AS5200L

12-Bit On-Axis Magnetic Rotary Position Sensor with Redundant $\|^{2} \mathrm{C}$ and PWM Outputs

General Description

The AS5200L is an easy to program stacked dual die magnetic rotary position sensor with redundant high-resolution 12-bit $I^{2} \mathrm{C}$ or PWM outputs. This contactless system measures the absolute angle of a diametric magnetized on-axis magnet. This AS5200L is designed for contactless potentiometer applications and its robust design eliminates the influence of any homogenous external stray magnetic fields.
The industry-standard $I^{2} \mathrm{C}$ interface supports simple user programming of non-volatile parameters without requiring a dedicated programmer.

By default the output represents a range from 0 to 360 degrees. It is also possible to define a smaller range to the output by programming a zero angle (start position) and a maximum angle (stop position).
The AS5200L is also equipped with a smart low power mode feature to automatically reduce the power consumption.

AS5200L is designed for automotive applications and is AEC-Q100 grade 1 qualified. To enable safety-critical applications it has two separate sensor dies in one MLF-16 (5×5) package with wettable flanks.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits \& Features

The benefits and features of this device are listed below:

Figure 1:
Added Value of Using AS5200L

Benefits	Features
- Highest reliability and durability	- Contactless angle measurement
- Simple programming	- Simple user-programmable start and stop positions over the $\mathrm{I}^{2} \mathrm{C}$ interface
- Selectable output	- Digital output over ${ }^{2} \mathrm{C}$ or PWM -encoded output
- Low-power consumption	- Automatic entry into low-power mode
- Easy setup	- Automatic magnet detection
- Small form factor	- MLF- $16(5 \mathrm{~mm} \times 5 \mathrm{~mm})$ package with wettable flanks
- Robust environmental tolerance	- Wide temperature range: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Applications

The AS5200L is ideally suited for embedded automotive applications where the sensor output is read by a close MCU. The two separate sensor dies enable for safety-critical automotive applications like gear-shifters, contactless knobs, pedals, joysticks and other angular position measurement solutions.

Block Diagram

The functional blocks of this device are shown below:

Figure 2:
Functional Blocks of AS5200L

Pin Assignment

Figure 3:
MLF-16 Pin-Out

Figure 4:
Pin Description

Pin Number	Name ${ }^{(1)}$	Type	Description
1	VDD3V3_T	Supply	Positive voltage supply in 3.3 V mode (requires an external $1-\mu \mathrm{F}$ decoupling capacitor in 5 V mode)
2	VDD3V3_B		
3	OUT_T	Digital output	PWM output. Fixed to VDD default. Enable in CONF Register.
4	OUT_B		
5	GND_T	Supply	Ground
6	GND_B		
7	NC	Digital input, Pull-up	Do not connect
8	NC		

Pin Number	Name ${ }^{(1)}$	Type	Description
9	SDA_T	Digital input/output	$I^{2} \mathrm{C}$ data (consider external pull-up)
10	SDA_B		
11	SCL_T	Digital input	$1^{2} \mathrm{C}$ clock (consider external pull-up)
12	SCL_B		
13	DIR_T	Digital input	Direction polarity (GND = angle value increases with clockwise rotation, VDD = angle value increases with counterclockwise magnet rotation)
14	DIR_B		
15	VDD5V_T	Supply	Positive voltage supply in 5 V mode (requires 100nF decoupling capacitor)
16	VDD5V_B		
	EP	Not connected internally	Do not solder the exposed pad. Remove the exposed pad from PCB land pattern.

Note(s):

1. Pins with suffix _B belong to bottom die and _T to top die.

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5:
Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units	Comments
Electrical Parameters					
VDD5V	DC Supply Voltage at VDD5V pin	-0.3	6.1	V	
VDD3V3	DC Supply Voltage at VDD3V3 pin	-0.3	4.0	V	
VIO	DC Supply Voltage at all digital pins	-0.3	VDD+0.3	V	
$I_{\text {SCR }}$	Input current (latch-up immunity)	-100	100	mA	AEC-Q100-004
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$)					
P_{T}	Continuous power dissipation		100	mW	
Electrostatic Discharge					
ESD Нвм	Electrostatic discharge HBM		± 2	kV	AEC-Q100-002
Temperature Ranges and Storage Conditions					
Tstrg	Storage temperature range	-55	150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {BODY }}$	Package body temperature		260	${ }^{\circ} \mathrm{C}$	ICP/JEDEC J-STD-020 The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices." The lead finish for Pb -free leaded packages is "Matte Tin" (100% Sn)
$\mathrm{RH}_{\mathrm{NC}}$	Relative humidity (non-condensing)	5	85	\%	
MSL	Moisture sensitivity level		3		ICP/JEDEC J-STD-033

Electrical Characteristics
The AS5200L magnetic position sensor integrates two completely separated stacked sensor dies. The operation conditions and following descriptions refer to a single sensor die. All limits are guaranteed. The parameters with minimum and maximum values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

Operating Conditions

Figure 6:
System Electrical Characteristics and Temperature Range

Symbol	Parameter	Conditions	Min	Typ	Max	Units
VDD5V	Positive supply voltage in 5.0V mode	5.0V operation mode	4.5	5.0	5.5	V
		During OTP burn procedure ${ }^{(2)}$				
VDD3V3	Positive supply voltage in 3.3V mode	3.3 V operation mode	3.0	3.3	3.6	V
		During OTP burn procedure ${ }^{(2)}$	3.3	3.4	3.5	V
IDD	Supply current in NOM ${ }^{(1)}$	$P M=00$ Always on			6.4	mA
IDD_LPM1	Supply current in LPM1 ${ }^{(1)}$	$\begin{aligned} & \mathrm{PM}=01 \\ & \text { Polling time }=5 \mathrm{~ms} \end{aligned}$			3.3	mA
IDD_LPM2	Supply current in LPM2 ${ }^{(1)}$	$\begin{aligned} & \mathrm{PM}=10 \\ & \text { Polling time }=20 \mathrm{~ms} \end{aligned}$			1.8	mA
IDD_ LPM3	Supply current in LPM3 ${ }^{(1)}$	$\begin{aligned} & \mathrm{PM}=11 \\ & \text { Polling time }=100 \mathrm{~ms} \end{aligned}$			1.5	mA
IDD_BURN	Supply current per bit for burn procedure	Initial peak, $1 \mu \mathrm{~s}$			100	mA
		Steady burning, <30 $\mu \mathrm{s}$			40	mA
T_{A}	Operating temperature		-40		125	${ }^{\circ} \mathrm{C}$
Tp	Programming temperature		20		30	${ }^{\circ} \mathrm{C}$

Note(s):

1. For typical magnetic field $(60 \mathrm{mT})$ excluding current delivered to the external load and tolerance on polling times.
2. For OTP burn procedure the supply line source resistance should not exceed 10 hm .

Digital Inputs and Outputs

Figure 7:
Digital Input and Output Characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_IH	High-level input voltage		$0.7 \times$ VDD			V
V_IL	Low-level input voltage				$0.3 \times$ VDD	V
V_OH	High-level output voltage		VDD -0.5			V
V_OL	Low-level output voltage				0.4	V
I_LKG	Leakage current				± 1	$\mu \mathrm{~A}$

PWM Output

Figure 8:
PWM Output Characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Units
PWMf1	PWM frequency ${ }^{(1)}$	PWMF $=00$		115		Hz
PWMf2	PWM frequency ${ }^{(1)}$	PWMF $=01$		230		Hz
PWMf3	PWM frequency ${ }^{(1)}$	PWMF $=10$		460		Hz
PWMf4	PWM frequency ${ }^{(1)}$	PWMF $=11$		920		Hz
PWM_DC	PWM duty cycle		2.9		97.1	\%
PWM_SR	PWM slew rate	Cload $=1 \mathrm{nF}$	0.5		2	$\mathrm{V} / \mu \mathrm{s}$
I_O	Output current for PWM output		± 0.5			mA
C_L	Capacitive load for PWM output				1	$n \mathrm{~F}$

Note(s):

1. Frequency is given as typical values, tolerance is $\pm 5 \%$

Timing Characteristics

Figure 9:
Timing Conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Units
T_ALPM	Automatic LPM detection time ${ }^{(1)}$	ALPM $=1$		1		min
T_PU	Power-up time				10	ms
F_S	Sampling rate				150	$\mu \mathrm{~s}$
F_AGC	AGC update rate ${ }^{(1)}$			896		$\mu \mathrm{~s}$
T_SETTL1	Settling time	SF $=01$			2.2	ms
T_SETTL2	Settling time	SF $=10$			0.55	ms
T_SETTL3	Settling time	SF $=11$			0.286	ms
T_SETTL4	Settling time			ms		

Note(s):

1. Given as typical values, tolerance is $\pm 5 \%$

Magnetic Characteristics

Figure 10:
Magnetic Characteristics

Symbol	Parameter	Conditions	Min	Max	Units		
Bz	Orthogonal magnetic field strength, regular output noise ON_SLOW and ON_FAST	Required orthogonal component of the magnetic field strength measured at the die's surface along a circle of 1 mm	30	90	mT		
Bz_EXT	Magnetic field strength extended range						
Bz_ERROR	Minimum required orthogonal magnetic field strength, Magnet detection level						
(2)						$\quad 10$	mT
:---:	:---:	:---:					

Note(s):

1. The extended range is active if the magnetic field strength is between 10 mT and 30 mT . Reduced noise performance must be considered for the extended range. Refer to Figure 26.
2. In case the magnetic field is below Bz_ERROR, the MD bit in the STATUS register is set to 0 and if PWM mode is enabled, the output is driven low.

System Characteristics

Figure 11:
System Specifications

Symbol	Parameter	Conditions	Min	Typ	Max	Units
RES	Resolution		12	bit		
INL_BL	System INL	Deviation from best line fit; 360° maximum angle, no magnet displacement, no zero-programming performed (PWM, I ${ }^{2}$ C)			degree	
ON_SLOW	RMS output noise (1 sigma)	Orthogonal component for the magnetic field within the specified range (Bz), after 2.2 ms; SF =00; 5V operation; for details see Figure 26	0.015	degree		
ON_FAST	RMS output noise (1 sigma)	Orthogonal component for the magnetic field within the specified range (Bz), after 286 μ, SF=11; 5V operation; for details see Figure 26	0.043	degree		

Detailed Description

The AS5200L is a dual-die Hall-based rotary magnetic position sensor using planar sensors that convert the magnetic field component perpendicular to the surface of the chip into a voltage.
The signals coming from the Hall sensors are first amplified and filtered before being converted by the analog-to-digital converter (ADC). The output of the ADC is processed by the hardwired CORDIC block (Coordinate Rotation Digital Computer) to compute the angle and magnitude of the magnetic field vector. The intensity of the magnetic field is used by the automatic gain control (AGC) to adjust the amplification level to compensate for temperature and magnetic field variations.

The angle value provided by the CORDIC algorithm is used by the output stage. The user can choose between digital output over I ${ }^{2} \mathrm{C}$ and a PWM-encoded digital output.
The AS5200L is programmed through an industry-standard $I^{2} C$ interface to write an on-chip non-volatile memory. This interface can be used to program a zero angle (start position) and a maximum angle (stop position) which maps the full resolution of the output to a subset of the entire 0 to 360 degree range.

IC Power Management

The AS5200L be powered from a 5.0 V supply using the on-chip LDO regulator, or it can be powered directly from a 3.3 V supply. The internal LDO is not intended to power other external ICs and needs a $1 \mu \mathrm{~F}$ capacitor to ground, as shown in Figure 12 for one sensor die. The second die requires a separate capacitor as shown in Figure 31. In 3.3V operation, the VDD5V and VDD3V3 pins must be tied together. VDD is the voltage level present at the VDD5V pin.

Figure 12:
5.0V and 3.3V Power Supply Options

I^{2} C Interface

The AS5200L supports the 2-wire Fast-mode Plus I^{2} C-slave protocol in device mode, in compliance with the NXP Semiconductors (formerly Philips Semiconductors) specification UM10204. A device that sends data onto the bus is a transmitter and a device receiving data is a receiver. The device that controls the message is called a master. The devices that are controlled by the master are called slaves. A master device generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions that control the bus. The AS5200L always operates as a slave on the $I^{2} \mathrm{C}$ bus. Connections to the bus are made through the open-drain I/O lines SDA and the input SCL. Clock stretching is not included.

The host MCU (master) initiates data transfers. The 7-bit slave addresses of the AS5200L are 40h (1000000 in binary) for the bottom die and 41h (1000001 in binary) for the top die.

Supported Modes

- Random/Sequential read
- Byte/Page write
- Automatic increment (ANGLE register)
- Standard-mode
- Fast-mode
- Fast-mode Plus

The SDA signal is the bidirectional data line. The SCL signal is the clock generated by the $I^{2} C$ bus master to synchronize sampling data from SDA. The maximum SCL frequency is 1 MHz . Data is sampled on the rising edge of SCL.

I^{2} C Interface Operation

Figure 13:
$I^{2} \mathrm{C}$ Timing Diagram

$I^{2} C$ Electrical Specification

Figure 14:
I^{2} C Electrical Specifications

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
VIL	Logic low input voltage		-0.3		$\begin{aligned} & 0.3 x \\ & \text { VDD } \end{aligned}$	V
VIH	Logic high input voltage		$\begin{aligned} & 0.7 x \\ & \text { VDD } \end{aligned}$		$\begin{gathered} \text { VDD }+ \\ 0.3 \end{gathered}$	V
VHYS	Hysteresis of Schmitt trigger inputs	VDD $>2.5 \mathrm{~V}$	$\begin{aligned} & 0.05 \mathrm{x} \\ & \text { VDD } \end{aligned}$			V
VOL	Logic low output voltage (open-drain or open-collector) at 3 mA sink current	VDD $>2.5 \mathrm{~V}$			0.4	v
10 L	Logic low output current	$\mathrm{VOL}=0.4 \mathrm{~V}$	20			mA
t_{OF}	Output fall time from VIHmax to VILmax		10		$120{ }^{(1)}$	ns
$\mathrm{t}_{\text {SP }}$	Pulse width of spikes that must be suppressed by the input filter				$50^{(2)}$	ns
1	Input current at each I/O Pin	Input Voltage between 0.1 x VDD and 0.9 x VDD	-10		$+10^{(3)}$	$\mu \mathrm{A}$
CB	Total capacitive load for each bus line				550	pF
$\mathrm{C}_{1 / 0}$	I/O capacitance (SDA, SCL) ${ }^{(4)}$				10	pF

Note(s):

1. In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used this has to be considered for bus timing.
2. Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns .
3. I/O pins of Fast-mode and Fast-mode Plus devices must not load or drive the SDA and SCL lines if VDD is switched OFF.
4. Special-purpose devices such as multiplexers and switches may exceed this capacitance because they connect multiple paths together.

$I^{2} C$ Timing

Figure 15:
$I^{2} \mathrm{C}$ Timing

Symbol	Parameter	Min	Max	Unit
$\mathrm{f}_{\text {SCLK }}$	SCL clock frequency		1.0	MHz
$\mathrm{t}_{\text {BUF }}$	Bus free time (time between the STOP and START conditions)	0.5		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{HD} ; \mathrm{STA}}$	Hold time; (Repeated) START condition ${ }^{(1)}$	0.26		$\mu \mathrm{~s}$
$\mathrm{t}_{\text {LOW }}$	Low phase of SCL clock	0.5		$\mu \mathrm{~s}$
$\mathrm{t}_{\text {HIGH }}$	High phase of SCL clock	0.26		$\mu \mathrm{~s}$
$\mathrm{t}_{\text {SU;STA }}$	Setup time for a Repeated START condition	0.26		$\mu \mathrm{~s}$
$\mathrm{t}_{\text {HD;DAT }}$	Data hold time ${ }^{(2)}$		0.45	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {SU;DAT }}$	Data setup time ${ }^{(3)}$	50	ns	
t_{R}	Rise time of SDA and SCL signals		120	ns
t_{F}	Fall time of SDA and SCL signals	10	$120{ }^{(4)}$	ns
$\mathrm{t}_{\text {SU;STO }}$	Setup time for STOP condition	0.26		$\mu \mathrm{~s}$

Note(s):

1. After this time, the first clock is generated.
2. A device must internally provide a minimum hold time of 120 ns (Fast-mode Plus) for the SDA signal (referred to the $\mathrm{V}_{\mathrm{IH}} \mathrm{Imin}$ of SCL) to bridge the undefined region of the falling edge of SCL.
3. A Fast-mode device can be used in a standard-mode system, but the requirement $t_{\text {SU;DAT }}=250 \mathrm{~ns}$ must be met. This is automatically if the device does not stretch the low phase of SCL. If such a device does stretch the low phase of SCL, it must drive the next data bit on SDA ($\mathrm{t}_{\text {Rmax }}+\mathrm{t}_{\mathrm{SU} \text {;DAT }}=1000+250=1250 \mathrm{~ns}$) before SCL is released.
4. In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, this has to be considered for bus timing.

$I^{2} C$ Modes

Invalid Addresses

There are two addresses used to access an AS5200L register. The first is the slave address used to select the AS5200L. All ${ }^{2}$ C bus transactions include a slave address. The slave address of the AS5200L are 40h (1000000 in binary) for the bottom die and 41h (1000001 in binary) for the top die. The second address is a word address sent in the first byte transferred in a write transaction. The word address selects a register on the AS5200L. The word address is loaded into the address pointer on the AS5200L. During subsequent read transactions and subsequent bytes in the write transaction, the address pointer provides the address of the selected register. The address pointer is incremented after each byte is transferred, except for certain read transactions to special registers.
If the user sets the address pointer to an invalid word address, the address byte is not acknowledged (the A bit is high). Nevertheless, a read or write cycle is possible. The address pointer is increased after each byte.

Reading

When reading from an invalid address, the AS5200L returns all zeros in the data bytes. The address pointer is incremented after each byte. Sequential reads over the whole address range are possible including address overflow.

Automatic Increment of the Address Pointer for ANGLE, RAW ANGLE and MAGNITUDE Registers

These are special registers which suppress the automatic increment of the address pointer on reads, so a re-read of these registers requires no $I^{2} C$ write command to reload the address pointer. This special treatment of the pointer is effective only if the address pointer is set to the high byte.

Writing

A write to an invalid address is not acknowledged by the AS5200L, although the address pointer is incremented. When the address pointer points to a valid address again, a successful write accessed is acknowledged. Page write over the whole address range is possible including address overflow.

Supported Bus Protocol

Data transfer may be initiated only when the bus is not busy.
During data transfer, the data line must remain stable whenever SCL is high. Changes in the data line while SCL is high are interpreted as START or STOP conditions.

Accordingly, the following bus conditions have been defined:

Bus Not Busy

Both SDA and SCL remain high.

Start Data Transfer

A change in the state of SDA from high to low while SCL is high defines the START condition.

Stop Data Transfer

A change in the state of SDA from low to high while SCL is high defines the STOP condition.

Data Valid

The state of the data line represents valid data when, after a START condition, SDA is stable for the duration of the high phase of SCL. The data on SDA must be changed during the low phase of SCL. There is one clock period per bit of data.
Each $I^{2} C$ bus transaction is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred between START and STOP conditions is not limited, and is determined by the $I^{2} \mathrm{C}$ bus master. The information is transferred byte-wise and each receiver acknowledges with a ninth bit.

Acknowledge

Each $I^{2} C$ slave device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The $I^{2} \mathrm{C}$ bus master device must generate an extra clock period for this acknowledge bit.
A slave that acknowledges must pull down SDA during the acknowledge clock period in such a way that SDA is stable low during the high phase of the acknowledge clock period. Of course, setup and hold times must be taken into account. A master must signal an end of a read transaction by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave SDA high to enable the master to generate the STOP condition.

Figure 16:
Data Read

Depending on the state of the R/W bit, two types of data transfer are possible:

Data Transfer From a Master Transmitter to a Slave Receiver

The first byte transmitted by the master is the slave address, followed by R/W = 0 . Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte. If the slave does not understand the command or data it sends a not acknowledge (NACK). Data is transferred with the most significant bit (MSB) first.

Data Transfer From a Slave Transmitter to a Master Receiver

The master transmits the first byte (the slave address). The slave then returns an acknowledge bit, followed by the slave transmitting a number of data bytes. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a NACK is returned. The master generates all of the SCL clock periods and the START and STOP conditions. A transfer is ended with a STOP condition or with a repeated START condition. Because a repeated START condition is also the beginning of the next serial transfer, the bus is not released. Data is transferred with the most significant bit (MSB) first.

AS5200L Slave Modes

Slave Receiver Mode (Write Mode)

Serial data and clock are received through SDA and SCL. Each byte is followed by an acknowledge bit or by a not acknowledge depending on whether the address-pointer selects a valid address. START and STOP conditions are recognized as the beginning and end of a bus transaction. The slave address byte is the first byte received after the START condition.

The 7-bit slave address is followed by the direction bit (R/W), which, for a write, is 0 (low). After receiving and decoding the slave address byte the slave device drives an acknowledge on SDA. After the AS5200L acknowledges the slave address and write bit, the master transmits a register address (word address) to the AS5200L. This is loaded into the address pointer on the AS5200L. If the address is a valid readable address, the AS5200L answers by sending an acknowledge (A bit low). If the address pointer selects an invalid address, a not acknowledge is sent (A bit high). The master may then transmit zero or more bytes of data. If the address pointer selects an invalid address, the received data are not stored. The address pointer will increment after each byte transferred whether or not the address is valid. If the address-pointer reaches a valid position again, the AS5200L answers with an acknowledge and stores the data. The master generates a STOP condition to terminate the write transaction.

Figure 17:
Data Write (Slave Receiver Mode)

Slave Transmitter Mode (Read Mode)

The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit indicates that the AS5200L will drive data on SDA. START and STOP conditions are recognized as the beginning and end of a bus transaction. The slave address byte is the first byte received after the master generates a START condition. The slave address byte contains the 7-bit AS5200L address. The 7-bit slave address is followed by the direction bit (R/W), which, for a read, is 1 (high). After receiving and decoding the slave address byte, the slave device drives an acknowledge on the SDA line. The AS5200L then begins to transmit data starting with the register address pointed to by the address pointer. If the address pointer is not written before the initiation of a read transaction, the first address that is read is the last one stored in the address pointer. The AS5200L must receive a not acknowledge (NACK) to end a read transaction.

Figure 18:
Data Read (Slave Transmitter Mode)

Figure 19:
Data Read With Address Pointer Reload (Slave Transmitter Mode)

S - Start
Sr - Repeated Start
A - Acknowedge (ACK)
Data transferred: X+1 Bytes + Acknowedge
NA - Not Acknowledge (NACK)
Note: Last data byte is followed by NACK
P - Stop

SDA and SCL Input Filters

Input filters for SDA and SCL inputs are included to suppress noise spikes of less than 50 ns .

Register Description

The following registers are accessible over the serial $I^{2} \mathrm{C}$ interface. The 7-bit device address of the slaves are 40 h (1000000 in binary) for the bottom die and 41h (1000001 in binary) for the top die. To permanently program a configuration, a non-volatile memory (OTP) is provided.

Figure 20:
Register Map

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Configuration Registers ${ }^{(1),(2)}$										
0x01	ZPOS	R/W/P					ZPOS(11:8)			
0x02			ZPOS(7:0)							
0x03	MPOS	R/W/P					$\operatorname{MPOS}(11: 8)$			
0x04			MPOS(7:0)							
0x07	CONF	R/W/P			ALPM	FTH(2:0)			SF(1:0)	
0x08			PWMF(1:0)		OUT	(1:0)	HYST(1:0)		PM(1:0)	
Output Registers										
0x0C	RAW ANGLE	R	RAWFF	SFBUSY			RAW ANGLE(11:8)			
0x0D		R	RAW ANGLE(7:0)							
0xOE	ANGLE	R					ANGLE(11:8)			
0x0F		R	ANGLE(7:0)							
Status Registers										
0x0B	STATUS	R		ADCOF	MD	ML	MH	AGCF	OCF1	OCFO
0x1A	AGC	R	AGC(7:0)							
0x1B	MAGNITUDE	R					MAGNITUDE (11:8)			
0x1C		R	MAGNITUDE(7:0)							
Burn Commands										
0xFF	BURN	w	Burn_Angle $=0 \times 80 ;$ Burn_Setting $=0 \times 40$							

Note(s):

1. To change a configuration, read out the register, modify only the desired bits and write the new configuration. Blank fields may contain factory settings.
2. During power-up, configuration registers are reset to the permanently programmed value. Not programmed bits are zero.

ZPOS/MPOS Registers

These registers are used to configure the start position (ZPOS) and a stop position (MPOS) for a narrower angular range. The angular range must be greater than 18 degrees. In case of narrowed angular range, the resolution is not scaled to narrowed range (e.g. $0^{\circ}-360^{\circ}$ (full-turn) $\rightarrow 4096 \mathrm{dec}$; $0^{\circ}-180^{\circ} \rightarrow 2048 \mathrm{dec}$).

To configure the angular range, see Angle Programming.

CONF Register

The CONF register supports customizing the AS5200L.
Figure 21 shows the mapping of the CONF register.

Figure 21:
CONF Register

Name	Bit Position	Description
PM(1:0)	1:0	Power Mode $00=\text { NOM, } 01=\text { LPM1, } 10=\text { LPM2, } 11=\text { LPM3 }$
HYST(1:0)	3:2	Hysteresis $00=\text { OFF, } 01=1 \text { LSB, } 10=2 \mathrm{LSBs}, 11=3 \mathrm{LSBs}$
OUTS(1:0)	5:4	Output Stage $00=$ OUT set to VDD, $01=$ OUT set to VDD, $10=$ digital PWM
$\begin{gathered} \text { PWMF } \\ (1: 0) \end{gathered}$	7:6	PWM Frequency $00=115 \mathrm{~Hz} ; 01=230 \mathrm{~Hz} ; 10=460 \mathrm{~Hz} ; 11=920 \mathrm{~Hz}$
SF(1:0)	9:8	Slow Filter $00=16 x^{*} ; 01=8 x ; 10=4 x ; 11=2 x$
FTH(2:0)	12:10	Fast Filter Threshold $000=$ slow filter only, $001=6$ LSBs, $010=7$ LSBs, $011=9$ LSBs, $100=18$ LSBs, $101=21$ LSBs, $110=24$ LSBs, $111=10$ LSBs
ALPM	13	Automatic LPM timer $0=O F F, 1=O N$

Note(s):

1. Forced in Low Power Mode (LPM)

ANGLE/RAW ANGLE Register

The RAW ANGLE register contains the unscaled and unmodified angle. The scaled output value is available in the ANGLE register.

Note(s): The ANGLE register has a 10-LSB hysteresis at the limit of the 360 degree range to avoid discontinuity points or toggling of the output within one rotation.

Figure 22:
RAW ANGLE Register

Name	Bit Position	Description
RAW ANGLE	$11: 0$	Raw angle value
SFBUSY	14	Slow Filter is busy
RAWFF	15	RAW ANGLE comes from Fast Filter

STATUS Register

The STATUS register provides bits that indicate the current state of the AS5200L.

Figure 23:
STATUS Register

Bit	Name	State When Bit Is High
0	OCF0	Offset compensation loop 0 finished
1	OCF1	Offset compensation loop 1 finished
2	AGCF	AGC loop finished
3	MH	AGC minimum gain overflow, magnet too strong
4	ML	AGC maximum gain overflow, magnet too weak
5	MD	Magnet was detected
6	ADCOF ${ }^{(1)}$	ADC or CORDIC overflow

Note(s):

1. ADCOF is a sticky bit and remains active once an overflow has occurred. The bit is reset by writing 00h into the register.

AGC Register

The AS5200L uses Automatic Gain Control in a closed loop to compensate for variations of the magnetic field strength due to changes of temperature, airgap between IC and magnet, and magnet degradation. The AGC register indicates the gain. For the most robust performance, the gain value should be in the center of its range. The airgap of the physical system can be adjusted to achieve this value. In 5 V operation, the AGC range is $0-255$ counts. The AGC range is reduced to $0-128$ counts in 3.3 V mode.

MAGNITUDE Register

The MAGNITUDE register indicates the magnitude value of the internal CORDIC.

Non-Volatile Memory (OTP)

The non-volatile memory is used to permanently program the configuration. To program the non-volatile memory, the $I^{2} C$ interface is used. The programming can be either performed in the 5 V supply mode or in the 3.3 V operation mode but using a minimum supply voltage of 3.3 V and a $10 \mu \mathrm{~F}$ capacitor at the VDD3V3 pin to ground. This $10 \mu \mathrm{~F}$ capacitor is needed only during the programming of the device. Two different commands are used to permanently program the device:

Burn_Angle Command (ZPOS, MPOS)

The host microcontroller can perform a permanent programming of ZPOS and MPOS with a BURN_ANGLE command. To perform a BURN_ANGLE command, write the value 0×80 into register $0 \times F F$. The BURN_ANGLE command can be executed only two times.

This command will only be executed if the presence of the magnet is detected ($M D=1$).

Burn_Setting Command (CONFIG)

The host microcontroller can perform a permanent writing of CONFIG with a BURN_SETTING command. Once a bit in those registers is permanently written to 1 , it stays on 1 and cannot be changed to 0 anymore. A bit which is 0 can be programmed to 1.
To perform a BURN_SETTING command, write the value 0×40 into register 0xFF.

Angle Programming

For applications which do not use the full 0 to 360 degree angular range. The angular range must be greater than 18 degrees. In case of narrowed angular range, the resolution is not scaled to narrowed range (e.g. $0^{\circ}-360^{\circ}$ (full-turn) $\rightarrow 4096$ dec; $0^{\circ}-180^{\circ} \rightarrow 2048 \mathrm{dec}$).

The range is specified by programming a start position (ZPOS) and either a stop position (MPOS).

The recommended method for programming the angular range is:

Figure 24:
Angle Programming Through the $I^{2} \mathrm{C}$ Interface

Use the correct hardware configuration shown in Figure 31.	
Step 1	Power up the AS5200L.
Step 2	Turn the magnet to the start position.
Step 3	Read the RAW ANGLE register. Write the RAW ANGLE value into the ZPOS register. Wait at least 1 ms.
Step 5	Rotate the magnet in the direction defined by the level on the DIR pin (GND for clockwise, VDD for counterclockwise) to the stop position. The amount of rotation must be greater than 18 degrees.
Read the RAW ANGLE register.	
Write the RAW ANGLE value into the MPOS register.	
Wait at least 1 ms.	

Note(s):

1. After each register command, the new setting is effective at the output at least 1 ms later.
2. It is highly recommended to perform a functional test after this procedure.

Output Stage

Without regard to the PWM output, an external unit can read the angle from the ANGLE register through $I^{2} C$ interface at any time. The output stage is fixed to VDD default. To enable the PWM output configure the OUTS bits in the CONF register.

PWM Output Mode

The OUT pin provides a digital PWM signal. The duty cycle of each pulse is proportional to the absolute angle of the rotating magnet.

The PWM signal consists of a frame of 4351 PWM clock periods as shown in Figure 25. This PWM frame is composed of the following sections:

- 128 PWM clock periods high
- 4095 PWM clock periods data
- 128 PWM clock periods low

The angle is represented in the data part of the frame, and one PWM clock period represents one $4096^{\text {th }}$ of the full angular range. The PWM frequency is programmed with the PWMF bits in the CONF register.

Figure 25:
Output Characteristics in Pulse Width Modulation Mode

An angle of zero degrees is represented by 128 clock periods high and 4223 clock periods low, while a maximum angle consists of 4223 clock periods high and 128 clock periods low.

Step Response and Filter Settings

The AS5200L has a digital post-processing programmable filter which can be set in fast or slow modes. The fast filter mode can be enabled by setting a fast filter threshold in the FTH bits of the CONF register.

If the fast filter is OFF, the step output response is controlled by the slow linear filter. The step response of the slow filter is programmable with the SF bits in the CONF register. Figure 27 shows the tradeoff between delay and noise for the different SF bit settings.

Figure 26:
Step Response Delay vs. Noise Band

SF	Step Response Delay (ms)	Max. RMS Output Noise [1 Sigma] (Degree)	
		For Normal Magnetic Range Bz	For Extended Magnetic Range Bz_ET
00		$\mathbf{5 V}$	$\mathbf{5 V}$
01	2.2	0.015	0.060
10	1.1	0.021	0.085
11	0.55	0.030	0.120

Figure 27:
Step Response (fast filter OFF)

For a fast step response and low noise after settling, the fast filter can be enabled. The fast filter works only if the input variation is greater than the fast filter threshold, otherwise the output response is determined only by the slow filter. The fast filter threshold is programmed with the FTH bits in the CONF Register. As shown in Figure 29, the step response stays within an error band after two full sampling periods to settle to the final value determined by the slow filter.

Figure 28:
Fast Filter Threshold

FTH	Fast Filter Threshold (LSB)	
	Slow-to-fast filter	Fast-to-slow filter
000	Slow filter only	
001	6	1
010	7	1
011	9	1
100	21	2
101	24	2
110	10	2
111		4

Figure 29:
Step Response (fast filter ON)

Hysteresis

To avoid any toggling of the output when the magnet is not moving, a 1 to 3 LSB hysteresis of the 12-bit resolution can be enabled with the HYST bits in the CONF register.

Magnet Detection

As a safety and diagnostic feature, the AS5200L indicates the absence of the magnet. If the measured magnet field strength goes below the minimum specified level (Bz_ERROR), the MD bit in the STATUS register is set to 0 and if PWM mode is enabled, the output is driven low.

Low Power Modes

A digital state machine automatically manages the low power modes to reduce the average current consumption. Three low power modes are available and can be enabled with the PM bits in the CONF register. Current consumption and polling times are shown in Figure 6.

Automatic Low Power Mode Timer

The automatic LPM timer allows saving power by switching into LMP3 if the angle stays within the automatic LPM threshold of 4 LSB for at least one minute, as shown in Figure 30. The automatic LPM function can be enabled with the ALPM bit in the CONF register.

Figure 30:
Automatic LPM Timer Function

Application Information

Schematic

All required external components are shown below for the reference application diagram. To improve EMC and for remote applications, consider additional protection circuitry.

Figure 31:
Application Diagram for Angle Readout and Programming With $I^{2} \mathrm{C}$

Figure 32:
Recommended External Components

Component	Symbol	Value	Units	Notes
VDD5V buffer capacitor	C 1	100	nF	20%
LDO regulator capacitor	C 2	1	$\mu \mathrm{~F}$	$20 \% ;<100 \mathrm{~m} \Omega ;$ Low ESR ceramic capacitor
Optional pull-up for $\mathrm{I}^{2} \mathrm{C}$ bus	RPU	4.7	$\mathrm{~K} \Omega$	Refer to UM10204 for RPU sizing

Note(s):

1. To be fulfilled over temperature and lifetime

Magnetic Requirements

The AS5200L requires the magnetic field component Bz perpendicular to the sensitive area on the chip.

Along the circumference of the Hall element circle the magnetic field Bz should be sine-shaped. The magnetic field gradient of Bz along the radius of the circle should be in the linear range of the magnet to eliminate displacement error by the differential measurement principle.

Figure 33:
Magnetic Field Bz and Typical Airgap

The typical airgap is between 0.5 mm and 3 mm , and it depends on the selected magnet. A larger and stronger magnet allows a larger airgap. Using the AGC value as a guide, the optimal airgap can be found by adjusting the distance between the magnet and the AS5200L so that the AGC value is in the center of its range. The maximum allowed displacement of the rotational axis of the reference magnet from the center of the package is 0.25 mm when using a magnet with a diameter of 6 mm .

Mechanical Data

The internal Hall elements are placed on a radius of 1 mm . The center of the internal hall array is NOT in the center of the package as shown below in Figure 34. The center of the magnet must be placed over the center of the Hall sensor array.

Figure 34:
Hall Element Positions

Note(s):

1. All dimensions in mm .
2. Die thickness $150 \mu \mathrm{~m}$ nom.
3. Adhesive thickness $12 \mu \mathrm{~m}$ nom.
4. Spacer thickness: $178 \mu \mathrm{~m}$ typ.

Package Drawings \& Markings

Figure 35:
MLF-16 Package Outline Drawing

EVEN/ODD TERMINAL SIDE
DETAIL B

Symbol	Min	Nom	Max
A	0.80	0.90	1.00
A1	0	0.01	0.05
A2	-	0.65	1.00
A3	0.20 REF		
L	0.30	0.40	0.50
L1	0.05	0.15	0.25
L2	0.05	0.10	0.15
O1	0°	-	140°
b	0.25	0.30	0.35
b1	0.15	0.20	0.25
D	5.00 BSC		
E	5.00 BSC		

Symbol	Min	Nom	Max
e	0.80 BSC		
D1	4.75 BSC		
E1	4.75 BSC		
D2	3.10	3.20	3.30
E2	3.40	3.50	3.60
aaa	-	0.15	-
bbb	-	0.10	-
ccc	-	0.10	-
ddd	-	0.05	-
eee	-	0.08	-
fff	-	0.10	-
N		16	

Note(s):

1. Dimensioning \& tolerancing conform to ASME Y14.5M-1994.
2. All dimensions are in millimeters. Angles are in degrees.
3. N is the total number of terminals.
4. DATUMS A \& B to be determined at DATUM H.
5. Do not solder the exposed pad. Remove the exposed pad from PCB land pattern.

Figure 36:
Package Marking

Figure 37:
Packaging Code

$\mathbf{X X X X X}$	@
Tracecode	Sublot Identifier

Ordering \& Contact Information

Figure 38:
Ordering Information

Ordering Code	Package	Marking	Delivery Form	Delivery Quantity
AS5200L-AMFT	MLF-16	AS5200L	$13^{\prime \prime}$ Tape\&Reel in dry pack	$5000 \mathrm{pcs} / \mathrm{reel}$
AS5200L-AMFM	MLF-16	AS5200L	7" Tape\&Reel in dry pack	$1000 \mathrm{pcs} / \mathrm{reel}$

Buy our products or get free samples online at:
www.ams.com/ICdirect
Technical Support is available at:
www.ams.com/Technical-Support
Provide feedback about this document at:
www.ams.com/Document-Feedback
For further information and requests, e-mail us at: ams_sales@ams.com
For sales offices, distributors and representatives, please visit: www.ams.com/contact

Headquarters

ams AG
Tobelbader Strasse 30
8141 Premstaetten
Austria, Europe
Tel: +43 (0) 31365000
Website: www.ams.com

RoHS Compliant \& ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.
ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Copyrights \& Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.
ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Revision Information

Changes from 0-05 (2018-Jan-15) to current revision 1-02 (2018-Jan-19)

0-05 (2018-Jan-15) to 1-00 (2018-Jan-16)

Initial production version 1-00 for release	
1-00 (2018-Jan-16) to 1-01 (2018-Jan-18)	
Updated Figure 19	18
Updated text under Burn_Angle Command and Burn_Setting Command	22

1-01 (2018-Jan-18) to 1-02 (2018-Jan-19)

Updated text under Angle Programming	23

Note(s):

1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
2. Correction of typographical errors is not explicitly mentioned.

Content Guide

1 General Description
1 Key Benefits \& Features
2 Applications
2 Block Diagram

3 Pin Assignment

5 Absolute Maximum Ratings
6 Electrical Characteristics
6 Operating Conditions
7 Digital Inputs and Outputs
7 PWM Output

8 Timing Characteristics
8 Magnetic Characteristics
9 System Characteristics

10 Detailed Description
10 IC Power Management
$11 I^{2} C$ Interface
11 Supported Modes
$11 I^{2} C$ Interface Operation
$12 I^{2} C$ Electrical Specification
$13 I^{2} C$ Timing
$14 I^{2}$ C Modes
16 AS5200L Slave Modes
19 Register Description
20 ZPOS/MPOS Registers
20 CONF Register
21 ANGLE/RAW ANGLE Register
21 STATUS Register
22 AGC Register
22 MAGNITUDE Register
22 Non-Volatile Memory (OTP)
23 Angle Programming
24 Output Stage
24 PWM Output Mode
25 Step Response and Filter Settings
27 Hysteresis
27 Magnet Detection
27 Low Power Modes
28 Automatic Low Power Mode Timer

29 Application Information
29 Schematic
30 Magnetic Requirements
31 Mechanical Data

32 Package Drawings \& Markings
34 Ordering \& Contact Information
35 RoHS Compliant \& ams Green Statement
36 Copyrights \& Disclaimer
37 Document Status
38 Revision Information

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Board Mount Motion \& Position Sensors category:
Click to view products by ams manufacturer:

Other Similar products are found below :
6SS4 XL-10043 F02008062 9970-090-9J-SA MT9105ET AS5270B-HMFM IPS2200BI1W EVW-ADF001B14 AMN11111 AMN31111 AMN34112 AMN23111 SV03A103AEA01R00 EKMC1693113 EKMB1303111K EKMB1293112 RBS130100 RBS130200

EKMB1305113K EKMB1105113 EKMB1205113 OKY3062-2 OKY3062-4 OKY3062-5 OKY3063 OKY3221 OKY3226 OKY3230
OKY3231 OKY3231-1 OKY3231-2 OKY3231-3 OKY3231-4 OKY3231-5 OKY3231-6 OKY3231-7 OKY3231-8 OKY3235 OKY3238 OKY3239 OKY3248-2 OKY3248-3 OKY3252 OKY3254 OKY3254-1 OKY3255 3-AXIS DIGITAL ACCELEROMETER($\pm 1.5 \mathrm{G})$ 3-AXIS DIGITAL ACCELEROMETER($\pm 16 \mathrm{G})$ 6-AXIS ACCELEROMETER\&GYROSCOPE 9536

