

austriamicrosystems AG

is now

ams AG

The technical content of this austriamicrosystems datasheet is still valid.

Contact information:

Headquarters: ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-Mail: ams_sales@ams.com

Please visit our website at www.ams.com

Datasheet

AS3648 2000mA High Current LED Flash Driver

1 General Description

The AS3648 is an inductive high efficient DCDC step up converter with two current sinks. The DCDC step up converter operates at a fixed frequency of 4MHz and includes soft startup to allow easy integration into noise sensitive RF systems. The two current sinks can operate in flash / torch / assist (=video) light modes.

The AS3648 includes flash timeout, overvoltage, overtemperature, undervoltage and LED short circuit protection functions. A TXMASK/TORCH function reduces the flash current in case of parallel operation to the RF power amplifier and avoids a system shutdown. Alternatively this pin can be used to directly operate the torch light directly.

The AS3648 is controlled by an I^2C interface and has a hardware automatic shutdown if SCL=0 for 100ms. Therefore no additional enable input is required for shutting down of the device once the system shuts down.

The AS3648 is available in a space-saving WL-CSP package measuring only 2.25x1.5x0.6mm and operates over the -30°C to +85°C temperature range.

2 Key Features

 High efficiency 4MHz fixed frequency DCDC Boost converter with soft start allows small coils
 Stable even in coil current limit

austriamicrosystems

a leap ahead in analog

- LED current adjustable up to 2000mA
- Two LED operation or single LED operation (combine LED OUT1 with LED OUT2)
- Automatic current adjustment for low battery voltage
- PWM operation for lower output current for reliable light output of the LED; running at 31.25kHz to avoid audible noise
- Protection functions: Automatic Flash Timeout timer to protect the LED(s) Overvoltage and undervoltage Protection Overtemperature Protection LED short/open circuit protection
- I²C Interface with automatic shutdown
- 5V constant voltage mode operation
- Available in tiny WL-CSP Package, 13 balls 0.5mm pitch 2.25x1.5x0.6mm, package size

3 Applications

Flash/torch/videolight for smartphones, feature-phones, tablets, DSCs, DVCs

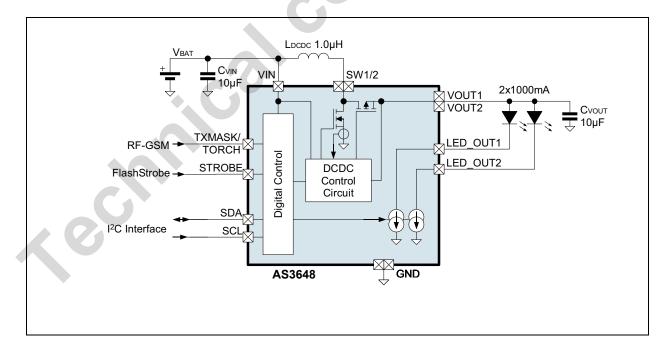
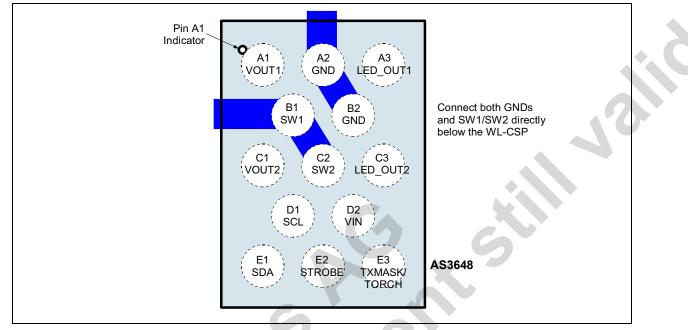


Figure 1. Typical Operating Circuit


Datasheet, Confidential - Pinout

austriamicrosystems

4 Pinout

Pin Assignment

Figure 2. Pin Assignments (Top View)

Pin Description

Table 1. Pin Description for AS3648

Pin Number	Pin Name	Description			
A1	VOUT1	DCDC converter output capacitor - make a short connection to Cvout / VOUT2			
A2	GND	Power and analog ground; make a short connection between both balls			
A3	LED_OUT1	Flash LED current sink			
B1	SW1	DCDC converter switching node - make a short connection to SW2 / coil LDCDC			
B2	GND	Power and analog ground; make a short connection between both balls			
C1	VOUT2	DCDC converter output capacitor - make a short connection to CVOUT / VOUT1			
C2	SW2	DCDC converter switching node - make a short connection to SW1 /coil LDCDC			
C3	LED_OUT2	Flash LED current sink			
D1	SCL	serial clock input for I ² C interface			
D2	VIN	Positive supply voltage input - connect to supply and make a short connection to input capacitor CVIN and to coil LDCDC			
E1	SDA	serial data input/output for I ² C interface (needs external pullup resistor)			
E2	STROBE	Digital input with pulldown to control strobe time for flash function			
	TXMASK/	Function 1: Connect to RF power amplifier enable signal - reduces currents during flash to avoid a system shutdown due to parallel operation of the RF PA and the flash driver			
E3	TORCH	Function 2: Operate torch current level without using the I ² C interface to			
		operate the torch without need to start a camera processor (if the I ² C is connected to the camera processor			

Datasheet, Confidential - Absolute Maximum Ratings

5 Absolute Maximum Ratings

Stresses beyond those listed in Table 3 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Table 4, "Electrical Characteristics," on page 4 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter	Min	Мах	Units	Comments						
VIN to GND	-0.3	+7.0	V							
STROBE, TXMASK/TORCH, SCL, SDA to GND	-0.3	VIN + 0.3	V	max. +7V						
SW1/2, VOUT1/2, LED_OUT1/2 to GND	-0.3	+7.0	V							
VOUT1/2 to SW1/2	-0.3		V	Note: Diode between VOUT1/2 and SW1/2						
voltage between GND pins	0.0	0.0	V	short connection recommended						
Input Pin Current without causing latchup	-100	+100 +IIN	mA	Norm: EIA/JESD78						
Continuous Power Dissipation (T _A = +70°C)										
Continuous power dissipation		1230	mW	P⊤ at 70°C ¹						
Continuous power dissipation derating factor		16.7	mW/ºC	PDERATE ²						
Electrostatic Discharge										
ESD HBM pins LED_OUT1/2 ³	5	±8000	V	Norm: JEDEC JESD22-A114F						
ESD HBM		±2000	V							
ESD CDM		±500	V	Norm: JEDEC JESD 22-C101E						
ESD MM		±100	V	Norm: JEDEC JESD 22-A115-B						
Temperature Ranges and Storage Conditior	is									
Junction to ambient thermal resistance	0	60 ⁴	°C/W	For more information about thermal metrics, see application note AN01 Thermal Characteristics						
Junction Temperature		+150	°C	Internally limited (overtemperature protection), max. 20000s						
Storage Temperature Range	-55	+125	°C							
Humidity	5	85	%	Non condensing						
Body Temperature during Soldering		+260	°C	according to IPC/JEDEC J-STD-020						
Moisture Sensitivity Level (MSL)	MS	E 1		Represents a max. floor life time of unlimited						

Table 3. Absolute Maximum Ratings

1. Depending on actual PCB layout and PCB used measured on demoboard; for peak power dissipation during flashing see document 'AS3648 Thermal Measurements'

2. PDERATE derating factor changes the total continuous power dissipation (PT) if the ambient temperature is not 70°C. Therefore for e.g. TAMB=85°C calculate PT at 85°C = PT - PDERATE * (85°C - 70°C)

3. Pins LED_OUT1 connected to LED_OUT2 and capacitor Cvout connected to VOUT1/2 and GND; both GND pins connected together

4. Measured on AS3648 Demoboard.

Datasheet, Confidential - Electrical Characteristics

6 Electrical Characteristics

 V_{VIN} = +2.7V to +4.4V, TAMB = -30°C to +85°C, unless otherwise specified. Typical values are at V_{VIN} = +3.7V, TAMB = +25°C, unless otherwise specified.

Table 4. Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit		
General Op	erating Conditions							
Vvin	Supply Voltage	pin VIN	2.7	3.7	4.4	V		
VVINREDUCE		AS3648 functionally work	ing but not all	2.5		2.7		
D_FUNC	Supply Voltage	parameters fulf	illed	4.4		5.5	V	
Ishutdown	Shutdown Current	TXMASK/TORCH=L, SC Vvin<3.7V	CL=SDA=0V,		0.6	2.0	μA	
ISTANBY	Standby Current	interface active, TXMAS Vvin<3.7V ¹			1.0	10	μA	
Тамв	Operating Temperature			-30	25	85	°C	
Eta	Application Efficiency (DCDC and current sink)	LCOIL=0.6µH@3A, LES LED_OUT1,2=1300mA ² ,		S	84		%	
DCDC Step	Up Converter							
Vvout	DCDC Boost output Voltage (pin VOUT1/2)			2.8		5.5	V	
Vvout5v	DCDC Boost output Voltage (pin VOUT1/2)	constant voltage mode const_v_mode (see p		5.0		V		
R PMOS	On-resistance	DCDC internal PMC		70		mΩ		
RNMOS	On-resistance	DCDC internal NMC		70		mΩ		
fclk	Operating Frequency	All internal timings are de oscillator	rived from this	-7.5%	4.0	+7.5%	MHz	
Current Sin	ks							
		two flash LEDs at 1800	2.8	3.5	3.95	V		
VLED	LED forward voltage	single flash LED at	1600mA	2.8		4.2	V	
		dual flash LED	current_boost=1	0		2000 ³	mA	
ILED_OUT	LED_OUT1/2 current sinks output combined		current_boost=0	0		1800		
		single flash Ll			1600	mA		
Iled_out∆	LED_OUT1/2 current	ILED_OUT>=800mA or ILED 0°C < TJ < 100	-7		+7	%		
	sink accuracy	500mA <iled_out<800ma, (<="" td=""><td>-5</td><td></td><td>+5</td><td>%</td></iled_out<800ma,>	-5		+5	%		
ILED_OUT	LED OUT1/2 ramp	Ramp-up During startup			250	1000	μs	
RAMP	time	Ramp-dowr	1		500	1000	μs	
ILED_OUT RIPPLE	LED_OUT current ripple	Iled_out = 1000mA, E	3W=20MHz		20		mApp	
	LED_OUT current	Minimum voltage between pin LED OUT1/2 and GND	current_boost=0		325			
VILED_COMP	sink voltage compliance	for operation of the current sink	current_boost=1		360		mV	

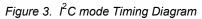
Datasheet, Confidential - Electrical Characteristics

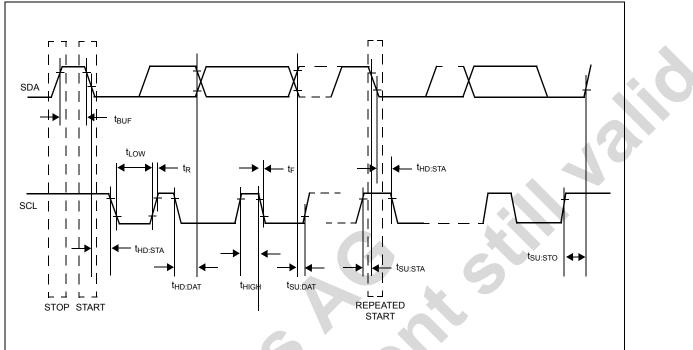
Symbol	Parameter	Condition	Min	Тур	Мах	Unit
VLED_OUTC OMP_HYST	Comparators hysteresis	Hysteresis for comparators between LED_OUT1 and LED_OUT2 reporting signals led_out1above2 and led_out2above1		30		mV
VHIGH_VDS	Comparator High VDS	low vds and high vds comparator - see 4MHz/		900		
VLOW_VDS	Comparator Low VDS	1MHz Operating Mode Switching on page 11		320		mV
ILEAK_ LED_OUT	LED_OUT1/2 Leakage Current	Pins LED_OUT1 and LED_OUT2	-1.0	0.0	+1.0	μA
Protection a	and Fault Detection Fu	nctions (see page 11)				
Vvoutmax	VVOUT overvoltage protection	DCDC Converter Overvoltage Protection	5.0	5.3	5.6	v
	Current Limit for coil	coil_peak=00b	1.8	2.0	2.23	
	LDCDC (Pin SW) measured at 40%	coil_peak=01b	2.25	2.5	2.78	
Ilimit	PWM duty cycle ⁴	default value coil_peak (see page 23)=10b	2.7	3.0	3.34	А
	maximum 40000s lifetime operation in overcurrent limit	coil_peak=11b	3.15	3.5	3.9	
VLEDSHORT	Flash LED short circuit detection voltage	Voltage measured between pins VOUT1,2 and LED_OUT1,2		1.0		V
TOVTEMP	Overtemperature Protection			144		°C
Tovtemphy st	Overtemperature Hysteresis	Junction temperature		5		°C
tFLASHTIMEO UT	Flash Timeout Timer	Can be adjusted with register flash_timeout (page 26)	2		1280	ms
01		accuracy	-7.5		+7.5	%
.,		Falling Vvin	2.25	2.4	2.5	V
Vuvlo	Undervoltage Lockout	Rising VVIN	VUVLO +0.05	VUVLO +0.1	Vuvlo +0.15	V
Digital Inter	face					
Vін	High Level Input Voltage	Pins SCL, SDA.	1.26		Vvin	V
VIL	Low Level Input Voltage	Pin TXMASK/TORCH in external torch mode (ext_torch_on=10)	0.0		0.54	V
VIHFLASH	High Level Input Voltage	Pin STROBE. Pin TXMASK/TORCH for TxMask mode	0.7		Vvin	V
VILFLASH	Low Level Input Voltage	(ext_torch_on=01) ⁵	0.0		0.54	V
Vol	Low Level Output Voltage	pin SDA, Io∟=3mA			0.3	V
ILEAK	Leakage current	Pins SCL, SDA	-1.0	0.0	+1.0	μA
IPD	Pulldown current to GND ⁶	Pins TORCH, STROBE and TXMASK/TORCH		36		μA
t DEBTORCH	TORCH debounce time		6.3	9	11.7	ms
tтімеоит	SCL timeout	In indicator, assist or flash mode, if SCL is low longer than this timeout, the AS3648 automatically enters shutdown mode	35		100	ms

Table 4. Electrical Characteristics (Continued)

Datasheet, Confidential - Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
C mode ti	mings - see Figure 3 on	page 7				
f SCLK	SCL Clock Frequency		1/ ttimeo UT		400	kHz
t _{BUF}	Bus Free Time Between a STOP and START Condition		1.3			μs
t _{HD:STA}	Hold Time (Repeated) START Condition ⁷		0.6			μs
t _{LOW}	LOW Period of SCL Clock		1.3			μs
thigh	HIGH Period of SCL Clock		0.6			μs
t _{SU:STA}	Setup Time for a Repeated START Condition		0.6			μs
t _{HD:DAT}	Data Hold Time ⁸		0		0.9	μs
tsu:dat	Data Setup Time ⁹		100			ns
t _R	Rise Time of Both SDA and SCL Signals		20 + 0.1C _B		300	ns
t _F	Fall Time of Both SDA and SCL Signals	2 .0	20 + 0.1C _B		300	ns
t _{SU:STO}	Setup Time for STOP Condition		0.6			μs
CB	Capacitive Load for Each Bus Line	C_{B} — total capacitance of one bus line in pF			400	pF
C _{I/O}	I/O Capacitance (SDA, SCL)				10	pF

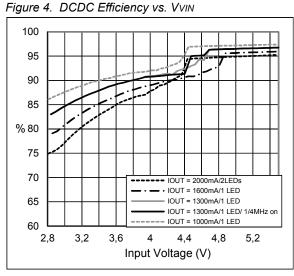

 Table 4. Electrical Characteristics (Continued)

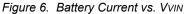

1. For VBAT=4.5V, SCL=1.8V, SDA=1.8V maximum ISTANBY is <16µA.

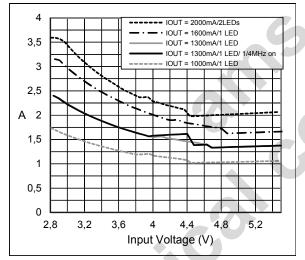
- To improve efficiency at low output currents, the active part of the internal switching transistor PMOS is reduced in size to 1/5 its original size. This reduces the current required to drive the PMOS transistor and therefore improves overall efficiency at low output currents.
- 3. The maximum current driving capability depends on supply voltageVvin, LED forward voltage and coil peak current limit.
- 4. Due to slope compensation of the current limit, ILIMIT changes with duty cycle see Figure 16 on page 10.
- 5. The logic input levels VIH and VIL allow for 1.2V or 1.8V supplied driving circuit
- 6. A pulldown current of 36μ A is equal to a pulldown resistor of $42k\Omega$ at 1.5V
- 7. After this period, the first clock pulse is generated.
- 8. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V_{IHMIN} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 9. A fast-mode device can be used in a standard-mode system, but the requirement $t_{SU:DAT}$ = to 250ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_R max + $t_{SU:DAT}$ = 1000 + 250 = 1250ns before the SCL line is released.

Datasheet, Confidential - Electrical Characteristics

Timing Diagrams

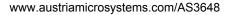


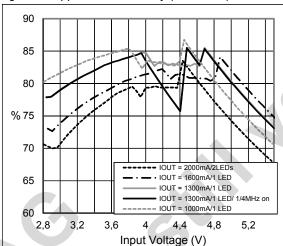
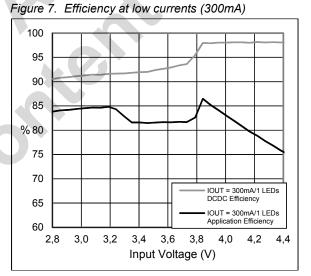
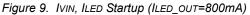
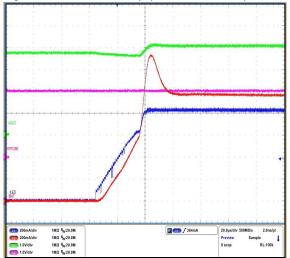


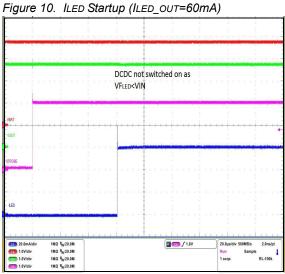

Datasheet, Confidential - Typical Operating Characteristics

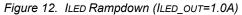

7 Typical Operating Characteristics

VVIN = 3.7V, T_A = +25°C (unless otherwise specified), LED: Osram Phaser 2 (VFLED=3.8V at 1A)

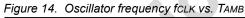


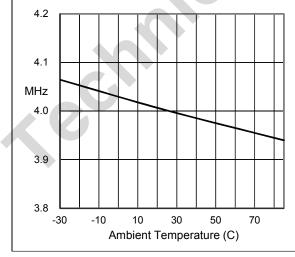





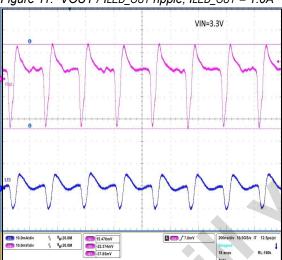

Figure 5. Application Efficiency (PLED/PVIN) vs. VVIN

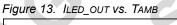


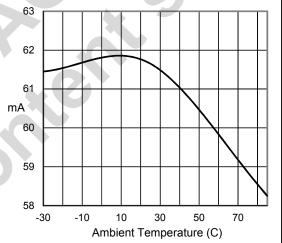





Datasheet, Confidential - Typical Operating Characteristics







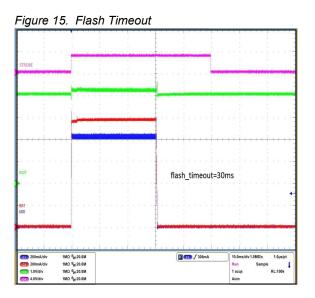
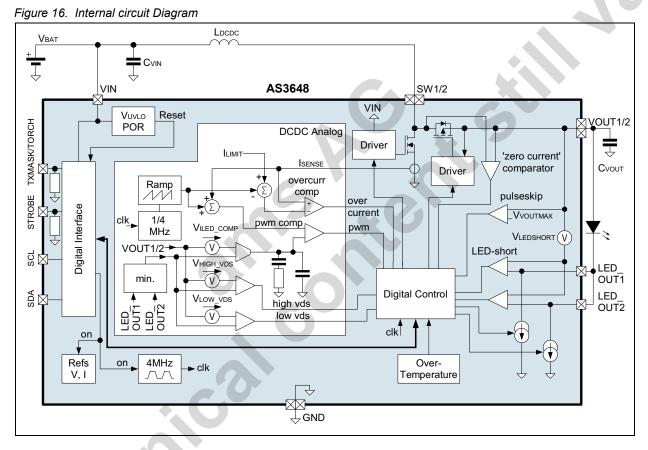


Figure 11. VOUT / ILED_OUT ripple, ILED_OUT = 1.0A

austriamicrosystems austriamicrosystems

Datasheet, Confidential - Detailed Description


8 Detailed Description

The AS3648 is a high performance DCDC step up converter with internal PMOS and NMOS switches. Its output is connected to one or two flash LEDs¹ with an internal current sink. The device is controlled by the pins SDA and SCL in I^2C mode.

The actual operating mode like standby, assist light, indicator or flash mode, can then be chosen by the interface. If not in standby mode, the device automatically enters shutdown mode by keeping SCL low for more than $t_{TIMEOUT}^2$.

The AS3648 includes a fixed frequency DCDC step-up with accurate startup control. Together with the current sink (on LED_OUT1/2) it includes several protection and safety functions.

Internal Circuit Diagram

Softstart / Soft ramp down

During startup and ramp down the LED current is smoothly ramped up and ramped down. If the DCDC converter goes out of regulation (measured by monitoring the voltage across the current sinks), the ramp up is temporarily stopped in order for the DCDC to return to regulation³.

- 2. Following registers are reset to their default value if the timeout expires: out_on=0, ext_torch_on=00, mode_setting=00, const_v_mode=0.
- 3. The actual value of the LED current setting can be readout by the register led_current_actual (see page 29) to allow the camera processor to adopt to the actual operating conditions.

If two LEDs are connected, it is possible to operate each of the two LEDs individually as the LED current can be selected individually.

Datasheet, Confidential - Detailed Description

4MHz/1MHz Operating Mode Switching

If freq_switch_on (see page 28)=1 and in flash and assist light mode (indicator mode or low current mode using PWM mode -see mode_setting (page 26) - always will use pulseskip) if led_current1>=40h and led_current2>=40h and current_boost=0, the DCDC converter always operates in PWM mode (exception: PFM mode is allowed during startup) to reduce EMI in EMI sensitive systems. For flash and assist light mode and high duty cycles close to 100% on-time (maximum duty cycle) of the PMOS, the DCDC converter can switch into a 1MHz operating mode and maxi-

mum duty cycle to improve efficiency for this load condition⁴. The DCDC converter returns back to its normal 4MHz operating frequency when load or supply conditions change. Due to this switching between two fixed frequencies the noise spectrum of the system is exactly defined and predictable. If improved efficiency is required, the fixed switching between 1MHz / 4MHz can be disabled by freq_switch_on (see page 28)=0. In this case pulseskip will be used.

The internal circuit for switching between these two frequencies is shown in Figure 17:

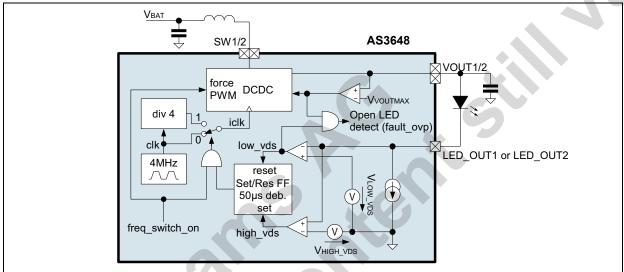


Figure 17. Internal circuit of 4MHz/1Mhz selection

Note: For simplicity Figure 17 shows only a single current sink.

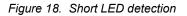
Protection and Fault Detection Functions

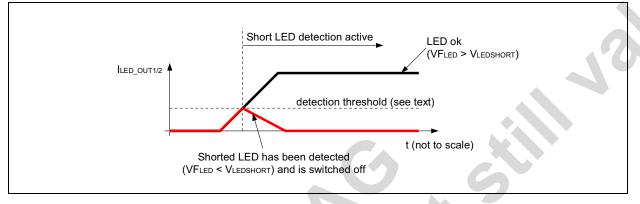
The protection functions protect the AS3648 and the LED(s) against physical damage. In most cases a Fault register bit is set, which can be readout by the I^2C interface. The fault bits are automatically cleared by a I^2C readout of the fault register. Additionally the DCDC is stopped and the current sinks are disabled⁵ by resetting out_on=0, mode_setting=00 and ext_torch_on=00.

Overvoltage Protection

In case of no or a broken LED(s) at the pin LED_OUT1/2 and an enabled DCDC converter, the voltage on VOUT1/2 rises until it reaches VvoutMAX (overvoltage condition) and the voltage across the current source is below low_vds⁶., the DCDC converter is stopped, the current sources are disabled and the bit fault_ovp (see page 28) is set⁷.

- 4. Efficiency compared to a 4MHz only DCDC converter forced to operate with minimum duty cycle.
- 5. Applies for all faults except TXMASK event occurred
- 6. If overvoltage is reached, but none of the low_vds comparator(s) triggers, VOUT1/2 is still regulated below VVOUTMAX.
- 7. In constant voltage mode (5V generation, register bit const_v_mode=1) this fault is disabled.


Datasheet, Confidential - Detailed Description



Short Circuit Protection

After the startup of the DCDC converter, the voltage on LED_OUT1/2 is continuously monitored and compared against

VLEDSHORT if the LED current is above 14mA⁸ (current_boost=0), 15.6mA (current_boost=1)⁹ (see Figure 18). If the voltage across the LED (VFLED = VOUT1/2-LED_OUT1/2) stays below VLEDSHORT, the DCDC is stopped (as a shorted LED is assumed), the current sinks are disabled and the bit fault_led_short (see page 28) is set. In a dual LED configuration for the AS3648, if a single shorted LED is detected, this LED is disabled and the device continuous operation with the other LED.

Overtemperature Protection

The junction temperature of the AS3648 is continuously monitored. If the temperature exceeds TOVTEMP, the DCDC is stopped, the current sinks are disabled (instantaneous) and the bit fault_overtemp (see page 28) is set. The driver is automatically re-enabled¹⁰ once the junction temperature drops below TOVTEMP-TOVTEMPHYST.

TXMASK event occurred

If during flash, TXMASK current reduction is enabled (see TXMASK on page 14, configured by ext_torch_on=01) and a TXMASK event happened (pin TXMASK/TORCH=1), the fault register bit fault_txmask (see page 27) is set.

Flash Timeout

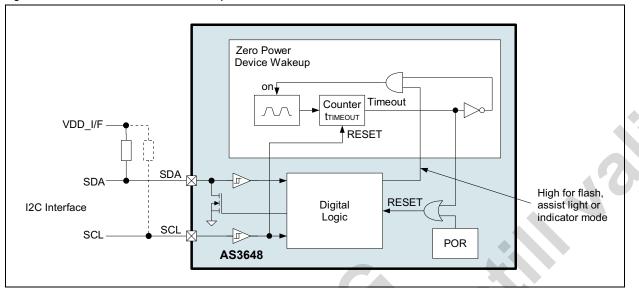
If the flash is started a timeout timer is started in parallel. If the flash duration defined by the STROBE input (strobe_on = 1 and strobe_type = 1, see Figure 26 on page 18) exceeds tFLASHTIMEOUT (adjustable by register flash_timeout (see page 26)), the DCDC is stopped and the flash current sinks (on pin LED_OUT1/2) are disabled and fault_timeout is set.

If the flash duration is defined by the timeout timer itself (strobe_on = 0, see Figure 24 on page 17), the register fault_timeout is set after the flash has been finished.

Supply undervoltage Protection

If the voltage on the pin VIN (=battery voltage) is or falls below VUVLO, the AS3648 is kept in shutdown state and all registers are set to their default state.

Wakeup Circuit - Power off detection


In flash, assist light and indicator mode (register mode_setting (page 26)=01, 10 or 11) and out_on (page 27)=1, if SCL is L for more than tTIMEOUT, shutdown mode is automatically entered. This feature automatically detects a power-off of the controlling circuit driving SCL and SDA (VDD_I/F goes to 0V e.g. due to a low power condition of the driving circuit) - the internal circuit is shown in Figure 19:

^{8.} Measured for each LED_OUT1/2 pin

^{9.} To avoid errors in short LED detection for LEDs with a high leakage current

^{10.}In constant voltage mode (const v mode=1) the DCDC will not be automatically re-enabled.

Datasheet, Confidential - Detailed Description

In shutdown mode once pin SCL goes high for the first time, the internal counter shown in Figure 19 is immediately reset thus releasing the internal RESET (assuming VIN is above VUVLO) signal and allows instant communication on

the I²C bus. Therefore no additional action is required to leave the shutdown mode and start I²C communication.

Purpose of this circuit

The purpose of this circuit is an additional security mechanism.

Assume the user programmed torch or indicator operation (there is no timeout for these operating modes) and the battery slowly drops below the undervoltage limit of the system. The processor would get an reset by the PMIC and the LDO operating VDD_I/F is switched off, but the processor might not have been able to switch-off the torch/indicator operation of the AS3648. Due to the implemented security mechanism the AS3648 detects a power off of VDD_I/F and automatically enters shutdown.

Current consumption in standby/shutdown mode

The AS3648 is designed to draw minimum current in standby and shutdown mode. There is a small difference in current consumption between these two operating modes (typ. 300nA) only due to the internal level shifters (see the schmitt trigger input buffers connected to SCL and SDA in Figure 19) for shifting up the voltage on SCL/SDA (VDD_I/F e.g. 1.8V) to the supply voltage on VIN (e.g. 3.7V). If the AS3648 is driven with digital levels close to 0V/VIN, the current consumption for standby mode is identical to shutdown mode.

Operating Mode and Currents

The output currents and operating mode are selected according to the following table:

Table 5. Operating Mode and current settings

			AS3648	configur	ation	operating mode and currents		
SCL and SDA	TORCH	STROBE	mode_ setting (see page 26) out_on (see page 27)		Condition	Mode	LED_OUT1/2 output current	
SCL low for tTIME OUT ¹	x	x	х	х	if previous operating mode was indicator, assist light or flash mode	shutdown all registers are reset to their default values	0	

Datasheet, Confidential - Detailed Description

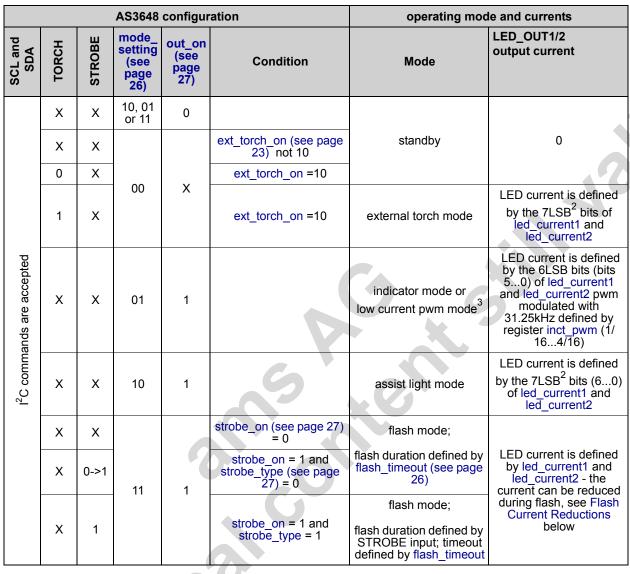


Table 5. Operating Mode and current settings (Continued)

1. SCL low for TTIMEOUT and operating mode is indicator, assist or flash mode then shutdown mode is entered.

2. The MSB bit of this register not used to protect the LED; therefore the maximum assist / torch light current = half the maximum flash current

3. The low current mode is a general purpose PWM mode to drive less current through the LED in average, but keep the actual pulsed current in a range where the light output from the LED is still specified. As only the 6 LSBs of led_current1 and led_current2 are used the maximum current is limited to 1/4 of the maximum flash current.

Flash Current Reductions

TXMASK

Usually the flash current is defined by the register led_current1 and led_current2. If the TXMASK/TORCH input is used and (configured by ext_torch_on=01), the flash current is reduced to flash_txmask_current if TXMASK/TORCH=1.

Current Reduction by VIN measurements in Flash Mode

Due to the high load of the flash driver and the ESR of the battery (especially critical at low temperatures), the voltage on the battery drops. If the voltage drops below the reset threshold of the system would reset. To prevent this condition the AS3648 monitors the battery voltage and keeps it above vin_low_v_run as follows:

Datasheet, Confidential - Detailed Description

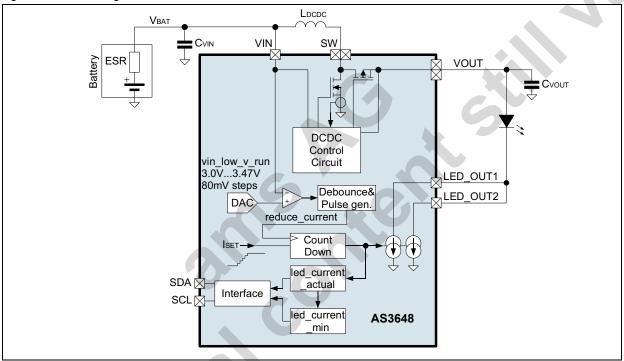
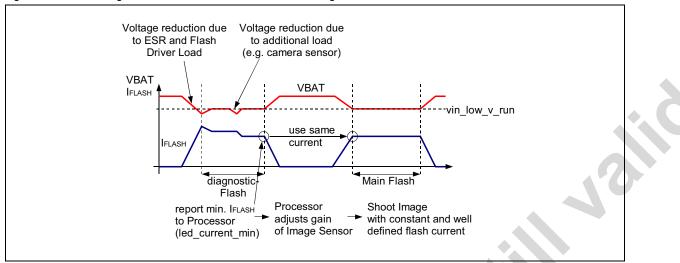
Before a flash is started the voltage on VIN is measured. If the voltage is below the setting of vin_low_v the fault_uvlo (see page 27) is set and the flash is disabled (driver stays in shutdown) if vin_low_v_shutdown=1. The flash current is reduced to flash_txmask_current if vin_low_v_shutdown=0.

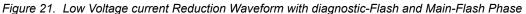
During flash, if the voltage on VIN drops below the threshold defined by vin_low_v_run, the flash current is reduced (or ramping of the current is stopped during flash current startup) and fault_uvlo is set. The timing for the reduction of the current is 8µs/LSB current change.

During the flash pulse the actual used current can be readout by the register led_current_actual.

After the flash pulse the minimum current can be readout by the register led_current_min - this allows to adjust the camera sensitivity (gain or iso-settings) for the subsequent flash pulse (e.g. when using a pre-flash and a main flash pulse).

The internal circuit for low voltage current reductions are shown in Figure 20:


Figure 20. Low Voltage current Reduction Internal Circuit

A mobile phone camera flash system can trigger a diagnostic flash and a main-flash:

The diagnostic flash is initiated by the processor. After this diagnostic flash, the determined maximum flash current can be read back through the I^2C interface from register led_current_min (see page 29) and used for the setting for the main flash. Therefore the current in the main-flash is constant and additionally the camera system can use this current for picture quality adjustments - the waveforms for this concept are shown in Figure 21:

Datasheet, Confidential - Detailed Description

If the diagnostic flash should be short (e.g. 10ms) it is recommended to operate this diagnostic flash at slightly higher vin_low_v_run setting compared to the main flash as shown in Figure 22:

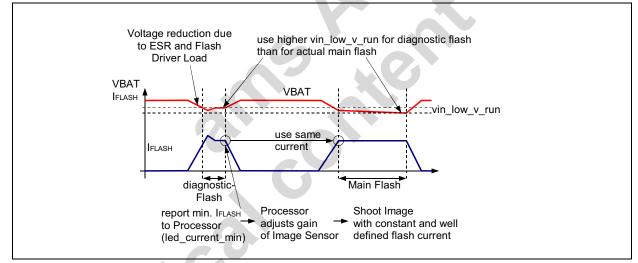


Figure 22. Low Voltage current Reduction Waveform with short diagnostic-Flash and Main-Flash Phase

The different settings for vin_low_v_run allow a constant main flash current without dropping VIN below vin_low_v_run.

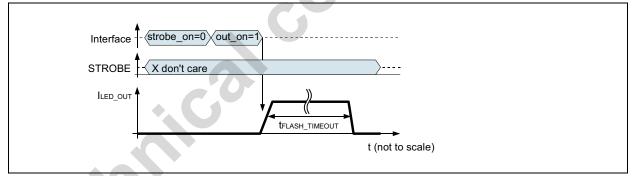
Datasheet, Confidential - Detailed Description

Load Balancing

To improve the efficiency of the AS3648 for LEDs with unmatched forward voltage and reduce the internal power dissipation of the AS3648, set the bit load_balance_on=1. This bit can change the currents through the LEDs by up to +/-15% (up to 115%/85% of set current between LED_OUT1 to LED_OUT2) to match the forward voltage of the LED better as shown in Figure 23:

Figure 23. Load Balancing

Flash Strobe Timings


The flash timing are defined as follows:

- Flash duration defined by register flash_timeout and flash is started immediately when this mode is selected by the I²C command (see Figure 24):
 - set strobe_on = 0, start the flash by setting out_on = 1
- Flash duration defined by register flash_timeout and flash started with a rising edge on pin STROBE (see Figure 25):

set strobe_on = 1 and strobe_type = 0

3. Flash start and timing defined by the pin STROBE; the flash duration is limited by the timeout timer defined by flash_timeout (see Figure 26 and Figure 34): set strobe on = 1 and strobe type = 1

austriamicrosystems

Datasheet, Confidential - Detailed Description

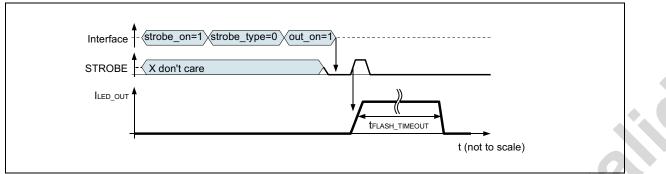
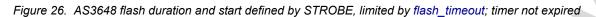



Figure 25. AS3648 flash duration defined by flash_timeout, starting flash with STROBE rising edge

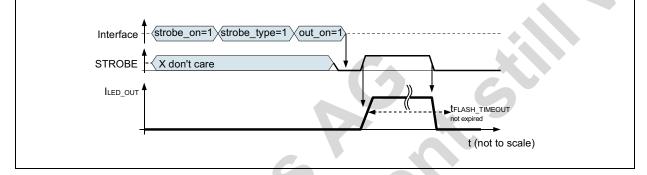
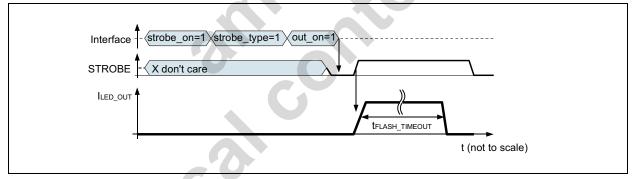



Figure 27. AS3648 flash duration and start defined by STROBE, limited by flash_timeout; timer expired

I²C Serial Data Bus

The AS3648 supports the I²C bus protocol. A device that sends data onto the bus is defined as a transmitter and a device receiving data as a receiver. The device that controls the message is called a master. The devices that are controlled by the master are referred to as slaves. A master device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions must control the bus. The AS3648 operates as a slave on

the I²C bus. Within the bus specifications a standard mode (100kHz maximum clock rate) and a fast mode (400kHz maximum clock rate) are defined. The AS3648 works in both modes. Connections to the bus are made through the open-drain I/O lines SDA and SCL.

The following bus protocol has been defined (Figure 28):

Datasheet, Confidential - Detailed Description

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH are interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus Not Busy

Both data and clock lines remain HIGH.

Start Data Transfer

A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines a START condition.

Stop Data Transfer

A change in the state of the data line, from LOW to HIGH, while the clock line is HIGH, defines the STOP condition.

Data Valid

The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred between START and STOP conditions are not limited, and are determined by the master device. The information is transferred byte-wise and each receiver acknowledges with a ninth bit.

Acknowledge

Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse that is associated with this acknowledge bit.

A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge-related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition.

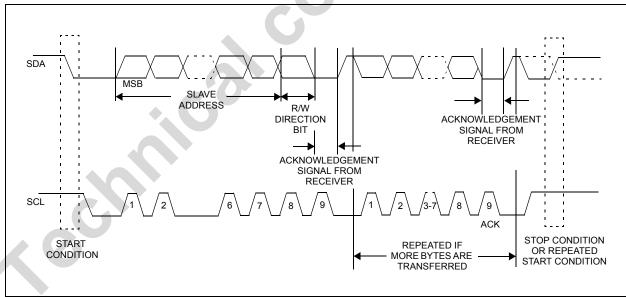


Figure 28. Data Transfer on I²C Serial Bus

Depending upon the state of the R/W bit, two types of data transfer are possible:

Datasheet, Confidential - Detailed Description

- 1. Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte. Data is transferred with the most significant bit (MSB) first.
- 2. Data transfer from a slave transmitter to a master receiver. The master transmits the first byte (the slave address). The slave then returns an acknowledge bit, followed by the slave transmitting a number of data bytes. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a "not acknowledge" is returned. The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START condition is also the beginning of the next serial transfer, the bus is not released. Data is transferred with the most significant bit (MSB) first.

The AS3648 can operate in the following two modes:

 Slave Receiver Mode (Write Mode): Serial data and clock are received through SDA and SCL. After each byte is received an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit (see Figure 29). The slave address byte is the first byte received after the master generates the START condition. The slave address byte contains the 7-bit AS3648 address, which is 0110000,

followed by the direction bit (R/W), which, for a write, is 0.¹¹ After receiving and decoding the slave address byte the device outputs an acknowledge on the SDA line. After the AS3648 acknowledges the slave address + write bit, the master transmits a register address to the AS3648. This sets the register pointer on the AS3648. The master may then transmit zero or more bytes of data, with the AS3648 acknowledging each byte received. The address pointer will increment after each data byte is transferred. The master generates a STOP condition to terminate the data write.

2. Slave Transmitter Mode (Read Mode): The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit indicates that the transfer direction is reversed. Serial data is transmitted on SDA by the AS3648 while the serial clock is input on SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer (Figure 30 and Figure 31). The slave address byte is the first byte received after the master generates a START condition. The slave address byte contains the 7-bit AS3648

address, which is 0110000, followed by the direction bit (R/W), which, for a read, is 1.¹² After receiving and decoding the slave address byte the device outputs an acknowledge on the SDA line. The AS3648 then begins to transmit data starting with the register address pointed to by the register pointer. If the register pointer is not written to before the initiation of a read mode the first address that is read is the last one stored in the register pointer. The AS3648 must receive a "not acknowledge" to end a read.

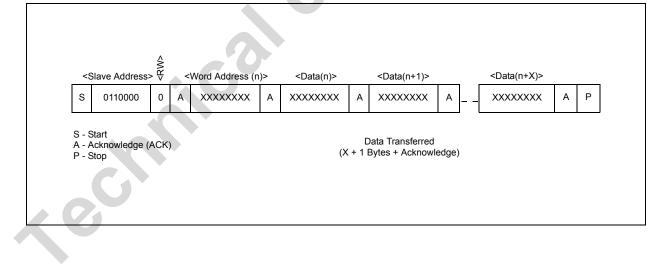



Figure 29. Data Write - Slave Receiver Mode

^{11.} The address for writing to the AS3648 is 60h = 01100000b

^{12.} The address for read mode from the AS3648 is 61h = 01100001b

Datasheet, Confidential - Detailed Description

austriamicrosystems

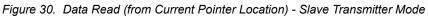
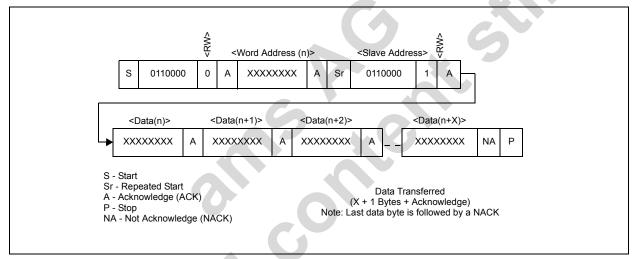



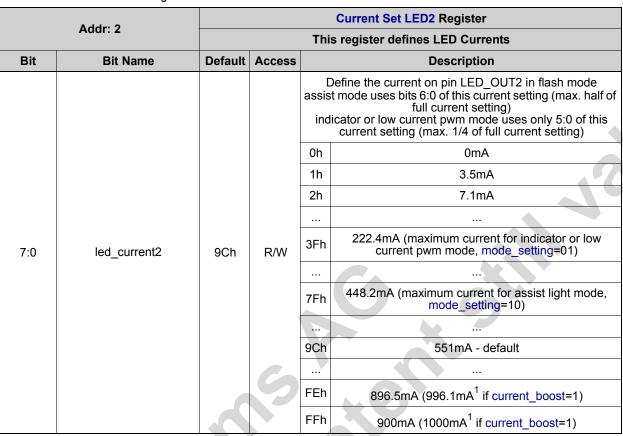
Figure 31. Data Read (Write Pointer, Then Read) - Slave Receive and Transmit

< echilic

Datasheet, Confidential - Detailed Description

Register Description

Table 6. ChipID Register


Addr: 0		ChipID Register								
	Addr. 0	This register has a fixed ID								
Bit	Bit Name	Default	Access	Description						
2:0	version	Xh	R	AS3648 chip version number						
7:3	fixed_id	10110b	R	This is a fixed identification (e.g. to verify the I ² C communication)						
Table 7. Current Set LED1 Register										
Current Set LED1 Register										
	Addr: 1	This register defines design versions								

Addr: 1		Current Set LED1 Register							
	Addi. 1		This register defines design versions						
Bit	Bit Name	Default	Access	Description					
				Caut	tion: Define the current on pin LED_OUT1assist mode uses bits 6:0 of this current setting (max. half of full current setting) indicator or low current pwm mode uses only 5:0 of this current setting (max. 1/4 of full current setting)				
				0h	0mA				
			6	1h	3.5mA				
				2h	7.1mA				
7:0	led_current1	9Ch	R/W	3Fh	222.4mA (maximum current for indicator or low current pwm mode, mode_setting=01)				
			G	7Fh	448.2mA (maximum current for assist light mode, mode_setting=10)				
				9Ch	551mA - default setting				
				FEh	896.5mA (996.1mA ¹ if current_boost=1)				
				FFh	900mA (1000mA ¹ if current_boost=1)				

1. Do not use current_boost=1 for currents <= 900mA

Datasheet, Confidential - Detailed Description

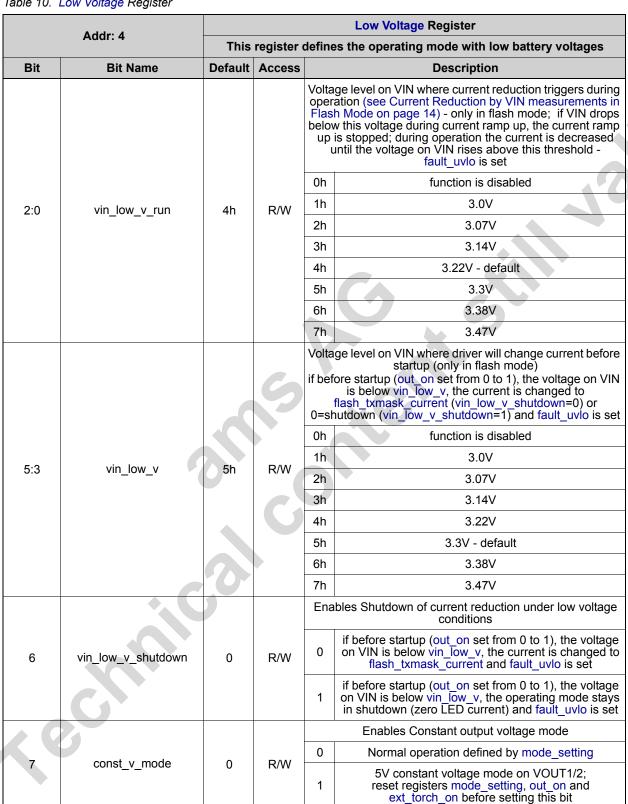
Table 8.	Current Set LED2 Register

1. Do not use current_boost=1 for currents <= 900mA

Table 9. TXMask Register

Addr: 3			TXMask Register							
			This register defines the TXMask settings and coil peak current							
Bit	Bit Name	Default	Access	Description						
				De	fines operating mode for input pin TXMASK/TORCH					
				00	pin has no effect					
1:0	ext torch on	00	R/W	01	txmask-mode; during flash if TXMASK/TORCH=1, the LED current is set to flash_txmask_current - (see TXMASK on page 14)					
1.0	C			10	external torch mode: if TXMASK/TORCH=1 and mode_setting=00, the AS3648is set into external					
					torch mode (LED current is defined by the 7LSB ¹ bits of led_current1 and led_current2)					
				11	don't use					
				D	Defines the maximum coil current (parameter ILIMIT)					
				00	ILIMIT = 2.0A					
3:2	coil_peak	10	R/W	01	ILIMIT = 2.5A					
				10	ILIMIT = 3.0A					
				11	ILIMIT = 3.5A					

Datasheet, Confidential - Detailed Description



Addr: 3		TXMask Register							
			This register defines the TXMask settings and coil peak current						
Bit	Bit Name	Default	Access		Description				
				De	fine the current on pin LED_OUT1/2 in flash mode if ext_torch_on=01 and TXMASK/TORCH=1				
				0h	0mA				
				1h	57mA (62.7mA if current_boost=1)				
				2h	113mA (125.5mA if current_boost=1)				
				3h	169mA (188.2mA if current_boost=1)				
				4h	226mA (251mA if current_boost=1)				
				5h	282mA (313.7mA if current_boost=1)				
	2			6h	339mA (376.5mA if current_boost=1)- default				
7:4	flash_txmask_current ²	6h	R/W	7h	395mA (439.2mA if current_boost=1)				
				8h	452mA (502mA if current_boost=1)				
				9h	508mA (564.7mA if current_boost=1)				
				Ah	565mA (627.5mA if current_boost=1)				
				Bh	621mA (690.2mA if current_boost=1)				
				Ch	678mA (752.9mA if current_boost=1)				
				Dh	734mA (815.7mA if current_boost=1)				
				Eh	791mA (878.4mA if current_boost=1)				
				Fh	847mA (941.2mA if current_boost=1)				

1. The MSB bit of this register not used to protect the LED; therefore the maximum current = half the maximum flash current

2. If current_boost=1, the LED current is increased by 11%.

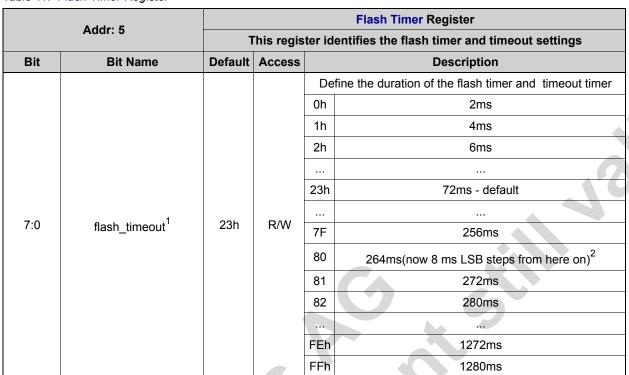

Datasheet, Confidential - Detailed Description

Table 10. Low Voltage Register

Datasheet, Confidential - Detailed Description

Table 11. Flash Timer Register

1. At maximum output current the flash duration should be limited to 120ms (depending of VF of the LED, thermal design and ambient temperature) to avoid overheating of the AS3648.

2. Internal calculation for codes above 80h: flash timeout [ms] = (flash_timeout-127) * 8 + 256 [ms]

Table	12.	Control	Register
-------	-----	---------	----------

	Addr: 6			Control Register		
	Addi. 6	This reg	gister ide	ntifies the operating mode and includes an all on/off bit		
Bit	Bit Name	Default	Access		Description	
					Define the AS3648 operating mode	
		0	00 R/W	00	shutdown or external torch mode if ext_torch_on (page 23)=10	
				01	indicator mode (or low current mode using PWM) LED current is defined by the 6LSB bits of led_current1 and led_current2 pwm modulated with 31.25kHz defined by register inct_pwm (1/164/16)	
1:0	mode_setting	00		10	assist light mode: LED current is defined by the 7LSB ¹ bits of led_current1 and led_current2	
K				11	flash mode: LED current is defined by led_current1 and led_current2 (out_on and mode_setting are automatically cleared after a flash pulse)	
2	reserved	Х	R		reserved - don't use, always write 0	

Datasheet, Confidential - Detailed Description

	Adda C		Control Register				
Addr: 6		This re	This register identifies the operating mode and includes an all on/off bit				
Bit	Bit Name	Default	Access Description		Description		
				E	Enables the output current sinks (pin LED_OUT1/2)		
2				0	outputs disabled		
3	out_on	0	R/W	1	outputs enabled (out_on and mode_setting are automatically cleared after a flash pulse)		

Table 12.	Control Register (Continued)
-----------	------------------------------

1. The MSB bit of this register not used to protect the LED; therefore the maximum assist light current = half the maximum flash current

Table 13	Strobe	Signalling	Register
Tuble 10.	00000	Olghumig	ricgioloi

Addr: 7		Strobe Signalling Register						
	Addr: 7		This register defines the flash current reducing and mode for STROBE					
Bit	Bit Name	Default Access Description						
			Defines if the STROBE input is edge or level sensitive; see also bit strobe_on (page 27)					
6	strobe_type	1	R/W	0 STROBE input is edge sensitive				
				1 STROBE input is level sensitive				
				Enables the STROBE input				
7	strobe_on	1	R/W	0 STROBE input disabled				
	_			1 STROBE input enabled in flash mode				

Table 14. Fault Register

	Fault Register						
	Addr: 8	This register identifies all the different fault conditions and provide information about the LED detection					
Bit	Bit Name	Default	Access		Description		
	9		a Redu	n undervoltage event has happened - see Current ction by VIN measurements in Flash Mode on page 14			
0	fault_uvlo	0	R/sC ¹	0	No		
				1	Yes		
1	reserved	0	R	reserved - don't use			
2	reserved	0	R		reserved - don't use		
	G	0	R/sC ¹	T	XMASK/TORCH event triggered during flash - see TXMASK event occurred on page 12		
3	fault_txmask			0	No		
				1	Yes		
	4 fault_timeout 0 R/			see Flash Timeout on page 12			
4		0	R/sC ¹	0	No fault		
				1	Flash timeout exceeded		

Datasheet, Confidential - Detailed Description

			Fault Register				
Addr: 8		This register identifies all the different fault conditions and provide information about the LED detection					
Bit	Bit Name	Default	Access		Description		
					see Overtemperature Protection on page 12		
5	fault_overtemp	0	R/sC ¹	0	No fault		
				1	Junction temperature limit has been exceeded		
					see Short Circuit Protection on page 12		
6	fault_led_short	0	R/sC ¹	0	No fault		
				1	A shorted LED is detected (pin LED_OUT1/2)		
					see Overvoltage Protection on page 11		
7	fault_ovp	0	R/sC ¹	0	No fault		
				1	An overvoltage condition is detected (pin VOUT)		
1. R/sC = Read, self clear; after readout the register is automatically cleared							
Table 15. PWM and Indicator Register							

Table 14. Fault Register (Continued)

Table 15. PWM and Indicator Register

			PWM and Indicator Register					
	Addr: 9	This register defines the PWM mode (e.g. for indicator) and 4/1MHz mode switching						
Bit	Bit Name	Default	Access		Description			
				D	efine the AS3648 PWM with 31.25kHz operation for indicator or low current mode (mode_setting=01)			
				00	1/16 duty cycle			
1:0	inct_pwm	00	R/W	01	2/16 duty cycle			
			G	10	3/16 duty cycle			
				11	4/16 duty cycle			
				Exa	ct frequency switching between 4MHz/1MHz for assist and flash modes for operation close to maximum pulsewidth			
2	freq switch on	0		0	Pulseskip operation is allowed for all modes - results in better efficiency			
۷		U	R/W	1	In flash and assist light mode (indicator mode or low current mode using PWM always will use pulseskip) ir led_current1>=40h and led_current2>=40h and current_boost=0, the DCDC is running at 4MHz or 1MHz (pulseskip is disabled) - results in improved noise performance;			
				Ν	leasure the voltage difference between LED_OUT1 vs.LED_OUT2 during operation of the DCDC			
3	led_out1above2	0	R	0				
				1	V(LED_OUT1) > V(LED_OUT2) + VLED_OUTCOMP_HYST			

Datasheet, Confidential - Detailed Description

			PWM and Indicator Register				
Addr: 9		This reg	This register defines the PWM mode (e.g. for indicator) and 4/1MHz mode switching				
Bit	Bit Name	Default	Access		Description		
						N	leasure the voltage difference between LED_OUT1 vs.LED_OUT2 during operation of the DCDC
4	led_out2above1	0	R	0	•		
				1	V(LED_OUT2) > V(LED_OUT1) + VLED_OUTCOMP_HYST		
5	load balance on	0	R/W	Bala impi	ance the current sinks (up to +/-10% of set current) to rove application efficiency for unmatched LED forward voltages - see Load Balancing on page 17		
5		0	1.7.00	0	disabled		
			-	1	enabled		

Table 15. PWM and Indicator Register (Continued)

Table 17. Minimum LED Current Register

	Addr: Eh	This re	egister re	Minimum LED Current Register ports the minimum LED current from the last operation cycle
Bit	Bit Name	Default	Access	Description
7:0	led_current_min ¹²³	00h	R	Minimum current through the current sink (only including all current reductions as described in Current Reduction by VIN measurements in Flash Mode excluding current reductions caused by TXMASK)

- 1. Only the current through LED_OUT1 is reported.
- 2. As the internal change of this register is asynchronous to the readout, it is recommended to readout the register after the flash pulse. The register will store the minimum current through the LED after e.g. a previous flash. This current can be used for a subsequent flash pulse for a safe operating range.
- 3. This register is only set if an actual current reduction happens (fault_uvlo (see page 27)=1) otherwise led_current_min=0.

Table 18.	Actual LED	Current Register
-----------	------------	------------------

	Addr: Fh	Actual LED Current Register					
		This register reports the actual set LED current					
Bit	Bit Name	Default Access Description					
7:0	led_current_actual ¹²	00h	R	Actual set current through the current sink (including all current reductions as described in Flash Current Reductions including LED current ramp up/down)			

1. Only the current through LED_OUT1 is reported.

2. As the internal change of this register is asynchronous to the readout, it is recommended to readout the register twice and compare the results.

	Addr: 80h	Password Register Register			
	Addr. oon	Password Protection for register Current Boost			
Bit	Bit Name	Default Access Description			
7:0	password	NA	NA W Write A1h into this register to enable access to register		

Table 19. Password Register Register

Table 20. Current Boost Register

	Addr: 81h	Current Boost Register					
Addr: 81n		Increase output current by 11%					
Bit	Bit Name	Default	Access	Description			
				Boost all LED currents by 11%			
0	current_boost ¹	0	R/W	0 all LED current are as described in the ta	ables		
				1 all LED current are increased by 11%	/ 0		

1. Write A1h into register password (0x80) to enable access to this register (password unlocking is only valid for a single I²C access) - required on any read or write access to this register

Register Map

Table 21. Register Map¹

Register Definition	Addr	Default		5		Con	tent			
Name			b7	b6	b5	b4	b3	b2	b1	b0
ChipID	0	Bxh			fixed_id				version	
Current Set LED1	1	9Ch		led_current1						
Current Set LED2	2	9Ch				led_cu	irrent2			
TXMask	3	68h	f	lash_txma	sk_currer	nt	coil	peak	ext_to	rch_on
Low Voltage	4	2Ch	const_v _mode						n_low_v_r	un
Flash Timer	5	23h	flash_timeout							
Control	6	00h	out_on d mode_setting				setting			
Strobe Signalling	7	C0h	strobe_ on	strobe_t ype						
Fault	8	00h	fault_ov p	fault_le d_short	fault_ov ertemp	fault_ti meout	fault_tx mask	reserve d	reserve d	fault_uvl o
PWM and Indicator	9	00h	load_ba lance_o n 1 2 freq_swi tch_on inct_pwm				pwm			
Minimum LED Current	Eh	00h	led_current_min							
Actual LED Current	Fh	00h	led_current_actual							
Password Register	80h	00h	password							
Current Boost	81h	00h								current_ boost

AS3648 Datasheet, Confidential - Detailed Description

*austriamicro*systems

1. Always write'0' to undefined register bits (e.g. to bits 4..7 of register 6)

austriamicrosystems austriamicrosystems

9 Application Information

External Components

Input Capacitor CVIN

Low ESR input capacitors reduce input switching noise and reduce the peak current drawn from the battery. Ceramic capacitors are required for input decoupling and should be located as close to the device as is practical.

Table 22. Recommended Input Capacito

Part Number	С	TC Code	Rated Voltage	Size	Manufacturer
GRM188R60J106ME47	10μ >3μF@4.5V >2μF@5.25V	X5R	6V3	0603	Murata www.murata.com
LMK107BBJ106MA	10µ >3µF@4.5V	X5R	6V3	0603	Taiyo Yuden www.t-yuden.com

If a different input capacitor is chosen, ensure similar ESR value and at least 3µF capacitance at the maximum input supply voltage. Larger capacitor values (C) may be used without limitations.

Add a smaller capacitor in parallel to the input pin VIN (e.g. Murata GRM155R61C104, >50nF @ 3V, 0402 size).

Output Capacitor CVOUT

Low ESR capacitors should be used to minimize VOUT ripple. Multi-layer ceramic capacitors are recommended since they have extremely low ESR and are available in small footprints. The capacitor should be located as close to the device as is practical.

X5R dielectric material is recommended due to their ability to maintain capacitance over wide voltage and temperature range.

Table 23. Recommended Output Capacitor

Part Number	C	TC Code	Rated Voltage	Size	Manufacturer
GRM219R61A116U	10µF +/-10% >4.2µF@5V	X5R	10V	0805	
GRM188R60J106ME84 ¹	10µF +/-20% >4.2µF@4V	X5R	6.3V	0603 (1.6x0.8x0.85mm max. 0.95mm height)	Murata www.murata.com

1. Use only for VLED < 3.75V

If a different output capacitor is chosen, ensure similar ESR values and at least 4.2µF capacitance at 5V output voltage.

Datasheet, Confidential - Application Information

Inductor LDCDC

The fast switching frequency (4MHz) of the AS3648 allows for the use of small SMDs for the external inductor. The saturation current ISATURATION should be chosen to be above the maximum value of I_{LIMIT}^{13} . The inductor should have very low DC resistance (DCR) to reduce the I^2 R power losses - high DCR values will reduce efficiency.

Tahle 24	Recommended	Inductor
1abie 24.	Recommended	maucion

Part Number	L	DCR	ISATURATION	Size	Manufacturer
C3-P1.5R	1.5µH	$58 \text{m}\Omega$	2.4A@25°C, 2.0A ¹	3x3x1.5mm (height is max.)	Mitsumi www.mitsumi.com
LQM32PN1R0MG0	1.0µН >0.6µН @ 3.0A	60mΩ	3.0A ²	3.2x2.5x0.9 mm max 1.0mm height	Murata
LQM2HPN1R0MGC	1.0µН >0.6µН @ 2.0A	100mΩ	1.5A (2.0A) ³	2.5x2.0x0.9 mm max 1.00mm height	www.murata.com
CIG32W1R0MNE	1.0µН >0.7µН @ 2.7A >0.6µН @ 3.0A	60mΩ +/-25%	3.0A	3.2x2.5mm max 1.0mm height	Samsung Electro- Mechancs www.sem.samsung.co.kr
NRH2412T1R0N	1.0µН >0.6µН @ 2.5A	77mΩ	2.5A ⁴	2.4x2.4x1.2 mm (height is max.)	
CKP3225N1R0M	1.0µН >0.6µН @ 3.0A	<60mΩ	3.0A	3.2x2.5x0.9 mm max 1.0mm height	
MAMK2520T1R0M	1.0µН >0.6µН @ 2.75A	45mΩ	3.0A ⁵	2.5x2.0x1.2 mm height is max	Taiyo Yuden www.t-yuden.com
MDMK2020T1R0M	1.0µН >0.6µН @ 2.75А	56mΩ	2.55A ⁶	2.0x2.0x1.2 mm height is max	
MAKK2016T1R0M	1.0µН >0.6µН @ 2.75А	65mΩ	2.0A ⁷	2.0x1.6x1.0 mm height is max	

1. Do not exceed maximum ISATURATION - can be ensured by setting coil_peak (will limit LED current)

2. Flash pattern: 200ms/3A, 200ms pause, 200ms/3A, 2s then repeat again (no limit on the number of total cycles) Alternative pattern with 1000ms/1.6A, 200ms pause, 200ms/3A, 200ms pause, 200ms/3A, 2s then repeat again. (no limit on the number of total cycles)

- 3. Set current limit to 2A (coil_peak=00b) will limit maximum output current. Flash cycle limit: 150ms on, 500ms off; repeat maximum 50 times.
- 4. Set current limit to 2.5A (coil_peak=01b) will limit maximum output current.
- 5. Set current limit to 3.0A (coil_peak=10b) can limit maximum output current.
- 6. Set current limit to 2.5A (coil_peak=01b) will limit maximum output current.
- 7. Set current limit to 2A (coil peak=00b) will limit maximum output current.

If a different inductor is chosen, ensure similar DCR values and at least0.6µH inductance at ILIMIT.

^{13.}Can be adjusted in I²C mode with register coil_peak (see page 23)

Datasheet, Confidential - Application Information

PCB Layout Guideline

The high speed operation requires proper layout for optimum performance. Route the power traces first and try to minimize the area and wire length of the two high frequency/high current loops:

Loop1: CVIN/CVIN2 - LDCDC - pin SW1/2 - pin GND - CVIN/CVIN2

Loop2: CVIN/CVIN2 - LDCDC - pin SW1/2 - pin VOUT1/2 - CVOUT - pin GND - CVIN/CVIN2

At the pin GND a single via (or more vias, which are closely combined) connects to the common ground plane. This via(s) will isolate the DCDC high frequency currents from the common ground (as most high frequency current will flow between Loop1 and Loop2 and will not pass the ground plane) - see the 'island' in Figure 32.

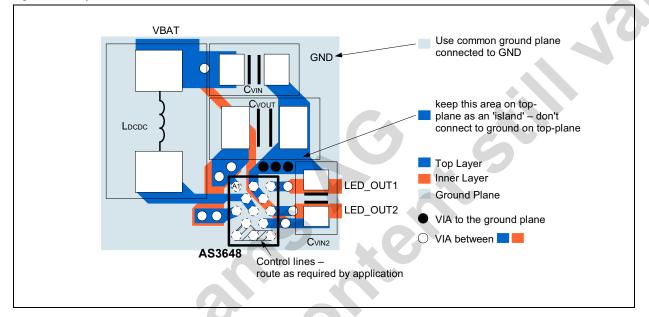


Figure 32. Layout recommendation

Note: If component placement rules allow, move all components close to the AS3648 to reduce the area and length of Loop1 and Loop2.

An additional 100nF (e.g. Murata GRM155R61C104, >50nF @ 3V, 0402 size) capacitor CVIN2 in parallel to CVIN is recommended to filter high frequency noise for the power supply of AS3648. This capacitor should be as close as possible to the GND/VIN pins of AS3648.

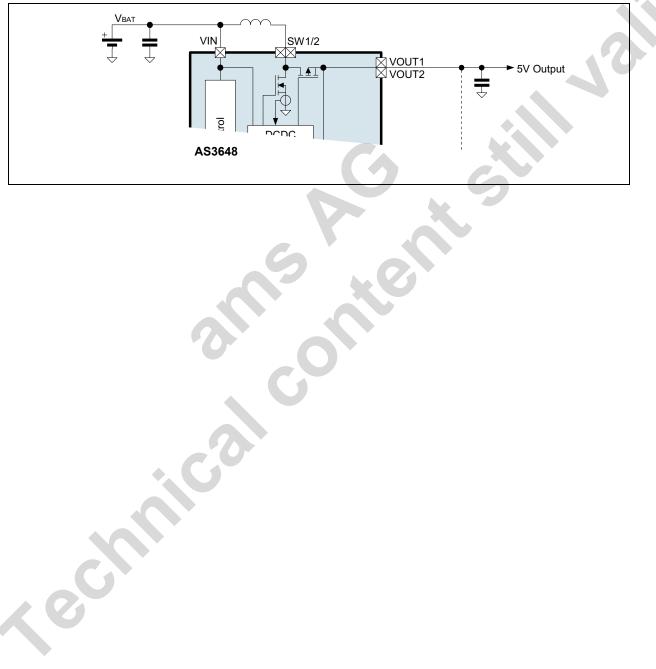
Datasheet, Confidential - Application Information

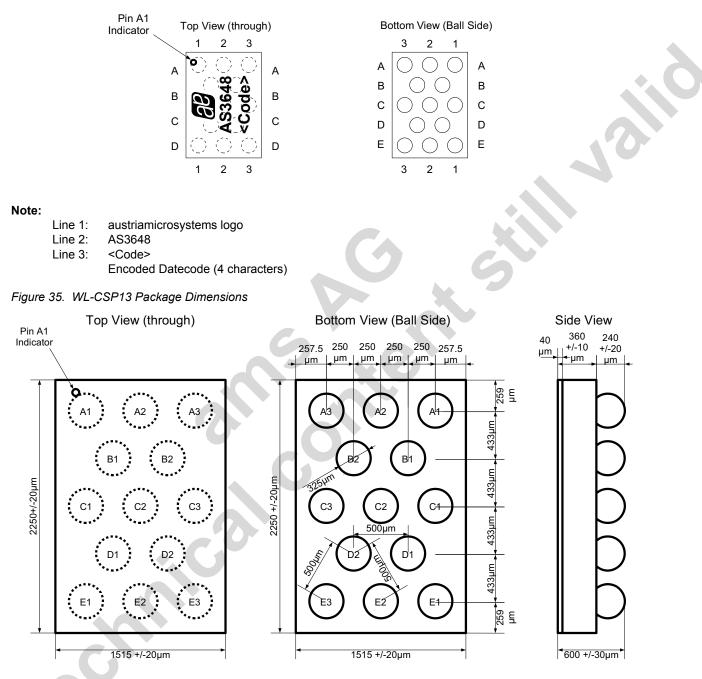
B austria*micro*systems

5V Operating Mode

The AS3648can be used to power a 5V system (e.g. audio amplifier). The operating mode is selected by setting register bit const_v_mode (page 25)=1. In this operating mode, the current sinks are disabled and cannot be switched on (no flash/torch operation is possible).

Note: There is always a diode between VIN and VOUT1/2 due to the internal circuit. Therefore VOUT1/2 cannot be completely switched off




Figure 33. 5V Operating Mode

Datasheet, Confidential - Package Drawings and Markings

austriamicrosystems

10 Package Drawings and Markings

Figure 34. WL-CSP13 Marking

The coplanarity of the balls is $40\mu m$.

Datasheet, Confidential - Ordering Information

11 Ordering Information

The devices are available as the standard products shown in Table 25.

Table 25. Ordering Information

Model	Description	Delivery Form	Package
AS3648-ZWLT	2000mA High Current LED Flash Driver	Tape & Reel	13-pin WL-CSP (2.25x1.5x0.6mm) 0.5mm pitch RoHS compliant / Pb-Free / Green

Note: All products are RoHS compliant and austriamicrosystems green.

Buy our products or get free samples online at ICdirect: http://www.austriamicrosystems.com/ICdirect

Technical support is found at http://www.austriamicrosystems.com/Technical-Support For further information and requests, please contact us mailto:sales@austriamicrosystems.com or find your local distributor at http://www.austriamicrosystems.com/distributor

Note: AS3648-ZWLT

AS3648-

- Z Temperature Range: -30°C 85°C
- WL Package: Wafer Level Chip Scale Package (WL-CSP) 2.25x1.5x0.6mm
- T Delivery Form: Tape & Reel

Datasheet, Confidential - Ordering Information

Copyrights

Copyright © 1997-2012, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks or registered trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Contact Information

Headquarters austriamicrosystems AG

Tobelbaderstrasse 30 Schloss Premstaetten A-8141 Austria

Tel: +43 (0) 3136 500 0 Fax: +43 (0) 3136 525 01

For Sales Offices, Distributors and Representatives, please visit:

http://www.austriamicrosystems.com/contact

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Lighting Drivers category:

Click to view products by ams manufacturer:

Other Similar products are found below :

LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ KTD2027EWE-TR AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DI05662ST6 KTD2026BEWE-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P MPQ4425AGQB-AEC1-Z