waveform

Flash Strobe and Torch Sync to STROBE Timings The timings are defined as follows:

- Flash duration defined by register flash_timeout and flash is started immediately when this mode is selected by the I²C command (see Figure 28): set strobe_on = 0, start the flash by setting mode_setting = 111b
- Flash duration defined by register flash_timeout and flash started with a rising edge on pin STROBE (see Figure 29):
 set strobe_on = 1, strobe_type = 0 and setting mode_setting = 111b
- Flash start and timing defined by the pin STROBE; the flash duration is limited by the timeout timer defined by flash_timeout (see Figure 30 and Figure 31): set strobe_on = 1, strobe_type = 1 and setting mode_setting = 111b
- Torch operation synchronized to pin STROBE; the current is limited according to Figure 26: setting mode_setting = 110b

Figure AS3630 – 28:
AS3630 Flash Duration Defined by flash_timeout without Using STROBE Input

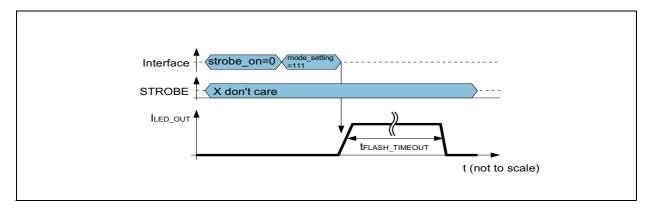


Figure AS3630 – 29:
AS3630 Flash Duration Defined by flash_timeout, Starting Flash with STROBE Rising Edge

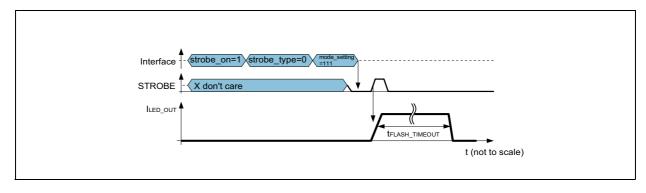


Figure AS3630 – 30:
AS3630 Flash Duration and Start Defined by STROBE, Limited by flash_timeout; Timer Not Expired

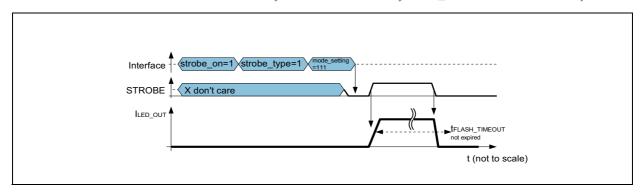


Figure AS3630 – 31:
AS3630 Flash Duration and Start Defined by STROBE, Limited by flash_timeout; Timer Expired

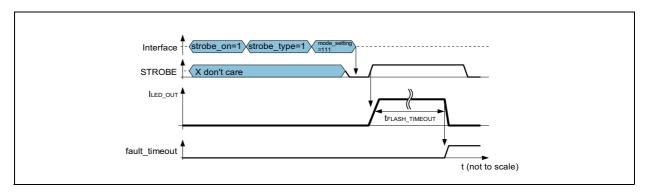
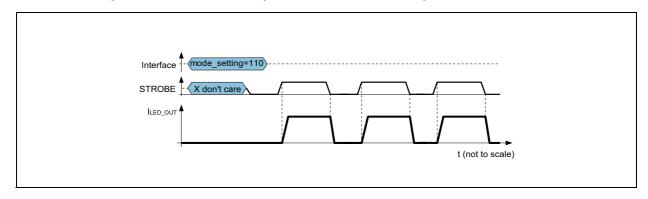



Figure AS3630 – 32: AS3630 Torch Operation with Duration Synchronized to STROBE Input

Protection, Status, NTC and Fault Detection

Supercap End of Charge Detection - status_eoc

Charging of the Supercap is performed as described in Figure 20. Once charging is finished the register status_eoc is set.

ADC End of Conversion - status_adc_eoc

Once the ADC conversion is finished, status_eoc is set - see "ADC" on page 38.

Short/Open LED Protection - fault_led

After the startup of the LED_OUT current source, the voltage on LED_OUT is continuously monitored and compared against $V_{LEDSHORT}$ after the LED current has reached a minimum current depending on led_current_range (see page 47) - see the figure below:

Figure AS3630 – 33: Short LED Detection Minimum Current

led_current_range	Short LED Detected Above
00 (10-2500mA range)	>29.4mA
01 (10-250mA range)	>20.58mA
10 (3000mA range)	>23.53mA
11 (4000mA range)	Disabled

If the voltage on LED_OUT stays below V_{LEDSHORT}, a shorted LED is detected.

If the voltage on V_{DCDC} reaches $V_{VOUTMAX}$ and the voltage across the current source between V_{DCDC} and LED_OUT is below V_{FLASH_COMP} an open LED is detected.

If an open or shorted LED is detected, bit fault_led is set. The DCDCs and current sinks are disabled and the Supercap is discharged by setting mode_setting=001b. In external torch mode, the register txmask_torch_mode is reset.

Note: Short/open LED detection is disabled in PWM operating mode (mode_setting=101b). The voltage on V_{DCDC} will nevertheless never exceed $V_{VOUTMAX}$.

AS3630 DIE Overtemperature Detected - fault_overtemp

The junction temperature of the AS3630 is continuously monitored. If the temperature exceeds T_{OVTEMP} the DCDCs are stopped, the current sources are disabled (instantaneous) and the bit fault_overtemp is set (but the operating mode mode_setting is not changed). The driver is automatically re-enabled once the junction temperature drops below T_{OVTEMP}-T_{OVTEMPHYST}.

<u>Note:</u> If an overtemperature is detected in Supercap pre-charge, transition or charge mode, charging is temporarily disabled until the temperature drops, but the register bit fault_overtemp is not set.

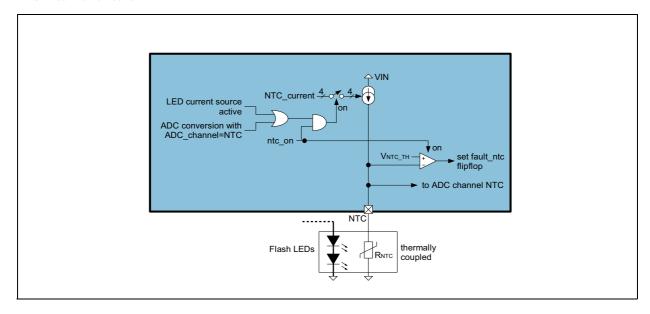
Timeout Fault - fault_timeout

If the flash is started a timeout timer is started in parallel. If the flash duration defined by the STROBE input (strobe_on=1 and strobe_type=1, see Figure 31) exceeds tFLASHTIMEOUT (adjustable by register flash_timeout), the DCDCs are stopped and the flash current source (on pin LED_OUT) is disabled (ramping down) and fault_timeout is set.

If the flash duration is defined by the timeout timer itself (strobe_on = 0, see Figure 28), the register fault_timeout is not set after the flash has been finished.

AS3630 will automatically select the operating mode according to register mode_after_flash shown in Figure 26.

Supercap Short Detected - fault_sc_short


In all operating modes except shutdown (mode_setting not 000b or 001b) once VSUPERCAP is above 2.4V both internal capacitors of the Supercap (VSUPERCAP-BAL and BAL-GND) are monitored if they are shorted. If any of them is shorted 10, charging is stopped and the Supercap is discharged by setting mode_setting=001b andfault_sc_short is set.

^{10.} VSUPERCAP-BAL is compared with typ. 950mV, BAL-GND is compared with typ. 700mV.

NTC - Flash LED Overtemperature Protection - fault_ntc

Figure AS3630 – 34: NTC Internal circuit

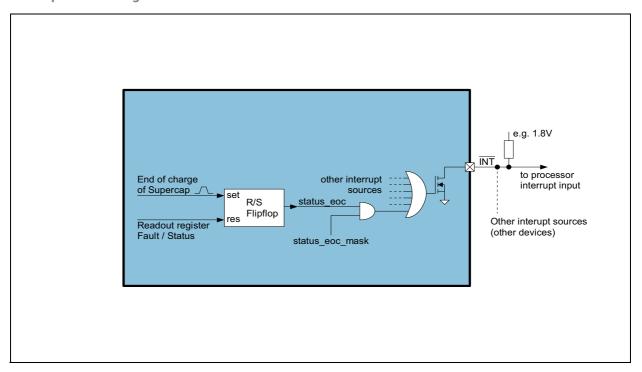
The NTC input can be used to monitor the flash LED temperature if ntc_on=1. A internal current source controlled by NTC_current sources a current on pin NTC - see Figure 34. If the voltage on pin NTC drops below VNTC_TH, fault_ntc is set, the DCDCs are stopped and the flash current source (on pin LED_OUT) is disabled (instantaneous) by setting mode_setting depending on register mode_after_flash. If mode_after_flash=001b then mode_setting=001b (shutdown and discharge Supercap). All other settings of mode_after_flash result in mode_setting=000b (shutdown).

As the external NTC cannot measure the LED temperature in real time during a short high current flash pulse (the duration from heating up of the LED until the NTC recognizes a too hot LED is usually too long), it is advisable to measure the LED temperature before the flash pulse (with the ADC and NTC_current) and judge how much current can be driven through the LED (to be estimated depending on LED heat sink and is usually specified by the LED manufacturer).

LED Current Reduction Triggered - fault_current_reduced

If during flash the LED current has been reduced (for conditions when this can occur see DCDC1 / DCDC2 Operating Principle During Flash operating mode 3.), the register bit fault_current_reduced is set for indication and lled_current_min is set to the reduced LED current.

The operating mode is not changed and the DCDCs and current source continue operation.


Supply Undervoltage Protection

If the voltage on the pin VIN (=battery voltage) is or falls below V_{UVLO} , the AS3630 is kept in shutdown state and all registers are set to their default state.

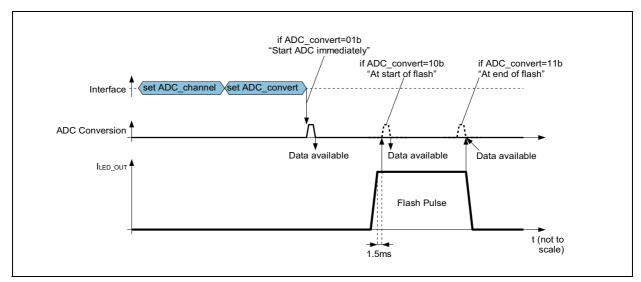
Interrupt Output

INT is an open drain, active low output. The internal circuit to control this pin is shown in Figure 35.

Figure AS3630 – 35: Interrupts Processing

Once an interrupt event occurs (e.g. end of charge of Supercap; detailed description of interrupt events in "AS3630 Torch Operation with Duration Synchronized to STROBE Input" on page 35, the interrupt flip flop is set (register status_eoc=1). If the interrupt mask is high (register status_eoc_mask=1), the output $\overline{\text{INT}}$ is pulled to low signalizing an interrupt condition.

All 8 interrupt flip flops are automatically cleared upon readout of register Fault / Status.


ADC

The ADC is programmed by setting the ADC channel in register ADC_channel (page 52) and the ADC conversion is performed after setting ADC_convert (page 52).

The actual timing when the ADC conversion is started / finished is programmed with ADC_convert as shown in Figure 36:

Figure AS3630 – 36: ADC Timings

Once the conversion is finished ADC_convert returns to 00b, status_adc_eoc is set, and the result data is available from register 4 * ADC_D9-D2 + ADC_D1-D0.

Note: The ADC input ranges and gains are described in Figure 6 subsection ADC.

I²C Mode Serial Data Bus

The AS3630 supports the I²C bus protocol. A device that sends data onto the bus is defined as a transmitter and a device receiving data as a receiver. The device that controls the message is called a master. The devices that are controlled by the master are referred to as slaves. A master device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions must control the bus. The AS3630 operates as a slave on the I²C bus. Within the bus specifications a standard mode (100kHz maximum clock rate) and a fast mode (400kHz maximum clock rate) are defined. The AS3630 works in both modes. Connections to the bus are made through the open-drain I/O lines SDA and SCL.

The following bus protocol has been defined (Figure 37):

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH are interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus Not Busy

Both data and clock lines remain HIGH.

Start Data Transfer

A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines a START condition.

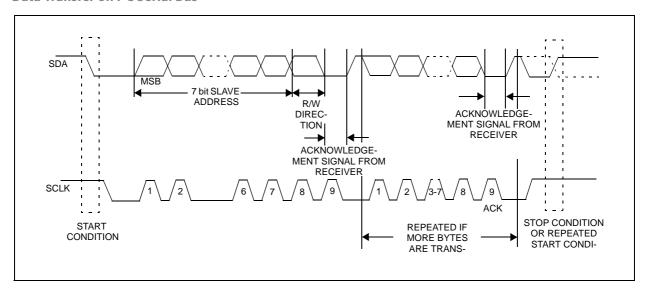
Stop Data Transfer

A change in the state of the data line, from LOW to HIGH, while the clock line is HIGH, defines the STOP condition.

Data Valid

The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred between START and STOP conditions are not limited, and are determined by the master device. The information is transferred byte-wise and each receiver acknowledges with a ninth bit.


Acknowledge

Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse that is associated with this acknowledge bit.

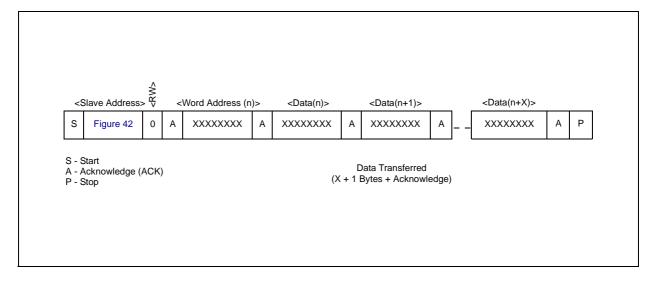
A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge-related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition.

Figure AS3630 – 37: Data Transfer on I²C Serial Bus

Depending upon the state of the R/W bit, two types of data transfer are possible:

- Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte. Data is transferred with the most significant bit (MSB) first.
- 2. **Data transfer from a slave transmitter to a master receiver.** The master transmits the first byte (the slave address). The slave then returns an acknowledge bit, followed by the slave transmitting a number of data bytes. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a "not acknowledge" is returned. The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START condition is also the beginning of the next serial transfer, the bus is not released. Data is transferred with the most significant bit (MSB) first.

The AS3630 can operate in the following two modes:


1. Slave Receiver Mode (Write Mode): Serial data and clock are received through SDA and SCLK. After each byte is received an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit (see Figure 38). The slave address byte is the first byte received after the master generates the START condition. The slave address byte contains the 7-bit AS3630 address, which is shown in Figure 42, followed by the direction bit (R/W), which, for a write, is 0.¹¹ After receiving and decoding the slave address byte the device outputs an acknowledge on the SDA line. After the AS3630

acknowledges the slave address + write bit, the master transmits a register address to the AS3630. This sets the register pointer on the AS3630. The master may then transmit zero or more bytes of data, with the AS3630 acknowledging each byte received. The address pointer will increment after each data byte is transferred. The master generates a STOP condition to terminate the data write.

2. Slave Transmitter Mode (Read Mode): The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit indicates that the transfer direction is reversed. Serial data is transmitted on SDA by the AS3630 while the serial clock is input on SCLK. START and STOP conditions are recognized as the beginning and end of a serial transfer (Figure 39 and Figure 40). The slave address byte is the first byte received after the master generates a START condition. The slave address byte contains the 7-bit AS3630 address, which is shown in Figure 42, followed by the direction bit (R/W), which, for a read, is 1.12 After receiving and decoding the slave address byte the device outputs an acknowledge on the SDA line. The AS3630 then begins to transmit data starting with the register address pointed to by the register pointer. If the register pointer is not written to before the initiation of a read mode the first address that is read is the last one stored in the register pointer. The AS3630 must receive a "not acknowledge" to end a read.

Figure AS3630 – 38: Data Write - Slave Receiver Mode

^{11.} The address for writing to the AS3630 is shown in Figure 42

^{12.} The address for read mode from the AS3630 is shown in Figure 42

Figure AS3630 – 39:
Data Read (from Current Pointer Location) - Slave Transmitter Mode

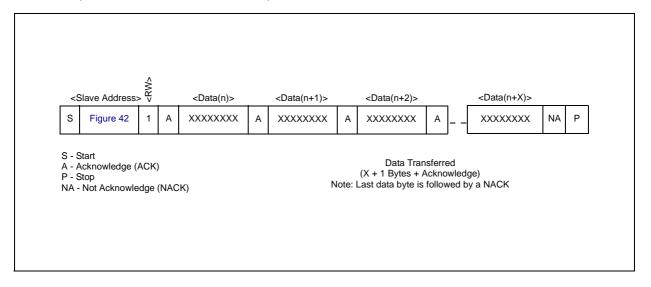
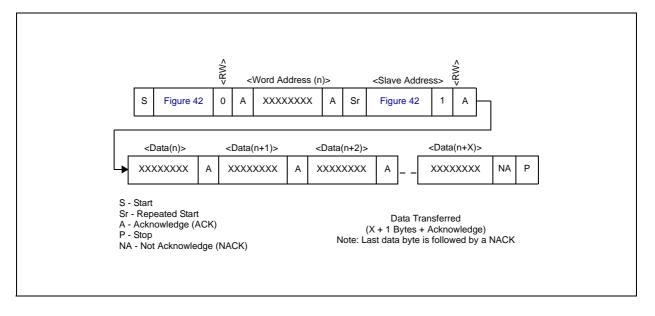
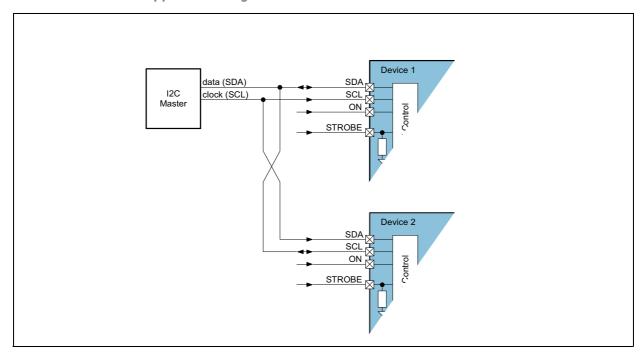



Figure AS3630 – 40: Data Read (Write Pointer, Then Read) - Slave Receive and Transmit


I²C Address Selection

<u>Note:</u> It is required to read the register Fixed ID twice after startup in order for the I²C address selection to identify the I²C address used.

The AS3630 features two I²C slave addresses without having a dedicated address selection pin. The selection of the I²C address is done with the interconnection of AS3630 to the bus lines shown in the figure below. The serial interface logic inside AS3630 is able to distinguish between a direct I²C connection to the master or a second option where data and clock line are crossed. Therefore it is possible to address a maximum of two AS3630 slaves on one I²C bus.

Figure AS3630 – 41: I²C Address Selection Application Diagram

The I²C address use is defined according to the figure below:

Figure AS3630 – 42: I²C Addresses for AS3630

Device Number Figure 41 on page 44	7 bit I ² C address	8 bit I ² C read address	8 bit I ² C write address
1 (default; SCLK and SDA directly connected)	30h	60h	61h
2 (SCLK and SDA exchanged)	31h	62h	63h

Register Description

Figure AS3630 – 43: Register Overview

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<					
	Fixed ID		fixed_id									
00h	Access	RO										
	Reset Value	17h - fixed id (e.g. to check I ² C communication) Note: It is required to read the register Fixed ID twice after startup in order for the I ² C add										
	Version	reserved										
01h	Access	RO										
OTH	Reset Value	NA										
			Don	't use by application	1							

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	\
	Current Set LED				led_curr	ent	
	Access				RW		
	Reset Value				15h (206ı	mA)	
		LSB is 9.8mA (250 LSB is 980µA (250	00mA/255) for led 0mA/255) for led	nge of this setting is od_current_range=00 l_current_range=01b reled_current_range=	Ob b	current_range	
						led_current_	_rang
		led_cur	rrent	00b)	01b	b
02h		100	00h		A	0m <i>A</i>	A
		01h	n	9.8m	ıΑ		
		02h	n	19.6m	nA	Don't use below	
		03h	n	29.4m	nA	0Bh	1)
		D5h	h	2088n	mA	209m	nA
		FFh	1	2500n	nA	250m	nA

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<	
	Boost/TXMask Current	led_current_range		curr_limit_curr_r ed	coil1_txmask_curr_rec		r_red	
	Access	RW	I	RW		RW		
	Reset Value	00k	00b 0b			011b		
03h	Comment	Range setting for 0010-2500mA ra 0110-250mA rar 102500-3000mA 11don't use use range "10" on above 2500mA	ange nge A range	If set, reduce LED c the output current Note: In flash mod	currents durin (this is a delta step reduction means four ste the reduction DCDC1 is swite 0001 0012 0103 0114 - def 1005 1016 1107 1118	value; e.g1 me n e.g. from 2.5A eps e.g. from 2.5 would result in a ch off during TX ault value	eans one to 2.0A; 5A to 75 a negati (Mask e	

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	٧
	Coil and Charge Current	charge_c	urrent	coil2_peak			
	Access	RW		RW			
	Reset Value	01b		010b			
04h	Comment	Defines charging supercap for pre- 'transition' (to cha afterwards coil1_g current 00 200mA - low current mode 01 500mA 10 750mA 11 1000mA	charge and arge); peak defines	LDCDC2 Coil Peak c 000 don't use 001 don't use 010 2.43A (defa 011 3.14A 100 3.86A 101 4.57A 110 5.29 A 111 6.0A			LDCDC 000 001 010 100 111

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	\
	Charge / Low Voltage	bal_force_on		end_of_charg	e_voltage		
	Charge / Low Voltage bal_force_on end_of_ Access RW Reset Value 0b Define Supercap end of charm Note: In pre-charge the Super therefore end_of_charge_volume.						
	Reset Value	0b		5h			
05h		_	Note: In pre-ch therefore end_ 0h 4.61V 1h 4.7V 2h 4.79V 3h 4.88V 4h 4.97V 5h 5.06V (de 6h 5.15V 7h 5.24V	efault)	8h 5.33V 9h 5.42V Ah 5.51V Bh 5.61V Ch 5.7V Dh 5.79V Eh 5.88V Fh 5.97V	d close to Vvin;	Reduction falls be on furth 3.0 2h 3.0 3h 3.1 4h 3.2 5h 3.3 7h 3.4

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3> <</d3>		
	Flash Timer	ind_rampup_s mooth	ind_rampdo wn_smooth			flash_timeout		
	Access	RW	RW		RW 0Fh			
	Reset Value	1	1					
06h		Smooth rampup during indicator blinking if ind_on=1 0 none 1smooth (380ms)	Smooth rampdown during indicator blinking if ind_on=1 0 none 1smooth (380ms)	Flash timeout time 4ms steps from 0. 00h 4ms 01h 8ms 02h 12ms 03h 16ms 04h 20ms 05h 24ms 06h 28ms 07h 32ms 08h 36ms 09h 40ms 0Ah 44ms 0Bh 48ms 0Ch 52ms 0Dh 56ms 0Eh 60ms 0Fh 64ms 10h 68ms 11h 72ms 12h 76ms 13h 80ms 14h 84ms 15h 88ms		mum flash time ps from 16h to 63h 16h 104ms 17h 120ms 18h 136ms 19h 152ms 1Ah 168ms 1Bh 184ms 1Ch 200ms 1Dh 216ms 1Eh 232ms 1Fh 248ms 20h 264ms 21h 280ms 22h 296ms 23h 312ms 24h 328ms 25h 344ms 26h 360ms 27h 376ms 28h 392ms 29h 408ms 2Ah 424ms		

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<
	Control	ind_on	mode_after_flash		keep_sc_ch arged	ntc_on	
	Access	RW	RW		RW	RW	
	Reset Value	0b		11b	0b	0b	
07h		lindicator current source on IND_OUT 0 off 1 on, (current set by ind_current)	00 shutdown charged) 01 shutdown Supercap	re 23 on page 27): (leave Supercap and discharge	If set during PWM,Torch or Charge operation keep Supercap charged with 10mA current	Hardware NTC protection of LED_OUT 0off 1on	000 Super 001 disch: 010 100 led_c 101 led_c set to 110 (STRC led_c 111

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<
	Strobe and ADC control	strobe_on	strobe_type	ADC_coi	ADC_convert		
	Access	RW	RW	RW			
	Reset Value	1b	1b	00b			
08h		Enable STROBE input	STROBE input is 0 edge sensitive 1 level sensitive	Control ADC converegister is automation of after the conversion of	tically reset to rsion is wn (no conversi nversion imme version 1.5ms at	diately fter current ramp	IT E Junct CAP Trend or

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<		
	Fault / Status	status_eoc	status_adc_e oc	fault_led	fault_overte mp	fault_timeo ut	fault_		
	Access	SS_RC ¹	SS_RC	SS_RC	SS_RC	SS_RC	S		
	Reset Value	0b	0b	0b	0b	0b			
09h		End Of Supercap Charge (see page 35)	ADC end of conversion reached (see page 35)	Shorted or open LED (LED_OUT) detected (see page 35)	Overtemper ature (Tjunction) triggered (see page 36)	Timeout has triggered (see page 36)	Detectshorted Super (BAL-(VSUF BAL) charge		
			led_current_min reports min. led current during flash cycle						
	Interrupt Mask	status_eoc_mas k	status_adc_e oc_mask	fault_led_mask	fault_overte mp_mask	fault_timeo ut_mask	fault_		
	Access	RW	RW	RW	RW	RW			
0Ah	Reset Value	0b	0b	0b	0b	0b			
<i>O</i> ,		If set, end of Supercap charge triggers INT	If set ADC end of conversion triggers INT	If set, a shorted or open LED (LED_OUT) triggers INT	If set, overtemper ature (Tjunction) triggers INT	If set timeout triggers INT	If set fault_ trigge		

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<
	PWM and Indicator	ind_blink_	_delay	ind_current			
	Access	RW		RW			
	Reset Value	01b)	000b			
0Bh		function delay beta ind_on=1	Control indicator blinking function delay between blinks if ind_on=1 00 continuously on (no blinking) 01 512ms 10 1024ms		IND_OUT current setting if ind_on=1 000 1mA 001 2mA 010 3mA 011 4mA 100 5mA 101 6mA 111 8mA		
	Minimum LED Current				led_curren	nt_min 	
	Access				RO		
0Ch	Reset Value	00h					
		At the beginning of a flash pulse, led_current_min is set to led_current then it is reduced and coil2_peak hit and curr_limit_curr_red=1); led_current_min has the same coding to happens in steps as the coding of led_current is done)					

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<	
	ADC MSB				ADC_D9-	-D2		
0Dh	Access				RO			
UDII	Reset Value		NA					
		ADC MSB results k	oit 9 to bit 2					
	ADC LSB	led_current_r	led_current_rampdown					
	Access	RW						
	Reset Value	00						
0Eh		Automatically ram LED current regist during flash 00 no ramp-dov 011LSB every 10 101LSB every 20 111LSB every 50	er led_current vn 00µs 00µs					

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<
	NTC	test6	skip_enable	ind_blink_d	on_time		
	Access	R/W	RW	RW	RW		
	Reset Value	0	1	10			
0Fh		Test bit - don't use	Allow pulse-skip operation or force 4MHz operation 04MHz operation 1pulse-skip	Control indicator blinking on-time if ind_on=1 (excluding rampup/down) 00 0ms (immediate ramp-down after ramp-up) 01 128ms 10 256ms - default 11 512ms		Current through the LEDs (LED 0h off; use 1h 40µA 2h 120µA 4h 160µA 5h 200µA 6h 240µA 7h 280µA 8h 320µA - 9h 360µA Ah 400µA Bh 440µA Ch 480µA Dh 520µA Fh 560µA Fh 600µA	OUT) i for an e
	OTP1				OTP_da	ta1	
10h	Access				RO		
1011	Reset Value				NA		
		Data of OTP					

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<		
	OTP2		OTP_data2						
11h	Access				RO				
	Reset Value				NA				
		Data of OTP							
	OTP3				OTP_dat	a3			
12h	Access				RO				
1211	Reset Value				NA				
		Data of OTP							
	OTP4	OTP_lock				OTP_data4			
	Access	RO				RO			
13h	Reset Value	NA				NA			
			Data of OTP						
		0 OTP is progra 1 OTP is locked		d) rogramming of OTP	is possible				

^{1.} SS_RC = automatically cleared upon readout

Register Map

Figure AS3630 – 44: Register Map

Addr	Name	Default	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	
00h	Fixed ID	17h				fixed_i	d	
01h	Version	XXh			reserved			
02h	Current Set LED	15h	led_current					
03h	Boost/TXMas k Current	0Ch	led_currer	led_current_range			l1_txmask_cur	r_rec
04h	Coil and Charge Current	54h	charge_c	current		coil2_peak		
05h	Charge / Low Voltage	2Dh	bal_force_on		end_of_charg	e_voltage		
06h	Flash Timer	CFh	ind_rampup_s mooth	ind_rampdo wn_smooth			flash_tii	meoi
07h	Control	61h	ind_on	mode_	mode_after_flash		ntc_on	
08h	Strobe and ADC control	C0h	strobe_on	strobe_type ADC_convert				
09h	Fault / Status ¹	00h	status_eoc	status_adc_ eoc	fault_led	fault_overt emp	fault_timeo ut	fau

Addr	Name	Default	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	
0Ah	Interrupt Mask	00h	status_eoc_m ask	status_adc_ eoc_mask	fault_led_mask	fault_overt emp_mask	fault_timeo ut_mask	fau
0Bh	PWM and Indicator	40h	ind_blink	ind_blink_delay ind_current				
0Ch	Minimum LED Current	NA	led_current_min					
0Dh	ADC MSB	NA	ADC_D9-D2					
0Eh	ADC LSB	0Xh	led_current_i	rampdown	0	0	0	
0Fh	NTC	68h	test6	skip_enable	ind_blink_d	on_time		•
10h	OTP1	NA				OTP_dat	a1 ²	
11h	OTP2	NA	OTP_data2					
12h	OTP3	NA	OTP_data3					
13h	OTP4	NA	OTP_lock	ock OTP_data4				

Read-Only Register	
R/W Register	

if writing to read-only register is (e.g. ADC LSB)

^{1.} The register Fault / Status is a read only register, which is automatically cleared after readout. Therefore only a single I²C access is required to poll the status of 2. If OTP data are fused in-circuit, expect a small yield loss.

Application Information

External Components

Supercap

The Supercap performance is critical for the performance of AS3630. As the Supercap is affected by aging, the flash performance has to be checked at end of life conditions.

Figure AS3630 – 45: Recommended Supercap's

Part Number	С	ESR	Rated Voltage Peak	Rated ¹ Voltage	Match ing ²	Temp Range ³	Size	Manufact urer
DME2Z5R5K43 4M3BT	430mF ±20%	50mΩ	5.5V	4.2V	<5%	-30°C +70°C	20.5x18.5 x3.2mm	
DME2U5R5L35 4M3BT	350mF ±20%	60mΩ	5.5V	4.2V	<5%	-30°C +70°C	20.5x18.5 x3.0mm	Murata www.murat a.com
DMF3R5R5L35 4M3DTA0	350mF ±20%	60mΩ	5.5V	4.2V	<5%	-30°C +70°C	21.0x14.0 x2.5mm	
EDLC082644-3 31-2F-11	330mF	80mΩ	5.5V	3.2V		-20°C +70°C	26x44 x0.8mm	TDK www.tdk- component s.com

^{1.} Can be applied constantly

^{2.} Difference of Capacitance of top capacitor (between VSUPERCAP/BAL) to capacitance of bottom capacitor (between BAL/GND).

^{3.} Operating temperature range

LEDs

The LED with its optics and its performance are a key element in a Supercap LED flash. Therefore use 2 high power LEDs with lowest forward voltage.

Figure AS3630 – 46: Recommended LEDs

Part Number	Vf @ 1A	Brightness @ 1A	I _{LED} @ 25ºC	I _{LED} peak @ 25ºC	Size	Manufacturer
CUW CFUP	3.5V (max. 4.2V)	250-355lm	30mA-120 0mA	2500mA, t≤ 10ms, duty=0.005	2x1.64x0.6 3mm, max H 0.74mm	Osram-OS www.osram-os.com
CL-778					2.24x1.84x 0.75mm	Citizen Electronics ce.citizen.co.jp/lighting _led/en/index.html
LXCL-LW07				3000mA		Lumileds www.philipslumileds.c om

Input Capacitor C_{VIN}

Low ESR input capacitors reduce input switching noise and reduce the peak current drawn from the battery. Ceramic capacitors are required for input decoupling and should be located as close to the device as is practical.

Figure AS3630 – 47: Recommended Input Capacitor

Part Number	С	TC Code	Related Voltage	Size	Manufacturer
GRM188R60J106ME47	10μ >3μF@4.5V >2μF@5.25V	X5R	6V3	0603	Murata www.murata.com
LMK107BBJ106MA	10μ >3μF@4.5V	X5R	6V3	0603	Taiyo Yuden www.t-yuden.com

If a different input capacitor is chosen, ensure similar ESR value and at least $3\mu F$ capacitance at the maximum input supply voltage. Larger capacitor values (C) may be used without limitations.

Optionally add a smaller capacitor in parallel to the input pin VIN (e.g. Murata GRM155R61C104, >50nF @ 3V, 0402 size).

Output Capacitor C_{DCDC1} , C_{DCDC2}

Low ESR capacitors should be used to minimize V_{DCDC} ripple and therefore current ripple on the LED. Multi-layer ceramic capacitors are recommended since they have extremely low ESR and are available in small footprints. The capacitor should be located as close to the device as is practical.

X5R dielectric material is recommended due to their ability to maintain capacitance over wide voltage and temperature range.

Figure AS3630 – 48: Recommended DCDCs Capacitor

Part Number	С	TC Code	Related Voltage	Size	Manufacturer	
GRM219R61A106ME47	10μF ±20% >4.8μF@5V	X5R	10V	0805 (2.0x1.25x0.85mm	Murata www.murata.com	
GRM219R61A106ME44 ¹	10μF ±10% >4.05μF@5V	ASIT	100	max 1mm height)		
2 x C2012X5R1A106M ²	10μF ±20%	X5R	10V	2x0805 (2.0x1.25x0.85mm max 0.95mm height)	TDK www.tdk.com	

^{1.} If T_{AMB}<70°C or higher output voltage ripple can be tolerated.

If a different output capacitor is chosen, ensure similar ESR values and at least $4.2\mu F$ capacitance at 5V output voltage and for CDCDC1 10V voltage rating, CDCDC2 6.3V voltage rating.

Inductor LDCDC1

 L_{DCDC1} is used for charging of the Supercap, operate the LED in torch and PWM operation and in parallel to L_{DCDC2} to power the LED during flash. Due to the different durations of the operation modes, different peak current limits apply (see Figure 49).

The fast switching frequency (4MHz) of the AS3649 allows for the use of small SMDs for the external inductor. The saturation current ISATURATION should be chosen to be above the maximum value of ILDCCD1¹³. The inductor should have very low DC resistance (DCR) to reduce the I2R power losses - high DCR values will reduce efficiency.

^{2.} Use 2 in parallel for C_{DCDC1} and C_{DCDC2} to reach the required output capacitor of >4.2µF capacitance at 5V.

^{13.} Can be adjusted in I²C mode with register coil1_peak

Figure AS3630 – 49: Recommended Inductor

Part Number	L DCR		max. coil1_ setting fo		Size	Manufacturer	
			Other modes	Flash			
LQM32PN1R0MG0	1.0μH >0.6μH@ 3.0A	60m Ω	2.0A	3.0A ¹	3.2x2.5x0.9mm max 1.0mm height	Murata www.murata.com	
SPM3012T-1R0M	1.0µH ±20%	57mΩ ±10%	2.5A	3.0A (3.5A ²)	3.2x3x1.2 mm height is max	TDK www.tdk.com	
CIG32W1R0MNE	1.0μH >0.7μH@ 2.7A >0.6μH@ 3.0A	60mΩ ±25%	2.0A	3.0A	3.2x2.5mm max 1.0mm height	Samsung Electro-Mechancs www.sem.samsun g.co.kr	
CKP3225N1R0M	1.0μH >0.6μH@ 3.0A	<60mΩ	1.0A	3.0A ³	3.2x2.5x0.9mm max 1.0mm height	Taiyo Yuden	
MAMK2520T1R0M	1.0μH >0.6μH@ 2.75A	45m Ω	2.5A	2.5A	2.5x2.0x1.2mm height is max	www.t-yuden.com	

^{1.} Flash pattern: 200ms/3A, 200ms pause, 200ms/3A, 2s then repeat again (no limit on the number of total cycles)
Alternative pattern with 1000ms/1.6A, 200ms pause, 200ms/3A, 200ms pause, 200ms/3A, 2s then repeat again. (no limit on the number of total cycles)

If a different inductor is chosen, ensure similar DCR values and at least0.6μH inductance at ILDCCD1 set by coil1_peak.

Inductor L_{DCDC2}

 L_{DCDC2} is used in parallel to L_{DCDC1} to power the LED during flash. The whole current from the Supercap flows through L_{DCDC2} therefore a high power inductor is required.

The fast switching frequency (4MHz) of the AS3649 allows for the use of small SMDs for the external inductor. The saturation current ISATURATION should be chosen to be above the maximum value of ILDCCD2¹⁴. The inductor should have very low DC resistance (DCR) to reduce the I2R power losses - high DCR values will reduce efficiency

8A Supercap Flash Driver

^{2.} Check with coil supplier

^{3.} Check with coil supplier for worst case flash pattern.

^{14.} Can be adjusted in I²C mode with register coil2_peak

Figure AS3630 – 50: Recommended Inductor

Part Number	L	DCR	max. coil2_peak setting	Size	Manufacturer	
MPI4040R2-1R0-R	1.0μH >0.6μH @ 6.0A	25mΩ	6.0A ¹ (max. value)	4.06x4.45x1 .5mm height is max	Coiltronics (Cooper Bussmann)	
MPI4040R1-1R0-R	1.0μH >0.6μH @ 6.0A	40mΩ	check with coiltronics	4.06x4.45x1 .2mm height is max	www.cooperbussmann.c om	
XAL4020-102ME_	1.0μH >0.6μH @ 6.0A	13.25mΩ	6.0A (max. value)	4x4x2mm max 2.1mm height	Coilcraft	
XFL4020-102ME_	1.0μH >0.6μH @ 5.29A	14.4mΩ	5.29A	4x4x2mm max 2.1mm height	www.coilcraft.com	
SPM4012T-1R0M	1.0μH ± 20%	38mΩ	4.57A	4.4x4.1x1.2 mm height is max	TDK	
SPM3012T-1R0M	1.0μH ± 20%	57mΩ ±10%	3.0A (3.5A ²)	3.2x3x1.2 mm height is max	www.tdk.com	
LQM32PN1R0MG0	1.0μH >0.6μH @ 3.0A	60mΩ	3.0A ³	3.2x2.5x0.9 mm max 1.0mm height	Murata www.murata.com	
CIG32W1R0MNE	1.0μH >0.7μH @ 2.7A >0.6μH @ 3.0A	60mΩ ±25%	3.0A	3.2x2.5mm max 1.0mm height	Samsung Electro-Mechancs www.sem.samsung.co.kr	
CKP3225N1R0M	1.0μH >0.6μH @ 3.0A	<60mΩ	3.0A ⁴	3.2x2.5x0.9 mm max 1.0mm height	Taiyo Yuden www.t-yuden.com	

^{1.} Flash profile and max. TAMB to be checked with coil manufacturer.

If a different inductor is chosen, ensure similar DCR values and at least 0.6 µH inductance at ILDCCD2 set by coil2_peak.

^{2.} Check with coil supplier

^{3.} Flash pattern: 200ms/3A, 200ms pause, 200ms/3A, 2s then repeat again (no limit on the number of total cycles)
Alternative pattern with 1000ms/1.6A, 200ms pause, 200ms/3A, 200ms pause, 200ms/3A, 2s then repeat again. (no limit on the number of total cycles)

^{4.} Check with coil supplier for worst case flash pattern.

Thermistor (NTC)

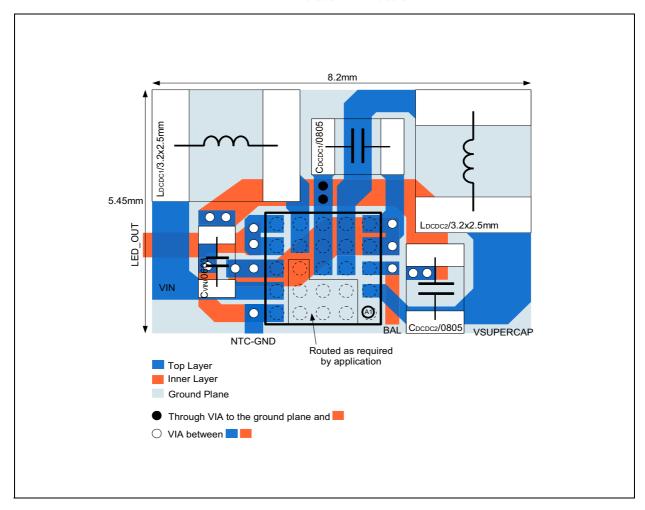
The NTC is used to protect the LED against overheating (hardware protection inside the AS3649, which works without any software - see "NTC - Flash LED Overtemperature Protection - fault_ntc" on page 37.

The thermistor has to be thermally coupled to the LED (and therefore as close as possible to the LED) and it shall not share the same ground connection as the LED return ground (if they share the same ground connection the high current through the LED will offset the measurement of the NTC).

Figure AS3630 – 51: Recommended Thermistors

Part Number	Resistance @ 25°C	B-constant 25/50°C	Size	Manufacturer
NCP02WF104F05RH	100kΩ ±1%	4250k ±1%	01005 (inch)	
NCP02XH103F05RH	10kΩ ±1%	3380k ±1%	01005 (inch)	
NCP03WL224E05RL	220kΩ ± 3%	4485K ± 1%	0201 (inch)	Murata www.murata.com
NCP03WL104E05RL	100kΩ ± 3%	4485K ± 1%	OZOT (IIICH)	
NCP15WF104F03RC	100kΩ	OkΩ		
NCP15WL683J03RC	68kΩ		0402 (inch)	
NTCG104QH224HT	220kΩ ± 3%	4750k ± 3%		
NTCG104EF104FT	100kΩ ± 1%	4250k ± 1%	1.0x0.5mm	TDK
NTCG104LH683JT	68kΩ ± 5%	4550k ± 3%	1.000.5111111	www.tdk.com
NTCG104BF683JT	OOK22 ± 370	4085k ± 1%		

It is recommended to use $220k\Omega$ resistance for a detection threshold of 125°C, $100k\Omega$ for 110°C and $68k\Omega$ for 80°C LED temperature detection threshold.



PCB Layout Guideline

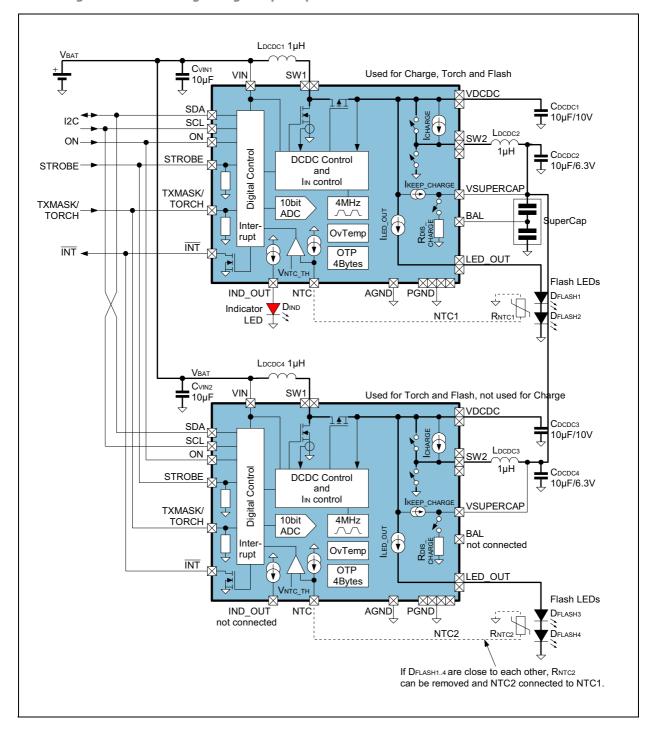
The high speed operation requires proper layout for optimum performance. Route the power traces first and try to minimize the area and wire length.

At the pin GND a single via (or more vias, which are closely combined) connects to the common ground plane. This via(s) will isolate the DCDC high frequency currents from the common ground - see the 'ground via' in Figure 52.

Figure AS3630 – 52: Layout Recommendation Using a 3225 Coil for L_{DCDC1} and L_{DCDC2}

Note: If component placement rules allow, move all components close to the AS3630.

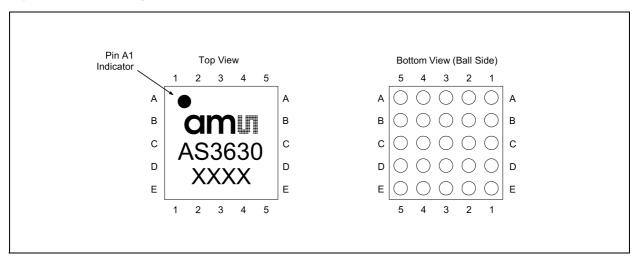
The NTC ground connection shall be separated from the main ground and directly connected to AGND (Ball A5).


The recommended PCB pad size for the AS3630 is 250µm.

Drive 4 LEDs

In order to drive 4 LEDs at a maximum current of up to $4x3A = 12A^{15}$ using a single Supercap, two AS3630 can be used. The I^2C connections can be combined as the AS3630 supports two I^2C addresses (see " I^2C Address Selection" on page 43). Use the circuit shown in the figure below- to synchronize the flash pulses use the STROBE input:

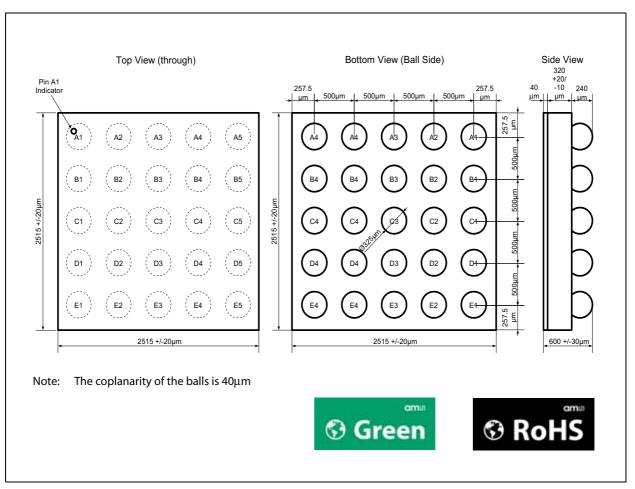
Figure AS3630 – 53: Combining Two AS3630 Using a Single Supercap



^{15.} Will depend on the Supercap and LEDs VF which flash current / flash duration can be used.

Package Drawings and Markings

Figure AS3630 – 54: 25pin WL-CSP Marking


Notes:

Line 1 : ams AG logo
 Line 2 : AS3630

3. Line 3: <Code> (Encoded Datecode - 4 characters)

Figure AS3630 – 55:

25pin WL-CSP Package Dimensions

Ordering Information

The devices are available as standard products as shown below.

Figure AS3630 – 56: Ordering Information

Ordering Code	Description	Delivery	Package
AS3630-ZWLT	8A Supercap Flash Driver with Torch and Indicator	Tape & Reel	25-pin WL-CSP 5x5 balls 0.5mm pitch, 2.5x2.5x0.6mm size RoHS compliant / Pb-Free

AS3630-ZWLT:

AS3630-

Z: Temperature Range: -30°C - 85°C

WL: Package: Wafer Level Chip Scale Package (WL-CSP)

T: Delivery Form: Tape & Reel

Note: All products are RoHS compliant and ams green.

Buy our products or get free samples online at www.ams.com/ICdirect

Technical Support is available at www.ams.com/Technical-Support

For further information and requests, email us at sales@ams.com (or) find your local distributor at www.ams.com/distributor

Soldering Information

The PCB assembly should be instrumented and the reflow oven's process parameters established to ensure the solder paste manufacturer's reflow profile specification is met during the assembly process. See Figure below.

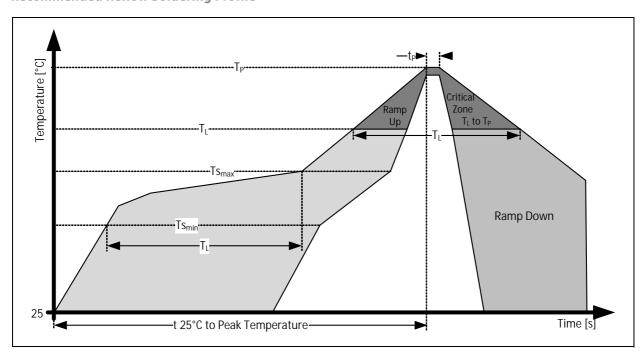

The maximum PCB temperature recommended by the supplier must not be exceeded.

Figure AS3630 – 57: Solder Reflow Profile

Profile Feature	Lead-free Assembly
Average ramp-up rate (Ts _{max} to T _P)	3 °C/second max.
Preheat	150 °C 200 °C 60 − 120 seconds
Time maintained above: • Temperature (T _L) • Time (t _L)	217 °C 60 – 150 seconds
Peak/classification temperature (T _P)	260 °C
Time within 5 °C of actual peak temperature (T _P)	30 seconds
Ramp-down rate	6 °C/second max.
Time 25 °C to peak temperature	8 minutes max.

JEDEC standard Lead-free reflow profile: According to J-STD-020D.

Figure AS3630 – 58: Recommended Reflow Soldering Profile

RoHS Compliant and ams Green Statement

The term RoHS compliant means that ams products fully comply with current RoHS directive. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes. ams Green means RoHS compliant and no Sb/Br). ams defines Green that additionally to RoHS compliance our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information and Disclaimer The information provided in this statement represents ams knowledge and belief as of the date that it is provided, ams bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties, ams has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals, ams and ams suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Copyrights

Disclaimer

Copyright © 1997-2013, ams AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.

The information furnished here by ams AG is believed to be correct and accurate. However, ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Lighting Drivers category:

Click to view products by ams manufacturer:

Other Similar products are found below:

LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201
IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR
NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ KTD2027EWE-TR AS3688 IS31LT3172-GRLS4TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13
ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ4425BGJ-AEC1-Z
IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 KTD2026BEWE-TR
MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P
MPQ4425AGQB-AEC1-Z