

User Guide

UG000493

User Manual

Evalution Kit

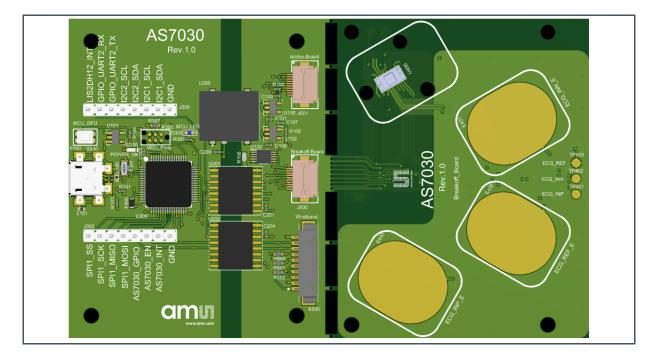
v1-00 • 2020-Jun-25

Content Guide

1	Introduction3
1.1 1.2	Kit Content
2	Getting Started5
3	Hardware Description7
3.1 3.2	Hardware Architecture7 Power Supply8
4	AS7030B Overview9
4.1 4.2 4.3 4.4	Optical Front End (OFE)

4.5 4.6	ADC and FIFO Digital Interface	
4.7	Sampling Sequencer	
5	Software Description	23
5.1 5.2 5.3	Software Architecture Graphical User Interface FW, Driver, API	. 27
6	Revision Information	62
7	Legal Information	63

1 Introduction


The AS7030B Evaluation Kit allows evaluation of all functions on the AS7030B Biosensor and test them in various applications.

The initial Evaluation Kit works with USB connection to the PC and comes with a GUI, which enables the user to change AS7030B register settings, see measurement results and many more.

The SDK (Software Development Kit) currently contains algorithms for HRM, HRV and BP and is supplied with the Evaluation Kit. The compiled firmware can be flashed onto the STM32 ARM Cortex-M4 low power MCU.

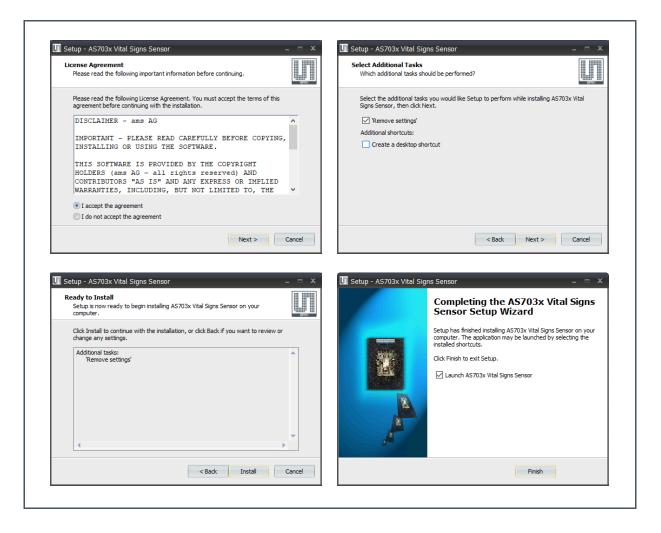
1.1 Kit Content

Figure 1: Evaluation Hardware Board

For full flexibility, the vital signs sensor (AS7030B), an accelerometer (LIS2DH12) and three electrodes are located on the break out board, which can be used in any application and re-connected to the main board via FPC cable once broken off. There is also the option to attach external electrodes. If you are using an optional Wristband evaluation kit, AS7038 wristband needs to be connected to the Wristband PicoBlade connector K500 on Mainboard and sensor part of the kit need to be separated from Mainboard.

Any signals important for development are accessible for probing at pin headers.

1.2 Ordering Information


Ordering Code	Description
AS7030B-EVALKIT	Evaluation Kit for AS7030B
AS7030B-WRISTBAND	Wristband to connect to AS7030B Evalkit

2 Getting Started

The client software latest version is available for download at https://ams.com/as7030B#tab/tools or the software is possible to find on the USB stick as a part of the evaluation kit. To install, start the installer executable and follow the instructions as shown in Figure 2 (left to right top to bottom).

Figure 2:

AS7030B Vital Signs Sensor Installation

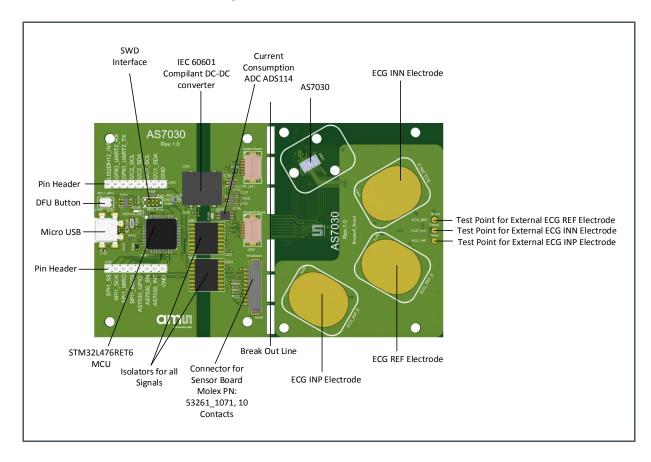
For Windows OS versions prior to Windows[®] 10, the STSW-STM32102 virtual COM port driver needs to be installed as well. The driver can be found in the <drivers\STM32_vcp_driver> folder contained within the client software installation path. To install it, go to your OS version directory (Win7 or Win8, OS versions prior to Windows[®] 7 are compatible with the Windows[®] 7), then:

- 1. Double click on dpinst_x86.exe if you are running a 32-bits OS version
- 2. Double click on dpinst_amd64.exe if you are running a 64-bits OS version
- 3. Follow the instructions

For updating the FW on the evaluation board over USB, the DfuSe driver from STMicroelectronics has to be installed. This is available in the <drivers\DFU> folder contained within the client software installation path. To install it, go to your OS version directory (Win7, Win8 or Win8.1), then:

- 1. Go to [x86] directory or [x64] directory based on your OS version:
- 2. Double click on dpinst_x86.exe if you are running a 32-bits OS version
- 3. Double click on dpinst_amd64.exe if you are running a 64-bits OS version
- 4. Follow the instructions

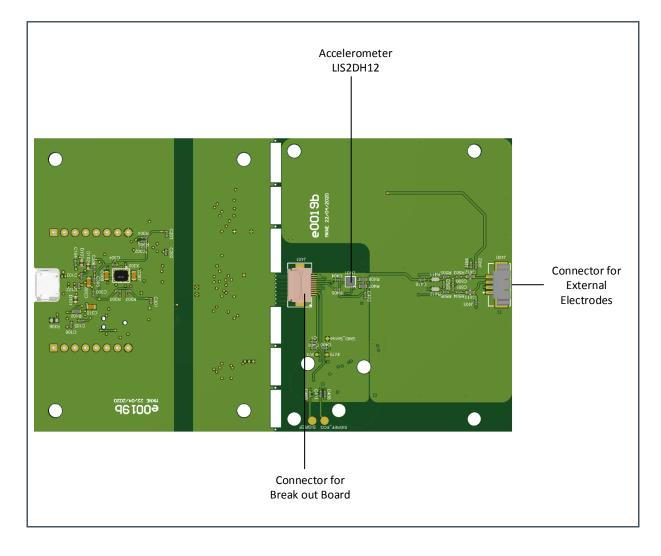
Information


In some cases, it can be necessary that the driver needs to be installed even on a Windows 10 system. In this case chose the driver installer from the Win 8.1 folder and install.

3 Hardware Description

3.1 Hardware Architecture

Figure 3:


Evaluation Hardware Board – Top View

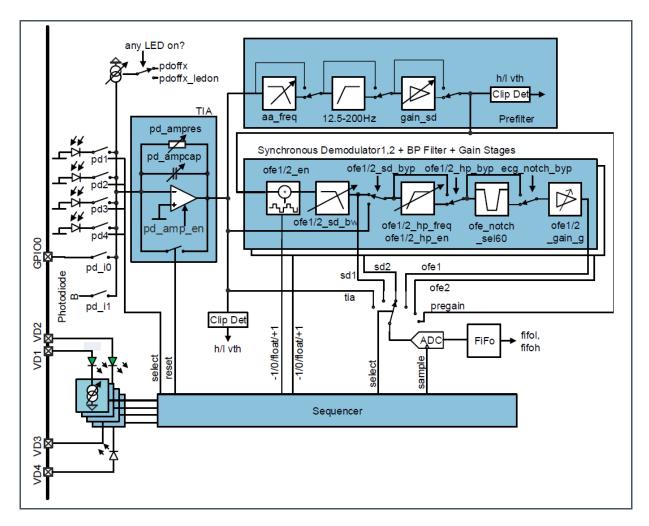
amu

Figure 4:

Evaluation Hardware Board – Bottom View

3.2 Power Supply

The AS7030B Eval Kit is supplied by the USB connection. In order to avoid a direct connection from the electrodes to the power grid, an IEC 60601-1 compliant RECOM DCDC converter (R0.25S-0505/H or R0.25S-0505/HP) is assembled on the board as well as isolator ICs for all signals passing to the sensor board. This means that there is no galvanic connection between the sensor board and the power grid.

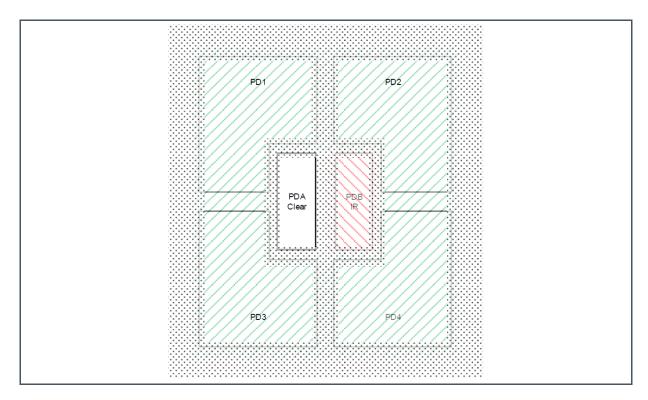

4 AS7030B Overview

The AS7030B is a photocurrent and voltage sensor capable of taking PPG, ECG, proximity and skin temperature/resistivity measurements. It integrates an optical front end, ECG amplifier, electrical analog front end and light to frequency (LTF) converter. It features a built-in sampling sequencer, 128-byte FIFO, a 14-bit SAR ADC, four GPIO pins and an I²C interface.

4.1 Optical Front End (OFE)

The figure below shows the block diagram of the optical front end.

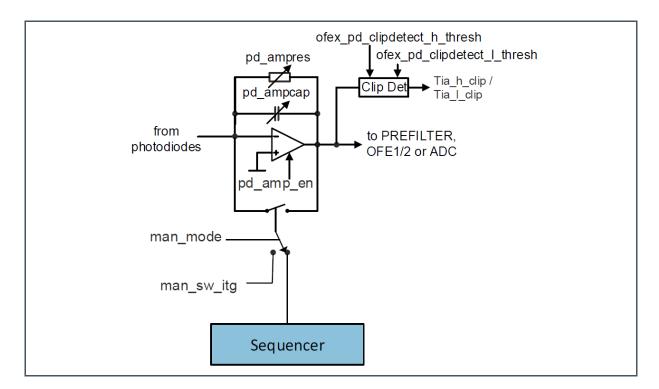
Figure 5: Optical Front End



The optical front end consists of:

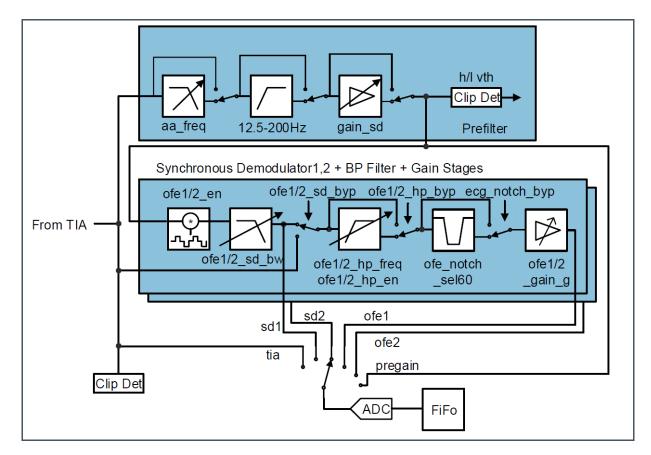
- 4 LED drivers, individually configurable, operated manually or controlled by the built-in sampling sequencer
 - 2 built-in green LEDs (VD1 and VD2)
 - 1 built-in IR LED (VD4)
 - 1 free for connecting an external LED to VD3
- 6 photodiodes
 - 4 with green filters (PD1, PD2, PD3 and PD4)
 - 1 with IR filter (B) (PD5)
 - 1 Clear (A) (PD6)

Figure 6: Photodiode Arrangement



Trans-Impedance Amplifier (TIA)

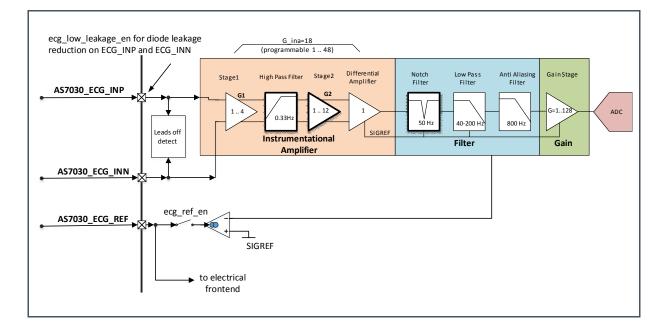
- Configurable photodiode connection
- Photodiode input current offset compensation
- Configurable gain
- 2 different modes of operation photocurrent to voltage converter or photocurrent integrator
- Clip detection


Figure 7: Trans-Impedance Amplifier

- TIA output filter (Prefilter, see Figure 8)
 - Adjustable anti-aliasing low-pass filter
 - Configurable high-pass filter to remove DC component
 - Adjustable gain stage
 - Clip detection
- 2 identical signal conditioning blocks (OFE1 and OFE2, see Figure 8)
 - Synchronous demodulator Used to extract small optical signals in noisy environment (ambient light)
 - Adjustable synchronous demodulator output low pass filter
 - Adjustable high pass filter for DC component removal
 - 50/60 Hz notch filter
 - Adjustable output gain stage
 - Adjustable low pass OFE1/2 output anti-aliasing filter (Figure 8)

Figure 8: Optical Signal Conditioning

Each of the blocks depicted on Figure 8 can be individually enabled or disabled/bypassed.


4.2 ECG Amplifier

The ECG (electro cardiogram) amplifier is a high impedance, low noise instrumentation amplifier with analog circuitry to band pass filter the signal. Gain is distributed between 3 gain stages. The gain in the first stage determines the tradeoff between achievable noise level and achievable input offset voltage. With the highest gain of 4 at the first gain stage (G1) about 400 mV of offset can be managed. This value scales up to a max of 1.6 V of offset at gain 1. An optional 50/60 Hz notch filter can be enabled to attenuate unwanted noise from mains coupling.

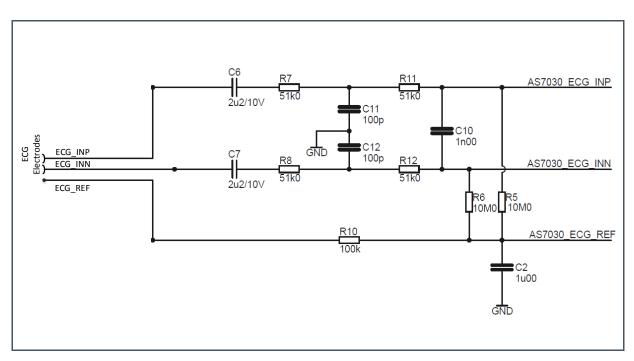
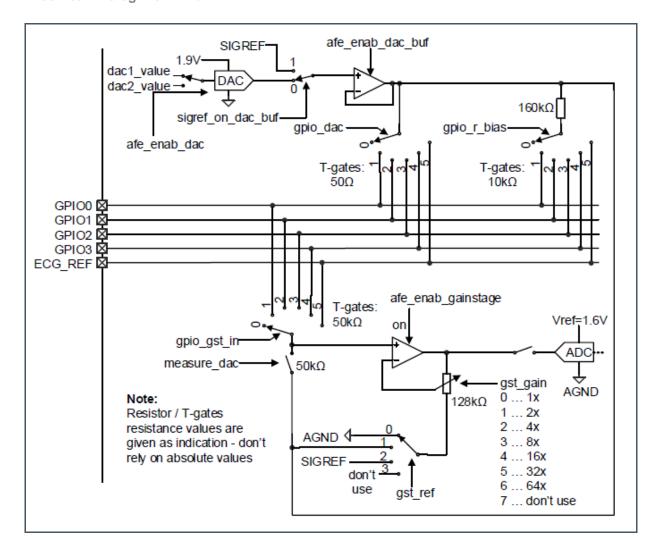

The recommended gain settings are 4-6-8 and 4-6-16

Figure 9: ECG Amplifier Circuit

Figure 10: Recommended ECG Frontend Filter

amu

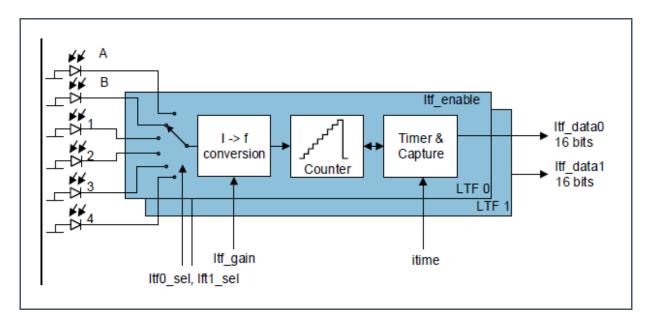

4.3 Electrical Analog Front End (EAFE)

The four general-purpose pins and ECG_REF can be used as analog input pins for the electrical analog front end.

The analog inputs configuration sets up different non-inverting amplifier topologies:

- With offset and input voltage divider (temperature sensor)
- With current source and offset (temperature sensor)
- With current source and reference path (temperature sensor)
- With high impedance, GND referenced
- With DC-Blocking, referenced to V_ADCRef/2
- With DC-blocking and fast settling time, referenced to ADCRef /2

Figure 11: Electrical Analog Front End



amu

4.4 Light-to-Frequency Converter (LTF)

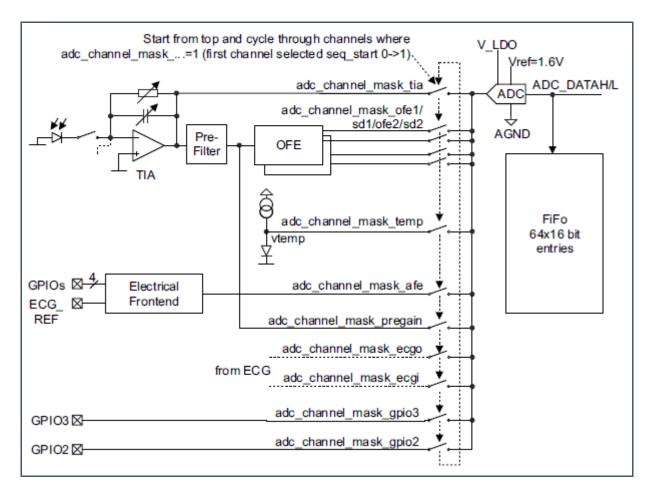
The LTF module can use any of the photodiodes. Photodiodes connected to the LTF cannot be used at the same time with TIA. Integration time (itime) is configured in unit steps, one unit step is 3.702 ms. The unit step can be reduced by 2, 4 or 8, this also reduces the resolution of the conversion. The LTF modulator can be set to run continuously and write the result of each integration to the FIFO.

Figure 12: Light-to-Frequency Converter

4.5 ADC and FIFO

4.5.1 ADC

The ADC is a 14-bit successive approximation register type with input clock of 1 MHz. A configurable clock divider can reduce the input clock. One conversion takes 25 clock cycles plus configurable number of ADC settling clock cycles (64 the default for ADC settling cycles). The ADC can be manually triggered by register or automatically triggered by the built-in sampling sequencer. Two channel selection registers ADC_CHANNEL_MASK_L and ADC_CHANNEL_MASK_H define the channels the ADC will convert. The ADC will start with the channels in ADC_CHANNEL_MASK_L from the LS asserted bit to the MS asserted bit, then continue with the channels in ADC_CHANNEL_MASK_H register again from LS asserted bit to MS asserted bit. Then wraps back to the LS bit of ADC_CHANNEL_MASK_L. Thus, the ADC will go through each channel in the order as shown in Figure 13 with TIA being the first (smallest index), OFE1 second, SD1 third and so on to the GPIO2 being the last.


When triggered from the sequencer, the channel selection is always set to the smallest channel when the sequencer starts for the first time. When sequencer starts, then stops and starts again, channel selection will not reset, it will stay at the channel it was on when the sequencer stopped.

When triggered manually, the channel selection resets with every write to one of the channel selection registers.

After each conversion, the sample goes to the FIFO and the channel selection automatically advances to the next enabled channel. The current ADC output is also available in the ADC data register, but as there is no latch mechanism, the data from this register can be inconsistent as the ADC might be running at the time of ADC data register access.

ADC can trigger an interrupt after conversion has finished.

Figure 13: ADC Channels

4.5.2 FIFO

The AS7030B FIFO is 256 bytes long. ADC samples are 2 bytes each, which means, FIFO can hold up to 128 samples. There is a FIFO length register, which indicates how much samples are currently

available in the FIFO. The FIFO can send an interrupt when the number of available samples reaches a certain configurable threshold.

4.6 Digital Interface

4.6.1 GPIO Pins

All four GPIO pins can be digitally controlled and can have pull up/down enabled. They can also be used as analog input pins for the EAFE, GPIO2 and GPIO3 can additionally be used with the ADC.

4.6.2 Interrupts

An interrupt output pin INT is used to interrupt the host. Depending on the setting in register INTENAB each of the interrupt source below can assert INT output pin (active low).

- **irq_adc:** End of ADC conversion
- **irq_sequencer:** End of sequencer sequence reached.
- **irq_ltf:** A light-to-frequency conversion is finished.
- **irq_adc_threshold:** ADC threshold triggered
- **irq_fifothreshold:** FIFO almost full (as defined in register fifo_threshold)
- irq_fifooverflow: FIFO overflow (error condition, data is lost)
- irq_clipdetect: TIA output and/or SD output exceeded threshold- see details in CLIPSTATUS
- irq_led_supply_low: LED supply low comparator triggered

4.7 Sampling Sequencer

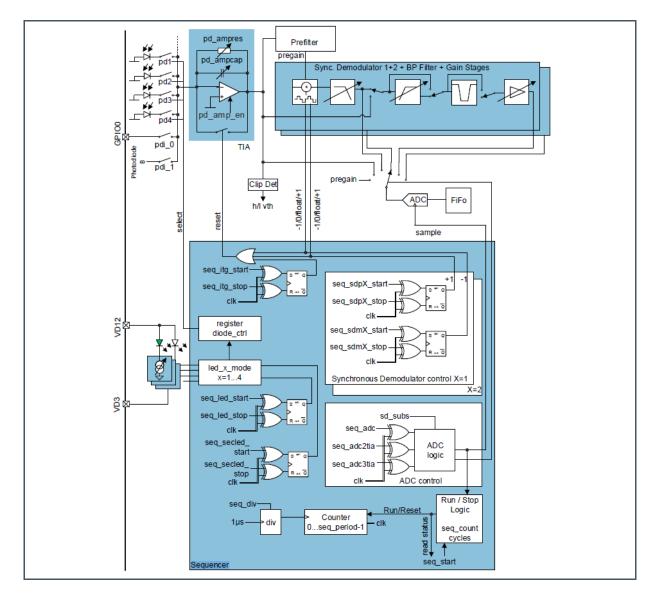
The sampling sequencer synchronizes the LED pulsing, the synchronous demodulator, the ADC and the integrator times. The sequencer configuration sets the LED on and off times, synchronous demodulator positive and negative multiplication times, the ADC start time and the integrator start and stop times. The sequencer generates the 8-bit timings based on the 1 µs input clock. The input clock can be reduced with a configurable clock divider.

The sequencer executes measurement cycles with a period defined by Equation 1 where SEQ_PER and SEQ_DIV are registers of AS7030B having values from 0 to 255 (see pages 50 and 51 in the AS7030B datasheet):

Equation 1:

 $SEQ_PER * (SEQ_DIV + 1) * 1\mu s$

SEQ_DIV holds the value of the 1 μ s input clock divider.



Within one sequencer cycle, the sequencer will:

- Switch on the LEDs at the specified LED start time and then switch them off at the LED stop time.
- Start the positive and negative synchronous modulator multiplications at the specified start and stop times for each operation
- Trigger a conversion of the currently selected ADC channel at the time specified by the ADC start time. After the conversion has finished, ADC channel selection will advance the next enabled ADC channel, which is measured during the next cycle that gives one ADC channel per sequencer cycle. For the TIA channel, two additional ADC timings can be specified. That means TIA can be measured up to 3 times within the same sequencer cycle:
 - A 2nd measurement will be done, if the value for "2nd TIA" is specified (> 0) and is greater than the one given in "1st" plus the time needed for the ADC to finish one conversion.
 - A 3rd measurement will be done, if "3rd TIA" value is specified (> 0) and is greater than the one given in "2nd TIA" plus the time needed for the ADC to finish one conversion.
 - In the case of more than one TIA measurement within the same sequencer cycle, it is important to make sure that the additional measurements can finish within the time of one sequencer cycle.

Figure 14: Sequencer Block Diagram

4.7.1 Sampling Rate and Subsampling

Throughout this document, sampling rate refers to the rate at which the sequencer produces samples of the same ADC channel. This depends on the number of enabled ADC channels and on configuration of the subsampling feature of the sequencer.

Subsampling is used when the application requires lower sample rates than what is possible with the configured SEQ_PER and SEQ_DIV values, and with the number of enabled ADC channels. Lower sample rate can also be achieved by setting SEQ_PER and SEQ_DIV to large enough values, but this is not advisable as SEQ_DIV is multiplied to all the timings of the sequencer, thus the LED pulses will become very long, which is probably not desired. SEQ_DIV should be kept relatively small for finer resolution of the times.

The register SEQ_CFG and SD_SUBS configure how subsampling will be executed:

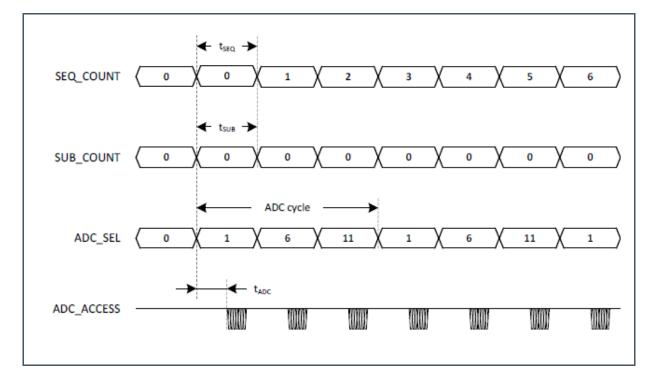
- sd_subs field in SD_SUBS register defines if subsampling is enabled; when it is 0, no subsampling is done – every sequencer cycle triggers an ADC measurement (Figure 15); setting to N>0, enables subsampling and then for N sequencer cycles the sequencer will not trigger the ADC, followed by one cycle with ADC conversion.
- sd_subs_always bit in SEQ_CFG register defines if all enabled ADC channels are subject to subsampling. Using this only makes sense for more than one enabled ADC channel.
 - sd_subs_always = 1: subsampling of all enabled ADC channels (Figure 16)
 - sd_subs_always = 0: subsampling of the first enabled ADC channel only (Figure 17)

The following three figures below show how subsampling is executed by the sequencer. In all of them ADC cycle means one ADC iteration through all the enabled channels.

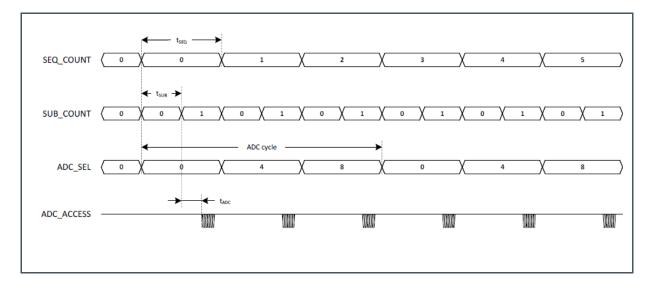
Attention

ADC cycle is not the same as sequencer cycle. ADC_SEL is the ADC channel selection; ADC_ACCESS is an ADC conversion of the currently selected ADC channel; t_{ADC} is the configured ADC start time in the sequencer configuration; t_{SUB} is the sequencer period given by Equation 1.

In Figure 15 three ADC channels are enabled - 1 (OFE1), 6 (EAFE) and 11 (GPIO2). No subsampling enabled (sd_subs=0).


In Figure 16 three ADC channels are enabled – 0 (TIA), 4 (SD2) and 8 (ECGO). Subsampling is enabled, every second sequencer cycle will trigger the ADC (sd_subs=2) and all enabled ADC channels are subsampled.

In Figure 17 three ADC channels are enabled – 0 (TIA), 4 (SD2) and 8 (ECG0). Subsampling is enabled, every third sequencer cycle will trigger ADC (sd_subs=3) and only the first enabled ADC channel is subsampled.


Figure 15:

No Subsampling (sd_subs=0)

Figure 16:

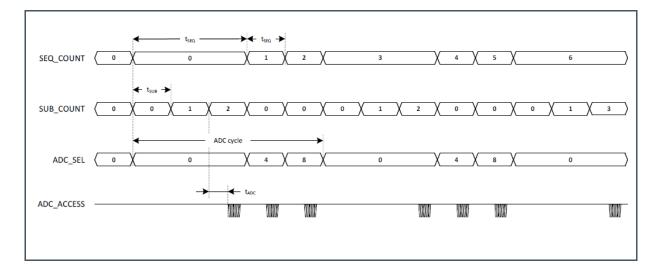
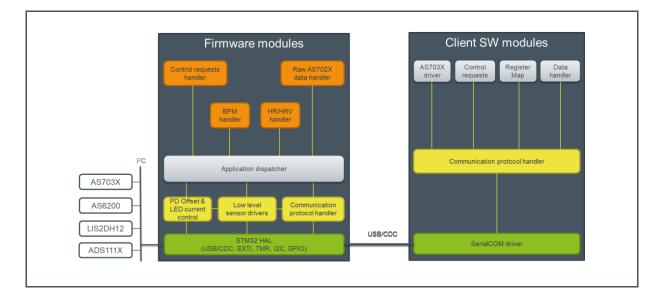

Subsampling of All Enabled ADC Channels (sd_subs=2 and sd_subs_always=1)

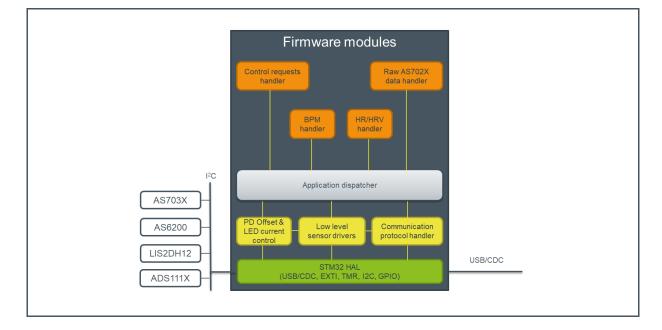
Figure 17:


Subsampling of 1st Enabled ADC Channel Only (sd_subs=3 and sd_subs_always=0)

5 Software Description

5.1 Software Architecture

Figure 18: SW Modules


The AS7030B evaluation software consists of firmware and client software (GUI). The firmware runs on an ARM Cortex M4 MCU (STM32L476RETx), implements virtual COM port CDC interface for client communication and vital sign detection applications. The client software displays raw data, algorithm data and power consumption. Raw data can be logged and exported as .csv file for further analysis.

amu

5.1.1 Evaluation Firmware

Figure 19:

Firmware Modules

HAL Layer Code Generated by STMCubeMX

• I²C, USB, interrupt handling

Low Level Sensor Drivers

- AS7030B vital sign sensor driver
- LIS2DH12 accelerometer driver for motion compensation
- ADS111X ADC for current consumption measurement

Communication Protocol Handler

Receives and parses packets coming from the UART interface and based on the protocol type forwards them to the application dispatcher or executes them immediately when packet is one of read/write AS7030B register, get FW number. Packs the responses to the incoming requests (when one is expected) and sends them to the CDC interface for transmission to the host.

PD Offset and LED Current Control Algorithm

When enabled, its task is to bring the PPG signal to a certain predefined quality (expressed in minimum peak to peak value) whereby using as less LED current as possible. The algorithm uses the output of the TIA and OFE1 channels.

am

It will first check if offset compensation needs to be applied by comparing the averaged TIA to a high and a low threshold (both fixed in FW, not configurable). If the value is below the low threshold, PD offset is decreased. If it is above the high threshold and if the currently configured PD offset is < 238, PD offset is increased, otherwise the LED current is decreased.

If the TIA signal is within the range defined by the low and high thresholds, the algorithm will check if the amplitude of the OFE1 signal is within certain limits defined by configurable minimum and maximum. In case the calculated OFE amplitude is outside this range, if OFE1 amplitude is below the defined minimum, LED current is increased; if it is above the maximum, LED current is decreased. The range within which the LED current is allowed to change is given by configurable minimum and maximum.

After a change in PD offset and/or LED input current, the algorithm will not do the OFE1 check for a period of 1500 milliseconds (this is the period of a 40 BPM heartrate). The current minimum and maximum values of the OFE1 signal are being reset at a configurable interval.

Refer to chapter PD Offset and LED Current Control Configuration for details on how to configure and use it.

Application Dispatcher

The application dispatcher is responsible for sending the application requests, received from the client software to the relevant application for execution. The FW implements 3 types of applications – control requests handler, raw data handler and vital sign algorithm handlers. Implemented vital sign algorithm handlers are heart rate monitor (HRM), heart rate variability (HRV) and blood pressure monitor (BPM).

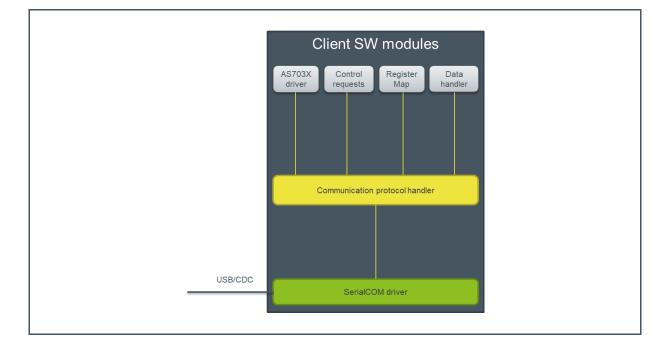
Control Requests Handler

Handles FW control requests like application selection, AGC configuration and measurement start/stop.

Raw AS7030B Data Handler

Collects and stores raw AS7030B sample data in a data buffer and sends the buffered data to the client upon request.

Vital Sign Application Handlers – HRM, HRV and BP App Handlers


Aggregates data needed by the relevant algorithm, runs the algorithm and handles data requests sent from the client.

amu

5.1.2 Client Software

Figure 20:

Client Software Modules

SerialCOM Driver

Low-level UART communication driver – Open/close COM port connections, send and receive byte streams to/from the UART interface.

Communication Protocol Handler

Implementation of the communication protocols exchanged between the client software and the FW.

AS7030B Driver

Driver code used for AS7030B configuration (register read/write).

Control Requests

FW control requests – Start/stop measurements, select/deselect algorithm and AGC configuration.

Register Map

Direct access to the complete register set of the AS7030B.

Data Handler

Handles incoming data – Updates the relevant ADC channel plot and/or updates vital sign data fields of the GUI.

5.2 Graphical User Interface

This section describes the Graphical User Interface (GUI) of the AS7030B Vital Sign Sensor application. The application is designed to be used with AS7030B sensor series evaluation kits.

Information

- User Guide Version 1.0
- Valid for the following software version AS703x Vital Sign Sensor v.1.0.16.1
- Supported hardware AS7030B_Evalboard v1.0
- Download Navigate to https://ams.com/as7030B#tab/tools and download the latest version.

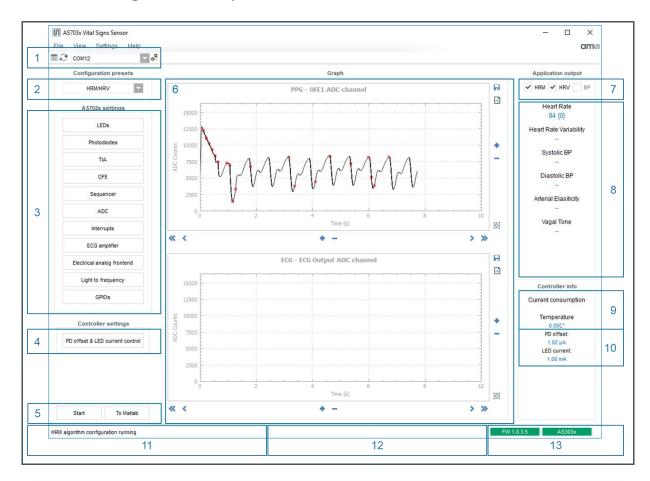
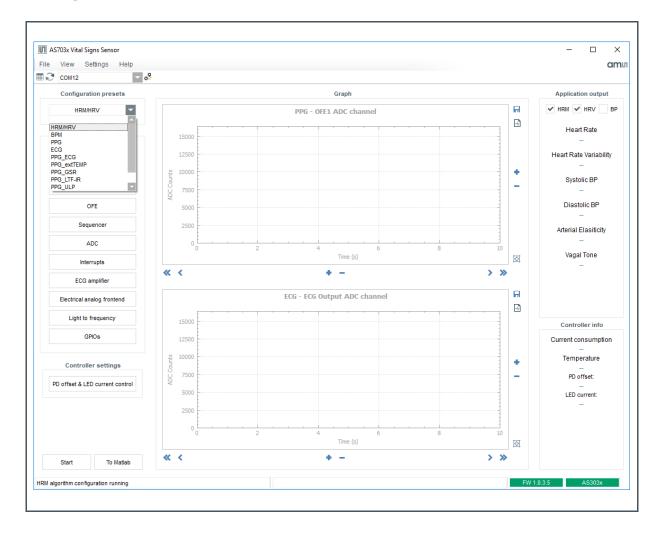

5.2.1 Overview

Figure 21 shows the main window of the graphical user interface. To connect to the board the connection control elements are used (1). The measured data is displayed in the main section of the application (6). Additional information about current consumption and temperature is displayed in (9). Calculated heart rate, calculated blood pressure, heart rate variability are displayed in (8).

Figure 21:

AS7030B Vital Sign Sensor - Graphical User Interface


- 1 Connection control elements
- 2 Configuration presets
- 3 AS7030B configuration settings
- 4 Controller configuration settings
- 5 Start/Stop recording
- 6 Graphical representation of data
- 7 Measurement type
- 8 Calculated values based on measurement type
- 9 Temperature (if sensor available) and current consumption (AS7030B) values
- 10 The currently configured values for PD offset and Led input current
- 11 Description of the current configuration
- 12 Status box
- 13 Connection status and FW version of connected hardware

amu

5.2.2 Powering Up and Starting a Measurement

- 1. Connect the sensor board and the mainboard via the 10-pin Picoblade cable.
- 2. Connect the micro USB to USB cable to the mainboard and plug it into your computer.
- 3. The green power LED will turn ON as soon as the board is powered.
- 4. Start the client software.
- 5. Select the appropriate COM port name from the drop down box.
- 6. Click the connect button
- 7. Connect button will change its icon to 🔗 upon successful connection.
- 8. The two status boxes on the bottom right side will turn green and show the FW number currently flashed on the board.

Figure 22: Starting a Measurement



- 1. Select one of the built-in configuration presets
- 2. Optionally check and change AS7030B settings. On the first startup after SW installation no settings are loaded, after that the last used settings will be used.
- 3. To start a measurement with the current settings click on the Start button.
- 4. The green AS7030B LEDs will turn on, Start button's caption will change to "Stop"
- 5. Hold the ECG INP and reference electrodes with pointer and middle finger of your left hand, put the pointer finger of your right hand on the ECG INN electrode and the middle finger of your right hand on the AS7030B to measure
- 6. The raw pulse and ECG data will be displayed in the GUI
- 7. The output of the algorithm will be displayed on the right hand side of the window. The numbers in the curly brackets show how many seconds have passed since the last result different than zero was reported. After five seconds of no new result, the values will time out and the content of the fields will change to "--".

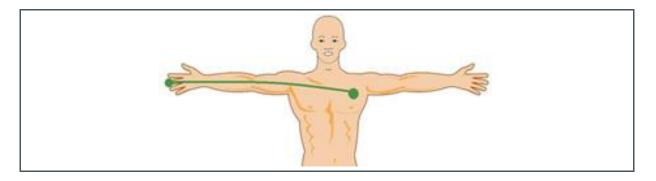
5.2.3 Setting Up for Blood Pressure Measurement

Figure 23:

Running Blood Pressure Measurement

The blood pressure measurement will give most accurate results with a personalized user profile. A default user profile is used, if no custom profile exists. To create a new user profile, open menu Settings and select "Open user data dialog".

AS703x Vital Signs Sensor		User data	?	Х
File View Settings Help				
COM12 Auto update		User name	Default User	
Config Log raw data		Age	50	
Apply 50Hz notch filter		Height	188	
Apply DC filter		neight	100	
AS7 Open user data dialog	15000	Weight	80	
LEDs	12500	Arterial length	108	
Photodiodes		Sex	male female	
TIA	21 10000 0 7500			
OFE	5000	Systolic reference	120	
Sequencer	2500	-		
		Diastolic reference	80	
ADC	0	Systolic offset	0	
Interrupts		Diastolic offset	0	
ECG amplifier	< <			
Electrical analog frontend			New Calibrate Cancel	Set


In the "User data" window click on button "New". The field "User name" will change to "New user" and the "New" button will change its caption to "Save". Enter all field values:

- Age Age in years
- Height In cm
- Weight In kg
- Arterial length In cm (0 = unknown); to measure the arterial length, please measure the distance from the tip of your right middle finger to the middle of the line from your left nipple to the left axle as shown in Figure 25. If the field is left zero, the arterial length will be estimated based on the user's height.
- Systolic and Diastolic reference Obtained with a reference device (e.g. a cuff device)
- Systolic offset Calculated during calibration, not enabled for user input
- Diastolic offset Calculated during calibration, not enabled for user input

Figure 25: Measurement of the Arterial Length

Click "Save" to add the newly created user profile to the user profile database.

Figure 26: Creating a New User

User data		?	×	User data	?	×
User name	New user		-	User name	Jane Doe	-
Age	50			Age	40	
Height	188			Height	165	
Weight	80			Weight	60	
Arterial length	108			Arterial length	100	
Sex	male female			Sex	🔵 male 💿 female	
Systolic reference	0			Systolic reference	122	
Diastolic reference	0			Diastolic reference	81	
Systolic offset	0			Systolic offset	0	
Diastolic offset	0			Diastolic offset	0	
	Save Calibrate C	Cancel	Set		Save Calibrate Cancel S	et

Next step is to execute the calibration procedure in order to get the values for Systolic and Diastolic offsets. This requires that the board is connected and the "BPM" configuration is selected from the configuration presets. If not, click "Set" to close the "User data" window and go back to the "Main" window ("Set" also sets the current user). Connect to the board, select the "BPM" preset and go back to the "User data" window to execute the calibration procedure.

am

Calibration Procedure

Select the user to calibrate from the "User name" combo box and click the "Calibrate" button. The caption of the "Calibrate" button will change to "Calibrating...".

Figure 27: User Calibration

User name	Jane Doe	User name	Jane Doe
	Jane Doe		40
Age	John Doe	Age	40
Height	165	Height	165
Weight	60	Weight	60
Arterial length	100	Arterial length	100
_			
Sex	male e female	Sex	male female
	male female	Sex Systolic reference	male female
Systolic reference	122	Systolic reference	122
Systolic reference Diastolic reference	122 81	Systolic reference Diastolic reference	122 81
	122	Systolic reference	122

Blood pressure measurement will start. The "Start" button will turn to "Stop", the PPG and ECG graphs will start plotting the raw data, and blood pressure values will start displaying on the "Main" window.

Figure 28: Calibration Ongoing

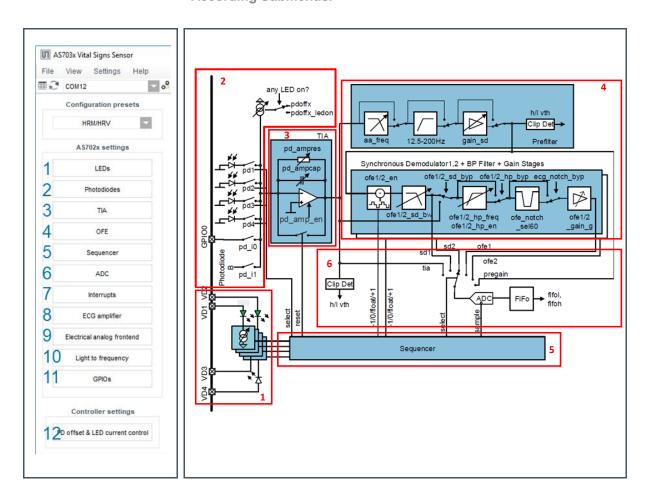
After calculating the five blood pressure values successfully, calibration will be finished, the measurement is stopped and the values for "Systolic offset" and "Diastolic offset" are updated.

Figure 29: Calibration Finished

User data User name	Jane Doe
Age	40
Height	165
Weight	60
Arterial length	100
Sex	male female
Sex	male female
Systolic reference Diastolic reference	122
Systolic reference Diastolic reference	122
Systolic reference Diastolic reference Systolic offset	122 81

Click "Set" to save the values and close the window.

5.2.4 AS7030B Configuration Settings


The AS7030B configuration settings are located on the left of the evaluation software (see Figure 21). At power-up, the board starts with the following default configuration:

- The two green LEDS LED1(VD1) and LED2(VD2) are enabled, the LED current set to 1 mA
- Sequencer period set to 2000 µs
- Photodiode Trans-Impedance amplifier (TIA) is on and used
- All filters are on and used
- ADC is set to measure only the optical front end 1 after the gain stage (OFE1)

The individual settings of each of the AS7030B blocks can be viewed/changed in the dedicated configuration sub menu. To enter the submenus press the corresponding button.

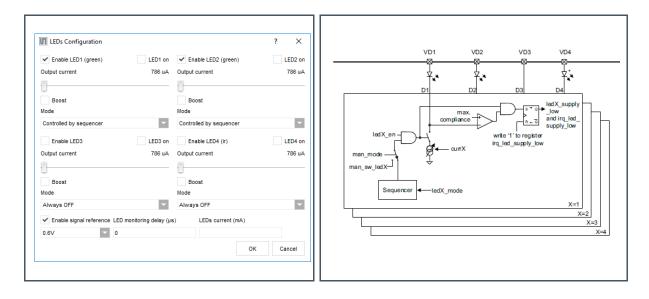
 Figure 30:
 Figure 31:

 Submenu Selection
 AS7030B Block Diagram. Highlighted Blocks are Configured in the According Submenus.

For further information, please refer to the AS7030B Datasheet

LED Configuration

Attention


LED current, LED mode and LED state can be set in the "LEDs configuration" window. It is recommended to configure the current only when the output is not active as there is no latch implemented to keep the 10 bits consistent.

The LED current can be set via sliders in a range of 0.7 -100 mA. Using the Boost option the LED current can be doubled. The LEDx on option is only active in manual mode. In all other cases the LEDs will be controlled by the logic.

The textbox LEDs current (mA) shown in Figure 32 allows to enter a numeric value for LED current which will be set to all LEDs.

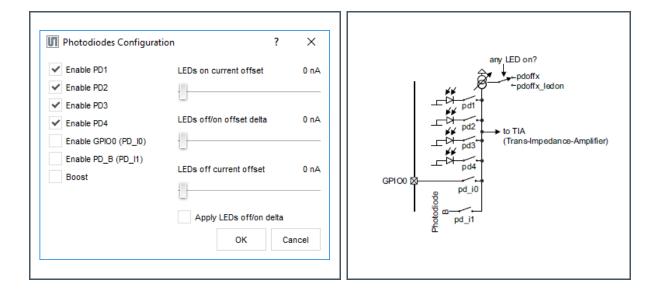
Figure 33: LED Driver Block Diagram

For further information, please refer to the following document:

AS7030B Datasheet page 24 ff

Photodiodes Configuration

Select the photodiodes which are to be connected to TIA input. The offset current is optional, this allows cancellation of constant light sources like sunlight. Default value for the input offset current is 0



for both – LEDs off and any LED on. By default the offset is controlled by the PD offset control algorithm accessible via menu 12.

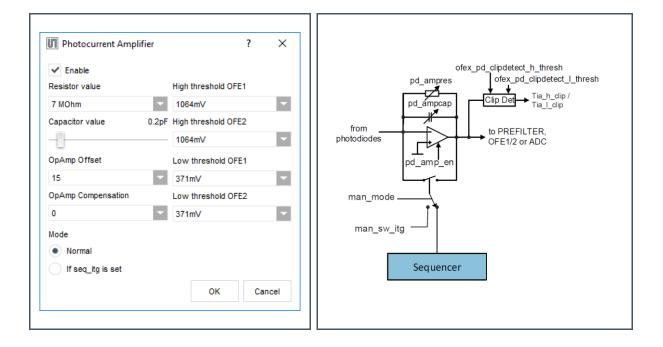
For an external photodiode or any other sensor with (low) current output, the pins GPIO0 and GPIO1 can be used as input.

The sequencer controls the diodes - see DIODE_CTRL described in register MAN_SEQ_CFG.

Figure 34: Photodiode Configuration Submenu Figure 35: Photodiode Block Diagram

For further information, please refer to the following document:

AS7030B Datasheet page. 35ff.


TIA (Trans-Impedance Amplifier) Configuration

The TIA has to be configured according to the information in the AS7030B datasheet (table in figure 33. AS703x Block Diagram).

It is recommended to keep the TIA settings at their default.

Figure 36: TIA Configuration Submenu Figure 37: TIA Block Diagram

For changing the TIA, stick to the following suggestions:

Figure 38: TIA Suggestion

pd_ampres	pd1234 ⁽¹⁾	pd_ampcap	pd_ampcomp	pd_ampvo	Gain
1	14	13	1	15	1 V/µA
2	14	7	1	15	2 V/µA
3	14	5	1	15	3 V/µA
4	12	2	- 0	15	5 V/µA
4	34	3	- 0	15	5 ν/μΑ
5	12	2	- 0	15	7 V/µA
5	34	3	- 0	15	7 ν/μΑ
6	1	1	_ 0	15	10 V/µA
6 24 2 0 15	15	10 ν/μΑ			
7	12	1	- 0	15	14 V/µA
1	34	2	- 0	15	14 V/μA

amu

pd_ampres	pd1234 ⁽¹⁾	pd_ampcap	pd_ampcomp	pd_ampvo	Gain
Low Bandwidth	Mode				
5	14	31	3	15	7 V/µA
Integrating Mod	le (pd_ampres=0)				
0	14	10	3	15	1 V/pQ
0	14	20	3	15	1/2 V/pQ
0	14	30	3	15	1/3 V/pQ

(1) pd1234 ... number of active photodiodes (for example, pd1=1, pd2=0, pd3=1, pd4=0 -> pd1234=2)

For further information, please refer to the following document:

• AS7030B Datasheet page. 40 ff.

OFE (Optical Frontend) Configuration

In this window, the OFE blocks can be enabled and the filter chain is configured.

Figure 39: OFE Configuration Submenu

Figure 40: OFE Block Diagram

	onfiguration	? ×	
Optical Frontend Cc OFE2 enable OFE2 enable Enable bias Anth-aliasing frequency 100kHz Optical Frontend Cc Optical Frontend Cc OfFE2 enable OFE2 enable Anth-aliasing frequency 100kHz	Prefilter OFE1 OFE2 Frequency and Gain Output threshok Anti-alias filter Low OFE1 SSkHz GrmV HP filter High OFE1 200Hz 1064mV Gain 1 Anti aliasing filter is on HP filter is on		
 OFE1 enable OFE2 enable Enable bias 	SD gain stage is on	Bypass SD gah stage Bypass complete prefilter OK Cancel ? X High pass filter	From TIA From T
OFE1 enable OFE2 enable Enable bias Anti-aliasing frequency	 Enable high pass filter Enable notch filter Enable gain stage Bypass synchronous demodulator Bypass high pass filter Bypass notch filter Bypass gain stage 	0.33Hz SD low pass filter 20Hz Notch filter 50Hz Notch filter bandwidth 0 ¥	

Check OFE1 and/or OFE2 check box to enable the corresponding OFE block.

To optimize signal quality adapt the OFE Gain setting to your application. The Bandwidth of HP and LP can also be changed to suit your needs. The "SD negative initial polarity" switch will invert the signal.

The "Prefilter" tab is used to configure the input filters of the two synchronous demodulators. For reference, please see **OFE_CFGA**, **OFE_CFGB**, **OFE_CFGC** and **OFE_CFGD** register descriptions in the AS7030B datasheet.

amu

For further information, please refer to the following document:

• AS7030B Datasheet page. 47 ff ...

Sequencer Configuration

Figure 41: Sequencer Configuration Submenu

 Enable seque 	ncer	Ultra low	v power mode	Ac	tivate manual mode		Sync on GPIO				
ample rate		Diode contr	rol			Enabled ADC	channels				
Frequency (Hz)	200			D2; PD3->LED3;		GPIO2			SD2 before	gain stage	
Period (us)	4980	U PUI-3	LED 1, PD2-2LEI	D2, PD3-PLED3,	PD4-2LED4	Electrical frontend			✓ SD1 after gain stage		
		PD1-P	D4 connected			🗸 TIA outp	✓ TIA output		ECG amplifier input		
Sequencer cycles					Tempera	Temperature		SD2 after ga	ain stage		
Cycle period	166	O PD1,P	PD1,PD2->LED1; PD3,PD4->LED2				Pregain			gain stage	
Clock divider	10					GPI03		~	ECG amplifie	er output	
	f cycles 0	Primary LE Start time	-	Positive m Start time	ultiplication 84	Positive mu Start time	· ·		1st 2nd TIA	1 84	
		Stop time	104	Stop time	104	Stop time	0		3d TIA	0	
Subsampling		Secondery	econdery LED timing Negative multiplication		Negative multiplication			Integrator			
1st		Start time	0	Start time	1	Start time	0		Start time	1	
	ng ratio 1	Stop time	0	Stop time	20	Stop time	0		Stop time	0	
Subsampli											

The "Cycle period" field of the "Sequencer configuration" window (see Figure 41) holds the value of the SEQ_PER register. The client software will automatically calculate its value from the user input for Sample frequency/period entered in the fields "Frequency (Hz)" / "Period (μ s)" of the "Sequencer configuration" window (Figure 41). Sample period/frequency is the period/frequency between # of samples of the **same** ADC channel and it depends on the number of enabled ADC channels. If the calculation yields a value for the cycle period that is bigger than 255 - the maximum possible,

subsampling will be enabled¹. Please refer to Sampling Rate and Subsampling for details on sampling rate.

Use this window to enable/disable ADC channels.

Any change in the values of the fields for sample frequency, sample period, cycle period and in the ADC channel selection will cause a new calculation of the values for the rest of the fields.

For further information, please refer to the following document:

AS7030B Datasheet page. 47 ff.

ADC Configuration

This window configures the clock divider of the 1 MHz ADC input clock and the ADC settling periods. ADC channels are enabled in the Sequencer Configuration window. The selection is shown below.

Figure 42: ADC Configuration Submenu Figure 43: ADC Block Diagram

Enable ADC Threshold differential Threshold for TIA only Activate self calibration Power down when not converting Discharge capacitor before tracking Mutimode Enabled ADC channels Synchronous demodulator 2 before gain sta Synchronous demodulator 2 after gain sta Synchronous demodulator 1 after gain sta ECG amplifier input	ge Electrical from tage Temperature	tend output	GPI02 GPI03	Start from top and cycle through channels where adc_channel_mask_==1 (first channel selected seq_star 0.51), where the selected seq_star 0.51, adc_channel_mask_off/ adc_channel_mask_off/ adc_channel_mask_off/ adc_channel_mask_off/ adc_channel_mask_off/ adc_channel_mask_aff tom ECG adc_channel_mask_progain tom ECG adc_channel_mask_gpio3 gPIO3 adc_channel_mask_gpio3 gPIO2 adc_channel_mask_gpio3
--	--	-------------	----------------	---

¹ For example, with one ADC channel enabled and desired sample rate of 200 Hz, the sequencer cycle period needs to be 5000 μ s. If (SEQ_DIV+1) is 10, the SEQ_PER register should be 500, but as it is 8 bits, it cannot fit the value 500. It is also not advisable to increase the clock divider as that will affect all the other timing settings, it is better to keep that small to give finer granularity of the timing. To achieve the 200 Hz sample rate, the cycle period will be set to 250 and subsampling enabled with subsampling ratio of 2 – meaning the ADC will be triggered every 2nd sequencer cycle. That will give a sample rate of 200 Hz / 5000 μ s period.

For further information, please refer to the following document:

• AS7030B Datasheet page. 98 ff.

Interrupts Configuration

Enable interrupt sources:

- ADC: End of ADC conversion
- Sequencer: End of sequencer sequence reached.
- LTF: A light-to-frequency conversion is finished.
- ADC threshold: ADC threshold triggered see ADC threshold.
- FIFO threshold: FIFO almost full (default is each sample triggers an interrupt)
- FIFO overflow: FIFO overflow (error condition, data is lost
- Clipdetect: TIA output and/or SD output exceeded threshold
 see details in CLIPSTATUS
- LED supply low: LED supply low comparator triggered see details in LEDSTATUS

Figure 44: Interrupt Configuration Submenu

Dialog	?	×	
	ADC thres	hold	
FIFO overflow	Sequence ADC	r	
ок	Can	cel	

For further information, please refer to the following document:

• AS7030B Datasheet page.109ff.

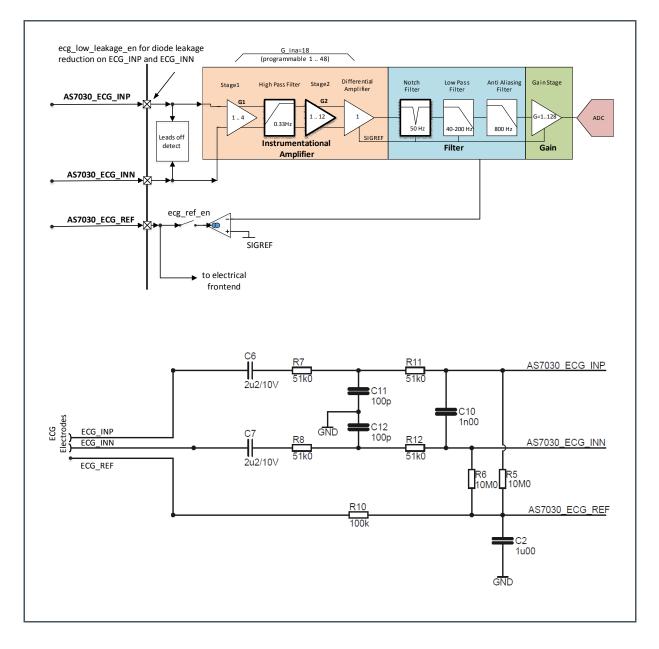
ECG Amplifier Configuration

The ECG (electro cardiogram) amplifier is a high impedance, low noise instrumentation amplifier with analog circuitry to band pass filter the signal. Gain is distributed between 3 gain stages. The gain in the first stage determines the tradeoff between achievable noise level and achievable input offset voltage. With the highest gain of 4 at the first gain stage (G1) about 400 mV of offset can be managed.

This value scales up to a max of 1.6 V of offset at gain 1. An optional 50/60 Hz notch filter can be enabled to attenuate unwanted noise from mains coupling.

The recommended gain settings are 4-6-8 and 4-6-16.

The ECG signal can be used independently or together with PPG in further computation. (e.g. blood pressure).


Figure 45:

ECG Amplifier Configuration Submenu

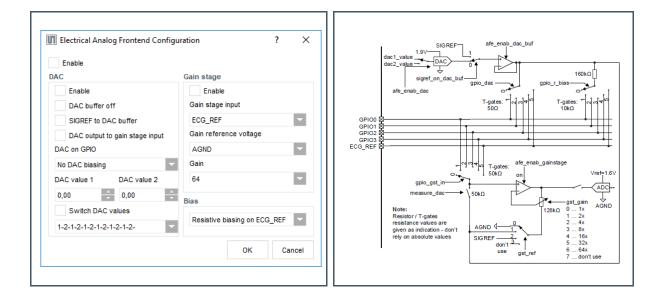
ECG Configuration			? ×
Enable ECG amplifier Signal reference Fast startup 0.8V			
Filter			Leads detection
HP filter frequency HP filter mode 0.33Hz Use Internal reference voltage	ge 🍸 50Hz	s notch filter	Enable Polarity Sync to ADC
Gain stages	Output thresh	olds	
Input gain 1 Input gain 2 Output gain	Low	High	Current
4 6 16	0	0	20nA 🔽
			OK Cancel

Figure 46: ECG Amplifier Block Diagram

For further information, please refer to the following document:

AS7030B Datasheet page. 91ff.

Electrical Analog Frontend Configuration


The electrical analog front end consists of three identical signal paths with independent settings of bias condition, gain and offset.

Here the EAF_CFG, EAF_GST, EAF_BIAS, EAF_DAC and EAF_DAC_CFG registers are set.

Figure 47:

Electrical-Analog-Frontend Configuration Submenu

Figure 48: Electrical-Analog-Frontend Block Diagram

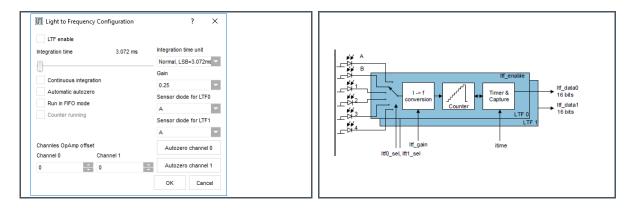
For further information, please refer to the following document:

AS7030B Datasheet page. 84ff.

Light-to-Frequency Configuration

Light-to-frequency feature can be used to measure light input directly. Its main purpose is proximity detection.

(ī	7
\mathcal{L}	•	Ϊ


Attention

Do not use diodes that are connected to the TIA (register PD_A, PD_B, PD1...4) at the same time when itf_en is enabled on the same diode.

For detailed information, please refer to the AS7030B datasheet.

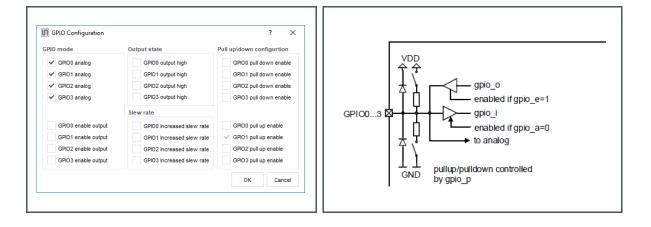
Figure 49: Light-to-Frequency Configuration Submenu

Figure 50: Light-to-Frequency Block Diagram

The following registers can be shown/configured in the dialog: **ITIME**, **LTF_CONFIG**, **LTF_SEL** and **LTF_GAIN**.

For further information, please refer to the following document:

AS7030B Datasheet page. 73ff.


GPIOs Configuration

To set a GPIO to analog mode check the check box from the "GPIO mode" group box. If left unchecked, then the GPIO is a digital output or input, depending on the state of the "GPIOx enable output" check boxes - unchecked means the pin is digital input. If the pin is set as digital output, it's state can be set via the corresponding check box in the "Output state" group box.

Figure 51: GPIO Configuration Submenu

Figure 52: GIPO Block Diagram

For further information, please refer to the following document:

• AS7030B Datasheet page. 113ff.

5.2.5 Controller Configuration

This section describes the configurations of the firmware running on the microcontroller that communicates with the AS7030B.

PD Offset and LED Current Control Configuration

The PD offset and LED current control is an algorithmic approach to increase signal quality of PPG signals. The algorithm continuously monitors the TIA and OFE1 outputs and if necessary reconfigures the AS7030B while measuring to ensure ideal conditions.

Figure 53:

PD Offset & LED Current Control Submenu

Dialog ?	? X
Minimum OFE1 signal amplitude	400
Maximum OFE1 signal amplitude	2000
Averaging for TIA offset compensation	20
OFE1 min and max reset interval (ms)	2000
Minimum LED output current	1.17 mA
-[]	
Maximum LED output current	5.93 mA
 Enable TIA offset compensation 	
Enable OFE1 amplitude control	
ОК	Cancel

Minimum OFE1 signal amplitude – If the amplitude of the OFE1 signal drops below that value, LED current will be increased, if LED current control is enabled.

Maximum OFE1 signal amplitude – If the amplitude of the OFE1 signal grows above that value, LED current will be decreased, if LED current control is enabled.

Averaging for TIA offset compensation – How many samples are averaged before TIA mean value is assessed based on which PD offset is corrected.

OFE1 min and max reset interval – The interval at which the min and max values are calculated over a moving average are reset in order to keep a recent history and to avoid random spikes.

Minimum and maximum LED output current – Sets the range in which the LED current can move if LED current control is enabled. If LED current control is disabled the LED have constant LED current set in the LED Configuration window.

Enable TIA offset compensation and Enable OFE amplitude control – Check boxes define what will be controlled by the algorithm and if the algorithm is enabled. If both checkboxes are unchecked, the algorithm is disabled and there will be no correction for TIA offset and LED current control.

Enable TIA offset compensation check box: When checked, enables TIA offset compensation.

Enable OFE amplitude control check box: When checked, enables LED current control. LED current control only works together with TIA offset compensation.

5.2.6 Advanced Settings

Additional ADC Channels and Light-to-Frequency Data Display

The AS7030B Vital Sign Sensors evaluation software allows to display multiple channels. The PPG and ECG channels are always active in the main windows. Additional channels can be displayed via the View menu as shown in Figure 54

To display a data plot of an ADC channel other than OFE1 and ECG Output, click on menu "View \rightarrow ADC Channels" and then on the desired ADC channel.

For Light-to-Frequency data output, click on "View \rightarrow LTF".

A separate plot window will open.

Figure 54: Additional Output Channels

I AS7	/03x Vital Signs Sensor		
File	View Settings He	p	
	Register Map	▼ ⁶	
	ADC Channels	AIT	
	LTF	Pregain	
	ВРМ	OFE1	
	AS702x settings	SD1	-
		OFE2	
	LEDs	SD2	
	Photodiodes	ECG input	
	-	ECG output	
	TIA	Electrical analog frontend	
	OFE	GPI02	
	Sequencer	GPI03	
	ocquericer	Temperature	
	ADC	o <u>t</u>	

Register Map

The "Register Map" window is used to view/change the contents of the complete set of AS7030B user register. To open it, click on the "View \rightarrow Register Map" menu.

Changing a register value can be done either by modifying its value in the relevant "Value" field or by toggling a bit by clicking on the relevant bit cell. Changing a value in the register map will not update the current selection in the configuration windows of the GUI. Also, a change in any of the configuration windows will not trigger an automatic update of the already opened register map window. To update the values, click on the refresh button marked with the orange rounded rectangle on the "Register Map" picture on the right.

Figure 55: Register Map Dialog

🕼 Register Map									-	
View										am
3										
	Addr.	7	6	5	4	3	2	1	0	Value
CONTROL	0x00	1			0		1	1	1	0x87
GPIO A	0x08					1	1	1	1	0x0f
GPIO E	0x09					0	0	0	0	0x00
GPIO O	0x0a					0	0	0	0	0x00
GPIO I	0x0b	0	0	0	0	0	0	0	0	0x00
GPIO P	0x0c	0	0	0	0	0	0	0	0	0x00
GPIO SR	0x0d					0	0	0	0	0x00
GPIO T	0x0e					0	0	0	0	0x00
GPIO SYNC	0x0f						0	0	0	0x00
LED CFG	0x10	1	1	0	0	0	0	1	1	0xc3
LED WAIT LOW	0x11	0	0	0	0	0	0	0	0	0x00
LED1 CURRL	0x12	0	0						0	0x00
LED1 CURRH	0x13	0	0	0	0	0	0	0	0	0x00
LED2 CURRL	0x14	0	0						0	0x00
LED2 CURRH	0x15	0	0	0	0	0	0	0	0	0x00
LED3 CURRL	0x16	0	0						0	0x00
LED3 CURRH	0x17	0	0	0	0	0	0	0	0	0x00
LED4 CURRL	0x18	0	0						0	0x00
LED4 CURRH	0x19	0	0	0	0	0	0	0	0	0x00
PD CFG	0x1a		0	1	1	1	1	0	0	0x3c
PDOFFX LEDOFF	0x1b	0	0	0	0	0	0	0	0	0x00
PDOFFX LEDON	0x1c	0	0	0	0	0	0	0	0	0x00
PD AMPRCCFG	0x1d	1	0	1	0	0	0	1	0	0xa2
PD AMPCFG	0x1e	1	0	1	1	1	1	0	0	0xbc

Saving Current Configuration Settings to a File

The current configuration settings can be exported to a file. To do this, click on the "File \rightarrow Save Configuration" menu. This will open the "Save Configuration File" dialog box on the second picture on the right. Enter file name and choose the file location, then click "Save".

Loading Configuration Settings from File

To load a previously exported configuration settings, click on the "File \rightarrow Load Configuration" menu. This will open the "Select Configuration File" dialog box. Select the configuration file from which to load settings and click "Open" button.

The settings imported from the file can be reviewed in the relevant configuration windows.

If the GUI is connected to the board, the newly imported settings will be applied immediately, otherwise upon successful connection to the board.

Figure 56: Safe and Load Configuration Menu Entries

Figure 57: Safe Configuration File Dialog

AS703x Vital Signs Sensor	III Save Configuration File		
AS/USX Vital Signs Sensor	← → ✓ ↑ 🦲 « Program Files (x86) → ams →	→ AS7024_Vital_Sign_Sensor → configurations v ♂ ♂ Search configurations	
View Settings Help	Organize 👻 New folder	811 -	•
Save Configuration	This PC Name	Date modified Type Size	
	Desktop default		
oad Configuration	occuments D	22.03.2018 23:35 File 1 KB	
Export Raw Data	Downloads DP9_ecg Music		
	Fictures		
ave raw data and graphs	Videos		
	Local Disk (C:)		
it	🛫 softwarepool (\\		
	🛫 epol (\\fsupdata	Date modified Type Size 180.03018 1402 File 1 KB 11.04.2018 1001 File 1 KB	
LEDs	🛫 public (\\fsupva		
LEDG	🛫 xsite (\\fsupdata		
	A Network		
Photodiodes	File name:		_
	Save as type:		
TIA	∧ Hide Folders	Save Car	incel

Raw Data Logging and Exporting

By default, during measurement the raw data from the AS7030B is logged in memory. When a measurement is stopped, this data can be exported to a comma delimited file by clicking on the "File \rightarrow Export Raw Data" menu and selecting the file location and file name in the save file dialog box.

Raw data file format:

- First raw has the column captions
- First column has the timestamp in milliseconds
- Columns 2nd to the last have the data from the enabled ADC channels

Direct to file data logging can be enabled by checking the "Log raw data" check box in the "Settings" menu.

Figure 58: Export Raw Data Menu Figure 59: Log Raw Data Menu

III AS703x Vital Signs Sensor			AS703x Vital Signs Sensor				
File View Settings Help			File	View	Settings	Help	
Save Configuration	e 🖗	8		COM12	Auto u	pdate	
Load Configuration				Config	🗸 Log ra	w data	
Export Raw Data					Apply	50Hz notch filter	
Save raw data and graphs					Apply	DC filter	
Exit	-			AS7	Open	user data dialog	15
							12

5.2.7 Signal Optimization

Three settings have a major impact on signal strength and quality:

- LED current
- OFE gain
- Offset compensation

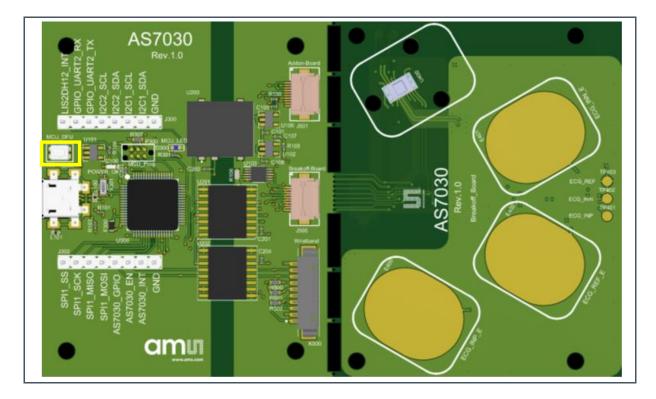
LED current has a direct impact on signal strength with minimal impact on noise. OFE gain will increase overall signal strength but also increase noise. We recommend the following settings to begin with and start experimenting from there:

Figure 60: Useful Start Settings

Use Case	LED Current [mA]	OFE Gain
Finger	0.768	4
Light skin wrist	2	8
Dark skin wrist	5	16

amu

5.3 FW, Driver, API


5.3.1 Controller Firmware Update over USB

Starting in DFU Mode

In order to update the FW over USB on the AS7030B Evaluation Board the MCU has to be started in DFU mode. To do so follow the steps below:

- 1. If the board is connected to the PC, disconnect it.
- 2. Press the button marked with yellow on the picture below and connect the USB cable to the computer while keeping the button pressed. Release the button once the USB cable is plugged in.

Figure 61: Evaluation Board

 Start the DfuSeDemo.exe from the "extras\DFU" folder located at the installation folder of the GUI (if not changed during installation should be "C:\Program Files (x86)\ams\AS703x_Vital_Sign_Sensor").

Figure 62: DfuSeDemo Started

🧼 DfuSe Demo (v3.0.5)			—		×
🗹 Can Detach	∽ on tolerant d Upload (ST) DFU mode	Application Mode: Vendor ID: Procuct ID: Version:	DFU M Vendor I Procuct Versio	ID: 0483 ID: DF11	
Select Target(s): Target Id Name 00 Internal Flas 01 Option Byte 02 OTP Memo	s	Available Sector 256 sectors 2 sectors 1 sectors	s (Double Cl	ick for mor	e)
Upload Action File: <u>Choose</u> <u>Upload</u> Transferred data size 0 KB(0 Bytes) of 0 KB(0 Bytes) Operation duration 00:00:00		r download		s) Verify	
Abort	Ch <u>o</u> use	opgraue	_	Qu	it

• Click "Choose" to select the .dfu file containing the new FW and click on "Open".

Figure 63: Choosing Firmware DFU Package

🧼 Open					×
← → → ↑ 🔒 « Local Disk (C:) → Program	n Files (x86) > ams > AS703x_Vital_Signs_Sen	sor > firmware	√ Č	Search firmware	م
Organize 🔻 New folder					. ?
This PC	Name	Date modified	Туре	Size	
3D Objects	as703x_fw_v1-0-3-5_m4.dfu	10.10.2019 14:56	DFU File	82 KB	
🛄 Desktop					
Documents					
🖊 Downloads					
👌 Music					
Pictures					
📑 Videos					
Local Disk (C:)					
🛖 softwarepool (\\fsupdata) (S:)					
🛖 gheh (\\fsupdata\users\$\aut) (U:)					
🛫 public (\\fsupvault) (V:)					
🛖 xsite (\\fsupdata) (X:)					
🛖 CSS (\\fsupdata\Team) (Z:)					
· · ·					
File name: as703x_fw_v1-0-3	-5_m4.dfu		~	Dfu Files (*.dfu)	~
				Open Car	ncel
					.:

• If the firmware was correctly loaded, the "Upgrade" button will be enabled, click on it to start the upgrade process.

Figure 64:

Firmware Correctly Loaded

DfuSe Demo (v3 Available DFU Dev				_		×
STM Device in DF	U Mode	~	Application Mode:	DFU Mo		
Supports Uploa Supports Dowr Can Detach Enter <u>D</u> FU mode/ Actions	nload	Manifestation tolerant Accelerated Upload (ST) Leave DFU mode	Vendor ID:	Vendor II Procuct I Versior	D: DF11	
Select <u>T</u> arget(s):	Target Id 00 01 02	Name Internal Flash Option Bytes OTP Memory	Available Sector 256 sectors 2 sectors 1 sectors	ors (Double Cliu	ck for more	3)
Upload Action File: <u>C</u> hoose Transferred data : 0 KB(0 Bytes) of (size	Upgrade or V File: Vendor ID: Procuct ID: Version:	as703x_fw_v1-0-3-5_r 0483 Targets in			
- Operation duration			ter download Upgrade duration (Rem 		:) ⊻erify	
		File correctly	loaded.			
Abort					<u>Q</u> ui	it

• The pop-up window shown in the figure below will then open. Click on "Yes" to continue.

Figure 65: Confirm Firmware Upgrade

DfuSeDemo X	
Your device was plugged in DFU mode. So it is impossible to make sure this file is correct for this device. Continue however ?	
<u>Y</u> es <u>N</u> o	

• The upgrade process will start; upgrade status will be displayed at the bottom of the window.

Figure 66:

Firmware Upgrade Ongoing

🐊 DfuSe Demo (v:	3.0.5)			_		×
Available DFU Dev	ices					
STM Device in DF	U Mode	\sim	Application Mode:	DFU Mo	de:	
Supports Uploa		ation tolerant ted Upload (ST)	Vendor ID:	Vendor II Procuct I Version	D: DF11	
Enter <u>D</u> FU mode/	'HID detach <u>L</u> eav	e DFU mode				
Actions						
Select <u>T</u> arget(s):	Target Id Name		Available Sectors	(Double Clia	ck for more	e)
	00 Internal P	lash	256 sectors			
	01 Option B	/tes	2 sectors			
	02 OTP Mer	nory	1 sectors			
Upload Action File:			as703x_fw_v1-0-3-5_m4 0483Targets in fil	e:		
<u>C</u> hoose	. <u>U</u> pload	Procuct ID:	00 ST.			
Transferred data	size	Version:	0000			
O KB(O Bytes) of (80 KB(82736 Bytes)		r download Jpgrade duration (Remov	/e some FFs	1	
Operation duratio	n					
0	0:00:02	Ch <u>o</u> ose	Upgrade		<u>V</u> erify	
	Target 00: U	pgrading - Er	ase Phase (33%)			
Abort					<u>Q</u> u	it

• After the FW upgrade finished, click on "Leave DFU mode", then "Quit".

Figure 67:

Firmware Upgrade Finished

DfuSe Demo (v3 Available DFU Dev STM Device in DF Supports Uploa Supports Dowr Can Detach Enter DFU mode/ Actions	ices 1U Mode ad nload	Manifestation tolerant Accelerated Upload (ST) Leave DFU mode	Application Mode: Vendor ID: Procuct ID: Version:	DFU Mode: Vendor ID: 0483 Procuct ID: DF11 Version: 2200	
Select <u>T</u> arget(s):	00	Name nternal Flash Dption Bytes DTP Memory	Available Sector 256 sectors 2 sectors 1 sectors	rs (Double Click for mo	re)
Upload Action File: <u>C</u> hoose Transferred data 80 KB(82736 Byte Bytes) Operation duration 0	size es) of 80 KB(82	Procuct ID: 736 Version: Version:	as703x_fw_v1-0-3-5_m 0483 Targets in 0000 0000 er download Upgrade duration (Remo	file: T ove some FFs)	
Abort		Target 00: Upgrade	successful !	<u>D</u> u	uit

• You can now disconnect and reconnect the Mainboard and start using it in the GUI

Page

6 **Revision Information**

Changes from previous version to current revision v1-00

Initial version

Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

Correction of typographical errors is not explicitly mentioned.

amu

7 Legal Information

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Demo Kits, Evaluation Kits and Reference Designs are provided to recipient on an "as is" basis for demonstration and evaluation purposes only and are not considered to be finished end-products intended and fit for general consumer use, commercial applications and applications with special requirements such as but not limited to medical equipment or automotive applications. Demo Kits, Evaluation Kits and Reference Designs have not been tested for compliance with electromagnetic compatibility (EMC) standards and directives, unless otherwise specified. Demo Kits, Evaluation Kits and Reference Designs shall be used by qualified personnel only.

ams AG reserves the right to change functionality and price of Demo Kits, Evaluation Kits and Reference Designs at any time and without notice.

Any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed. Any claims and demands and any direct, indirect, incidental, special, exemplary or consequential damages arising from the inadequacy of the provided Demo Kits, Evaluation Kits and Reference Designs or incurred losses of any kind (e.g. loss of use, data or profits or business interruption however caused) as a consequence of their use are excluded.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

RoHS Compliant & ams Green Statement

RoHS Compliant: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories plus additional 4 substance categories (per amendment EU 2015/863), including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br/CI): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) and do not contain Chlorine (Cl not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Headquarters	Please visit our website at www.ams.com
ams AG	Buy our products or get free samples online at www.ams.com/Products
Tobelbader Strasse 30	Technical Support is available at www.ams.com/Technical-Support
8141 Premstaetten	Provide feedback about this document at www.ams.com/Document-Feedback
Austria, Europe	For sales offices, distributors and representatives go to www.ams.com/Contact
Tel: +43 (0) 3136 500 0	For further information and requests, e-mail us at ams_sales@ams.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface Development Tools category:

Click to view products by Ams manufacturer:

Other Similar products are found below :

DP130SSEVM ISO3086TEVM-436 ADP5585CP-EVALZ CHA2066-99F AS8650-DB MLX80104 TESTINTERFACE I2C-CPEV/NOPB ISO35TEVM-434 416100120-3 XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ MAXREFDES23DB# MAX9286COAXEVKIT# MAX3100EVKIT MAX13235EEVKIT MAX14970EVKIT# XR21B1424IV64-0A-EVB CMOD232+ MAX13042EEVKIT+ MAX14838EVKIT# MAXCAM705OV635AAA# MAX9205EVKIT DS100BR111AEVK/NOPB DC241C MAX9286RCARH3DB# MAX13035EEVKIT+ DC1794A SN65HVS885EVM EVB81112-A1 DFR0257 ZLR964122L ZLR88822L DC196A-B DC196A-A DC327A OM13585UL MAX16972AGEEVKIT# MARS1-DEMO3-ADAPTER-GEVB MAX7315EVKIT+ PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177# EVAL-ADM2567EEBZ EVAL-ADN4654EBZ MAX9275COAXEVKIT# MAX2202XEVKIT#