

Datasheet

DS000496

AS7225

Calibrated XYZ Chromatic Smart Lighting Director

v2-00 • 2019-Jun-28

Content Guide

1	General Description	3
1.1 1.2 1.3	Key Benefits & Features Applications Block Diagram	4
2	Ordering Information	6
3	Pin Assignment	7
3.1 3.2	Pin Diagram Pin Description	
4	Absolute Maximum Ratings	9
5	Electrical Characteristics	10
6	Optical Characteristics	11
7	Functional Description	14
7.1 7.2 7.3	Calibrated XYZ Chromatic Smart Lighti Director – Overview Inputs Outputs	14 16
8	I ² C Slave Interface	
8.1 8.2 8.3 8.4 8.5 8.6	I ² C Feature List	19 20 22 24
9	I ² C Master Interface (Local Ser	
	Interface)	
9.1 9.2	I ² C Feature List	
9.2	I ² C Write Access	
9.4	I ² C Read Access	27
9.5	I ² C Master Timing Characteristics	28

10	Register Description	30
10.1 10.2	Register Overview Detailed Register Description	
11	UART Command Interface	51
11.2 11.3 11.4	UART Protocol	52
12	Smart Lighting Command Interface	55
12.1	AT Commands	56
13	Application Information	62
13.1 13.2 13.3	SchematicPCB LayoutPCB Pad Layout	65
14	Package Drawings & Markings	67
15	Tape & Reel Information	69
16	Soldering & Storage Information	70
16.1 16.2 16.3	Manufacturing Process Considerations Storage Information Rebaking Instructions	71
17	Revision Information	73
18	Legal Information	75

1 General Description

The AS7225 is designed for use directly in tunable white luminaires, replacement lamps (bulbs) and light-engines/modules. The AS7225 Smart Lighting Director incorporates an embedded digital tristimulus chromatic calibrated for life nano-optic sensor providing direct CIE1931 XYZ and CIE 1976 u'v' coordinate mapping. Adaptive algorithmic support enables a companion microprocess or to implement closed-loop, autonomous adjustment of variable CCT and daylight responsive LED lamps and luminaires. The AS7225 arrives pre-calibrated, and is designed for rapid integration into white-tunable and daylight responsive luminaire designs, delivering directives to the local microprocessor via an industry-standard I²C bus or UART interface.

An additional on-chip I²C master provides native support for select **ams** sensors, such as the TSL25721 or TSL45315 for combining in-looking CCT tunable director functions with outward-looking ambient light sensing and daylighting control. The AS7225's silicon via nano-optic deposited interference filters deliver high-stability over both time and temperature. The Director's integrated intelligence enables **ams** factory CCT calibration, which mitigates chip to chip variation. By combining this factory calibration with a supported luminaire design-level "application matrix", an end luminaire design can often eliminate the need for light-by-light calibration while delivering lifetime color control. With such a system calibration, accuracies within 2-4 Macadam steps are possible. The LGA package includes a built in aperture to control light entering the sensor array. No additional optics are required.

1.1 Key Benefits & Features

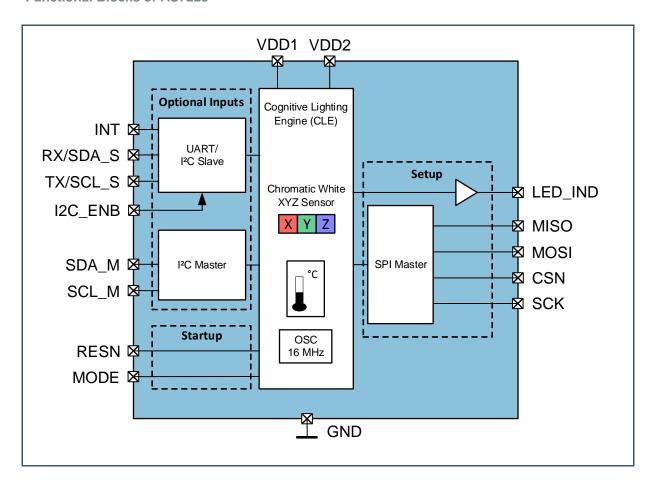
The benefits and features of AS7225, Calibrated XYZ Chromatic Smart Lighting Director, are listed below:

Figure 1: Added Value of Using AS7225

Benefits	Features
Provides accurate external host MCU supervision of variable CCT and spectrally tunable lighting	Integrated intelligence with XYZ tri-stimulus color sensing for direct translation to CIE 1931 standard observer color map
Uses accurate XYZ sensed data to provide a host MCU, with its own PWMs, simple to use directives for closed loop tuned LED lighting	Automatically directs external warm and cool white PWM controlled LED strings for chromatic LED luminaire tuning. Also directs dimming (combined with PWM color tuning)
Automatic spectral and lumen maintenance over temperature and time	Supports autonomous color point and lumen output adjustment resulting in automatic spectral and lumen maintenance
Provides direct register or AT command based access to closed loop tuning directives	I ² C slave digital or UART Interface

Benefits	Features
Used to interface other ams sensors with native support by the AS7225 (e.g. TSL2572 for adding Daylighting operation)	I ² C master digital or UART interface
Rapid luminaire integration	Simple register-based or AT commands to control and configure key light-tuning supervisory and IoT sensor expansion functions
Complete data on lighting environment	Readable registers or AT commands for CIE 1931 and 1975 color-point coordinates, CCT, duv and lux
Calibrated sensing with minimal drift over time and temperature	Chromatic white color realized by silicon interference filters
Small package, with build in aperture	20-pin LGA package 4.5 mm x 4.7 mm x 2.5 mm, with integrated aperture, -40 °C to 85 °C

1.2 Applications

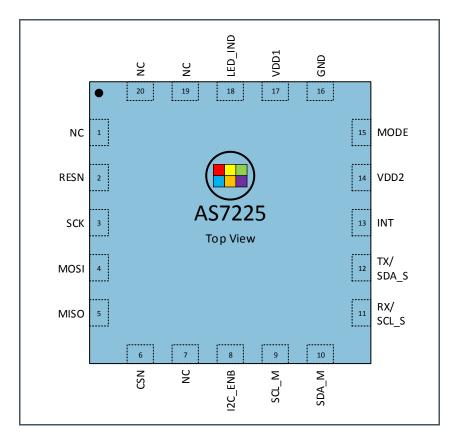

- Commercial, retail, and residential CCT tunable LED lighting systems
- Higher precision replacement lamps/bulbs
- Intelligent, networked solid state lighting director for variable CCT chromatic tuning luminaires systems
- Integrated smart lighting control of variable CCT white lighting solutions
- Luminaires intended to meet California Title 24 daylighting requirements
- Networked lighting systems with IoT sensor expandability

1.3 Block Diagram

The functional blocks of this device are shown below:

Figure 2: Functional Blocks of AS7225

2 Ordering Information


Ordering Code	Description	Package	Marking	Delivery Form	Delivery Quantity
AS7225 – BLGT	Calibrated XYZ Chromatic Smart Lighting Director – Standard Reel	20-Pin LGA	AS7225	13-inch Tape & Reel	2000 pcs/reel
AS7225 – BLGM	Calibrated XYZ Chromatic Smart Lighting Director – Mini Reel	20-Pin LGA	AS7225	7-inch Mini Tape & Reel	500 pcs/reel

3 Pin Assignment

3.1 Pin Diagram

Figure 3: Pin Diagram for AS7225 (Top View)

3.2 Pin Description

Figure 4: Pin Description of AS7225

Pin Number	Pin Name	Pin Type ⁽¹⁾	Description
1	NC	-	Not connected
2	RESN	DI	Reset pin, active low
3	SCK	DI	SPI serial clock
4	MOSI	DO	SPI MOSI

Pin Number	Pin Name	Pin Type ⁽¹⁾	Description
5	MISO	DI	SPI MISO
6	CSN	DO	Chip select for the required external flash memory, active low
7	NC	-	Not connected
8	I2C_ENB	DI	Select UART (Low) or I ² C (High) Operation
9	SCL_M	DI/O	I ² C master clock pin
10	SDA_M	DI/O	I ² C master data pin
11	RX/SCL_S	DI/O	RX (UART) or SCL_S (I ² C Slave) Depending on I2C_ENB
12	TX/SDA_S	DI/O	TX (UART) or SDA_S (I ² C Slave) Depending on I2C_ENB
13	INT	DO	Interrupt, active low
14	VDD2	Р	Voltage supply
15	MODE	DI	Mode selection pin. Set to Mode=0 via 1000hm resistor. Other Modes are reserved.
16	GND	Р	Ground
17	VDD1	Р	Voltage supply
18	LED_IND	AO	LED Driver output for Indicator LED, current sink.
19	NC	-	Not connected
20	NC	-	Not connected

(1) Explanation of abbreviations:

DI Digital Input
DO Digital Output
DI/O Digital In Out
AO Analog out
AI Analog In
P Power pin

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Operating Conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The device is not designed for high-energy UV (ultraviolet) environments, including upward looking outdoor applications, which could affect long-term optical performance. All voltages with respect to GND. Device parameters are guaranteed at VDD = 3.3 V and TAMB = 25 °C unless otherwise noted.

Absolute Maximum Ratings of AS7225

Symbol	Parameter	Min	Тур	Max	Unit	Comments
Electrical Param	neters					
V _{DD1_MAX}	Supply Voltage VDD1	-0.3		5	V	Pin VDD1 to GND
V _{DD2_MAX}	Supply Voltage VDD2	-0.3		5	V	Pin VDD2 to GND
V_{DD_IO}	Input/Output Pin Voltage	-0.3		VDD + 0.3	V	Low Voltage pins to GND
I _{SCR}	Input Current (latch-up immunity)		± 100		mA	JESD78D
Electrostatic Dis	scharge					
ESD _{HBM}	Electrostatic Discharge HBM		± 1000		V	JS-001-2014
ESD _{CDM}	Electrostatic Discharge CDM		± 500		V	JEDEC JESD22- C101F Oct 2013
Temperature Ra	nges and Storage Conditions					
T _{STRG}	Storage Temperature Range	-40		85	°C	
T _{BODY}	Package Body Temperature			260	°C	IPC/JEDEC J-STD- 020 (1)
RH _{NC}	Relative Humidity (non- condensing)	5		85	%	
MSL	Moisture Sensitivity Level		3			Represents a 168- hour max. floor lifetime.
Bump Temperat	ure (soldering)					
T _{PEAK} ⁽¹⁾	Peak Temperature	235		245	°C	Solder Profile

⁽¹⁾ The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices." The lead finish for Pb-free leaded packages is "Matte Tin" (100 % Sn)

5 Electrical Characteristics

All limits are guaranteed with VDD = VDD1 = VDD2 = 3.3 V, $T_{\text{AMB}} = 25 \,^{\circ}\text{C}$. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods. If VDD1 and VDD2 must be sourced by the same $2.97 \,^{\circ}\text{V}$ to $3.6 \,^{\circ}\text{V}$ supply. All voltages with respect to GND.

Figure 6: Electrical Characteristics of AS7225

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
General Operati	ng Conditions					
VDD1 / VDD2	Voltage Operating Supply		2.97	3.3	3.6	V
Т _{АМВ}	Operating Temperature		-40	25	85	°C
I _{VDD}	Operating Current				5	mA
Internal RC Osc	illator					
F _{osc}	Internal RC Oscillator Frequency		15.7	16	16.3	MHz
t _{JITTER} (1)	Jitter	@25 °C			1.2	ns
Temperature Se	ensor					
D_Temp	Absolute Accuracy of the Internal Temperature Measurement		-8.5		8.5	°C
Indicator LED						
I _{IND}	LED Current		1		8	mA
I _{ACC}	Accuracy of Current		-30		30	%
V_{LED}	Voltage Range of Connected LED	V _{DS} of current sink	0.3		VDD	V
Digital Inputs ar	nd Outputs					
I _{IH} , I _{IL}	Logic Input Current	V _{in} =0 V or VDD	-1		1	μΑ
V _{IH}	CMOS Logic High Input		0.7*VDD		VDD	V
V _{IL}	CMOS Logic Low Input		0		0.3*VDD	V
V _{OH}	CMOS Logic High Output	I=1 mA			VDD-0.4	V
V _{OL}	CMOS Logic Low Output	I=1 mA			0.4	V
t _{RISE}	Current Rise Time	C(Pad)=30 pF			5	ns
t _{FALL}	Current Fall Time	C(Pad)=30 pF			5 ⁽¹⁾	ns

⁽¹⁾ Guaranteed, not production tested.

6 Optical Characteristics

The AS7225 contains an integrated tristimulus sensing element designed to meet the XYZ standard observer response compliant with the CIE 1931 standard. The device contains a 16-bit integrating analog-to-digital converter, which integrates current from the photodiodes. To ensure the integrity of the data, upon completion of an integration cycle, results are transferred to double-buffered registers.

Standard observer tristimulus (XYZ) interference filters are applied to the Calibrated XYZ Chromatic Smart Lighting Director optical channels as part of the CMOS process. This unique process enables filter responses that mimic the human eye and is extremely stable over both operating temperature and time. This in turn allows lifetime correlated color temperature (CCT) calibration to be performed as part of the manufacturing process. Calibration is accomplished using standard white LEDs at a variety of CCTs to deliver high accuracy and typically eliminate the need for light-by-light calibration in most designs. Note, that any change of the pre-calibrated measurement conditions have an impact on the accuracy of the measurement results. In such cases a design-level diffuser or color brightness calibration is recommended to achieve highest accuracies. The AS7225 provides 2 calibration matrices, a factory calibration and a second application specific matrix to optimize the measurement performance. The additional calibration values will be set using the Smart Lighting Command Set directives ATNORMGAIN and ATNORMINTT. These settings will be saved in the external flash and reloaded automatically by the sensor firmware. See Section 12 for description of the complete Smart Lighting Command Set.

The AS7225 LGA package contains an internal aperture that provides a package field of view (PFOV) of ± 20.5°. External optics can be used as needed to expand or reduce this built in PFOV.

Sensor data readout to the maximum count value range is limited by the ADC. The maximum count range value of 65535 is only reached with an integration time $t_{\rm INT}$ of approximately 177.92ms. Below that value, the FSR will be less than the maximum 16-bit /65536 count maximum as described in the chart below.

Figure 7:
Overview Signal Resolution

Bit Resolution	t _{INT} in ms	Maximum Counts
10	2.78	1024
11	5.56	2048
12	11.12	4096
13	22.24	8192
14	44.48	16384
15	88.96	32768
16	177.92	65536

Figure 8: AS7225 Optical Characteristics

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
Color_m ⁽²⁾	Color Measurement Accuracy	White light CCT=2700 K, 3500 K, 4500 K and 5700 K		0.002		du'v'
Z_count	Z Channel Count Accuracy	White light CCT = 5700 K	3.375	4.5	5.625	counts/ (µW/cm²)

- (1) Typical values at Lux \geq 50, integration time = 400.4 ms. Gain = 1x, T_{AMB} = 25 °C
- (2) Calibration and measurements are made using diffused light

Figure 9: Normalized Spectral Responsivity

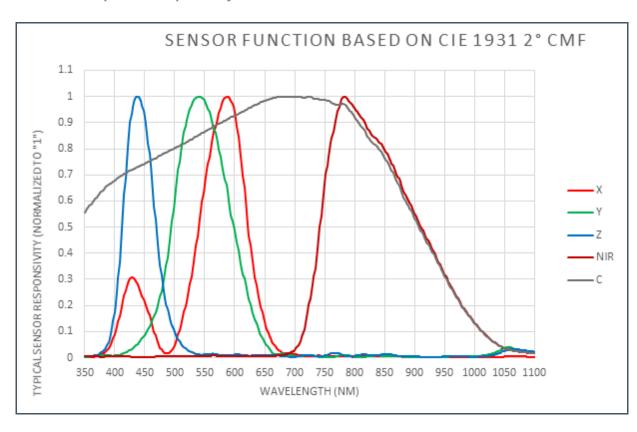
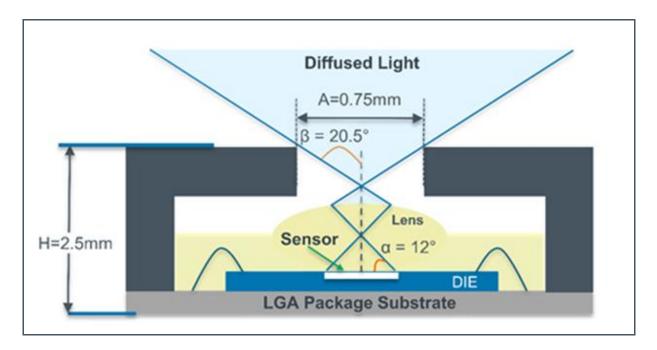
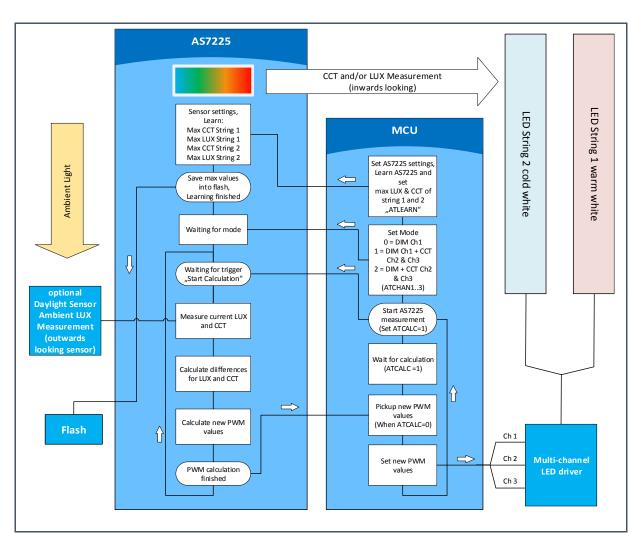



Figure 10: AS7225 LGA Average Field of View



7 Functional Description

7.1 Calibrated XYZ Chromatic Smart Lighting Director – Overview

By sensing a sample of the mixed warm and cool CCTs as either a reflection from the diffuser or other light-guide/optical light gathering technique, the AS7225 serves as a calibrated chromatic smart lighting director for a companion host MCU. Please note, that non-diffused applications require some form of reflective or other light gathering that delivers an adequate sample of mixed light to the sensor. Care should be taken to fulfill the angle of incidence requirements of the nano-optic filter set. Director operation also provides selectable dimming information for either PWM-based or current-based luminaire dimming designs.

Figure 11: AS7225 Workflow Abstract

The AS7225 initial setup and ongoing parameter storage is automatically done by software within the required external serial Flash memory, via SPI bus. Only **ams**-verified models of Flash devices can be supported. A subset of supported devices is noted in the UART Command Interface section of this document, which also provides a reference to the current list of supported Flash memory devices. For the Flash memory, overview please refer to Figure 83. A SPI Flash device is a required operating companion to the AS7225. Using other devices can cause communication issues and may not be compatible. Flash timing is provided in Figure 81 and Figure 82.

A binary image software configuration tool is available from **ams** to allow the luminaire, lamp or driver manufacturer to create their own "factory default" conditions that will be integrated with the **ams**—supplied initial binary image to create a ready-to-program default Flash image. The configuration tool is available from https://download.ams.com (see Smart Lighting Command Interface section).

XYZ white color point measurement is accomplished via nano-optic interference filters, which deliver a CIE standard-observer type spectral response. As an extension of the CMOS processing of the device, the filters are extremely stable over time and temperature. To minimize off-angle light exposure and ensure accuracy, the AS7225 LGA package contains an internal aperture that limits the sensor field of view (PFOV) of ± 20.5°, as shown in the Figure 1 above. External optics can be used as needed to expand or reduce this built in PFOV.

For daylight operation, the AS7225 can be used two ways. As a standalone device pointing out of the luminaire, or if pointing inward for white color, it can support daylighting operation by using an I²C master connected (ams TSL25721 or TSL45315) for ambient light sensing. In either case, the AS7225 is the daylighting engine and directs the external MCU.

TSL25721 device combines a channel 0 (CH0) which is responsive to both visible and infrared light, and channel 1 (CH1) which is responsive primarily to infrared light. Therefore, to get the LUX, a calibration is necessary. In this calibration, both channels has to be considered. First counts per lux (CPL) needs to be calculated in this calibration method.

Counts per LUX (CPL):

$$CPL = \frac{CH0 - (1.87 * CH1)}{LUX}$$

Calibration scalar:

$$LUX = K0 * ADC0 - K1 * ADC1$$

Default setting K0 is 0.2178 (normal sunlight conditions in Europe in May, 1m distance to a window). If K0=0, the result for K1 will be inverted to prevent negative LUX values. At different light conditions, this value has to adjust.

Example:

Spectrometer value = 9764 Lux, CH0 = 22870, CH1 = 2734 \rightarrow CPL = 1.8186

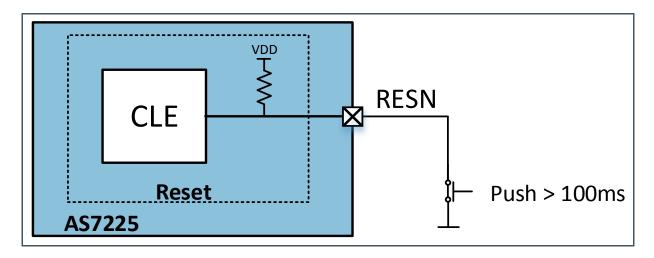
K0 = 1/CPL = 0.549855,

K1 = 1.87/CPL = 1.028228

To save the values, write in the console tab, ATLXSL0=0.549855 and ATLXSL1= 1.028228

Overall AS7225 timing generation uses an on chip 16MHz temperature compensated oscillator for master clock timing.

7.2 Inputs


7.2.1 Mode Pin

The AS7225 MODE pin must be connected to ground (GND) via a 100 Ω resistor (1%) to set the AS7225 mode of operation. All other MODEs (using other resistor values) are reserved.

7.2.2 Reset

Pulling down the RESN pin for longer than 100 ms resets the AS7225.

Figure 12: Reset Circuit

7.3 Outputs

7.3.1 Indicator LED

An LED, when connected to pin LED_IND, is used to indicate on state and programming progress of the device. During companion SPI Flash programming the AS7225 indicator LED is off. When

programming is finished and the programming tool is disconnected the indicator LED turns on. In case of an error while programming the LED starts a blinking operation.

The LED_IND pin is set for 1 mA LED operation by the AS7225 factory firmware, and is not under user control. The indicator LED can be enabled or disabled by using the ATLED0 command or the LED_CONFIG register (0x07). Consideration should be taken with respect to any final product design to avoid light intrusion from the indicator LED into the direct or reflected field of view of the sensor.

Refer to the separate **ams** document for a complete description of AS7225 Firmware Update Methodology.

7.3.2 Interrupt Operation

The INT-pin informs the external MCU that the calculation of new PWM values is finished and the data are ready to read. To activate the INT-pin, bit1 of the DIR_CONF command has to be enabled (INT=1). By using UART the ATINTRP command has to be enabled. When the DATA_RDY register bit finished the integration and the new PWM value calculation is finished the INT-pin of the DIR_CONF register pulled down to 0. After reading of the PWM values due to the external MCU the INT-pin will be reset to 1 automatically.

8 I²C Slave Interface

Interface and control can be accomplished through an I²C compatible slave interface to a set of registers that access device control functions and output data. These control and output registers on the AS7225 are, in reality, implemented as virtual registers in software. The actual I²C slave hardware registers number only three and are described in the table below. The steps necessary to access the virtual registers defined in the pages that follow are explained in pseudocode for external I²C master writes and reads below. A compatible companion Flash device must be incorporated and preprogrammed for I²C virtual-registers to function.

8.1 I²C Feature List

- Fast mode (400 kHz) and standard mode (100 kHz) support
- 7+1-bit addressing mode
- Write format: ByteRead format: Byte

Figure 13:

I²C Slave Device Address and Physical Registers

Entity	Description	Note
Device Slave Address	8-bit slave address	Byte = 1001001x (device address = 49 h) x= 1 for Master Read (byte = 93 h) x= 0 for Master Write (byte = 92 h)
STATUS Register	I ² C slave interface STATUS register Read-only	Register Address = 0x00h Bit 1: TX_VALID 0 -> New data may be written to WRITE register 1 -> WRITE register occupied. Do NOT write. Bit 0: RX_VALID 0 -> No data is ready to be read in READ register. 1 -> Data byte available in READ register.
WRITE Register	I ² C slave interface WRITE register Write-only	Register Address = 0x01 8 bits of data written by the I ² C Master intended for receipt by the I ² C slave. Used for both virtual register addresses and write data.
READ Register	I ² C slave interface READ register Read-only	Register Address = 0x02 8 bits of data to be read by the I ² C Master.

8.2 I²C Virtual Register Write Access

I²C Virtual Resister Byte Write, detailed below, shows the pseudocode necessary to write virtual registers on the AS7225. Note that, because the actual registers of interest are realized as virtual registers, a means of indicating whether there is a pending read or write operation of a given virtual register is needed. To convey this information, the most significant bit of the virtual register address is used as a marker. If it is 1, then a write is pending, otherwise the slave is expecting a virtual read operation. The pseudocode illustrates the proper technique for polling of the I²C slave status register to ensure the slave is ready for each transaction.

8.2.1 I²C Virtual Register Byte Write

Pseudocode

- Poll I²C slave STATUS register;

 If TX_VALID bit is 0, a write can be performed on the interface;
- 3 Send a virtual register address and set the MSB of the register address to 1 to indicate the pending write;
- 4 Poll I²C slave STATUS register;
- If TX_VALID bit is 0, the virtual register address for the write has been received and the data may now be written;
- 6 Write the data.

Sample Code


```
// Read slave I2C status to see if the write buffer is ready.
             status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG) ;
             if ((status & I2C AS72XX SLAVE TX VALID) == 0)
                   // No inbound TX pending at slave. Okay to write now.
                   break;
      }
      // Send the virtual register address (setting bit 7 to indicate a pending
      write).
                   i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, (virtualReg | 0x80));
      while (1)
      {
             // Read the slave I2C status to see if the write buffer is ready.
             Status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG) ;
             if ((status & I2C_AS72XX_SLAVE_TX_VALID) == 0)
                   // No inbound TX pending at slave. Okay to write data now.
                   break;
      }
      // Send the data to complete the operation.
      i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, d);
}
```

8.3 I²C Virtual Register Read Access

I²C Virtual Register Byte Read, detailed below, shows the pseudocode necessary to read virtual registers on the AS7225. Note that in this case, reading a virtual register, the register address is not modified.

8.3.1 I²C Virtual Register Byte Read

```
Pseudocode
     Poll I<sup>2</sup>C slave STATUS register;
     If TX_VALID bit is 0, the virtual register address for the read may be
2
     written;
3
     Send a virtual register address;
4
     Poll I<sup>2</sup>C slave STATUS register;
5
     If RX_VALID bit is 1 the read data is ready;
     Read the data.
Sample Code
uint8_t i2cm_AS72xx_read(uint8_t virtualReg)
{
      volatile uint8_t status, d;
      while (1)
      {
             // Read slave I2C status to see if the read buffer is ready.
             Status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG) ;
             if ((status & I2C_AS72XX_SLAVE_TX_VALID) == 0)
                    // No inbound TX pending at slave. Okay to write now.
```

// Send the virtual register address (setting bit 7 to indicate a pending

i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, virtualReg);

// Read the slave I2C status to see if our read data is available.

status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG);

break ;

```
Datasheet • PUBLIC
DS000496 • v2-00 • 2019-Jun-28
```

}

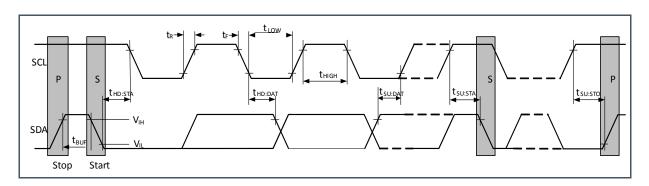
{

write).

while (1)

The details of the i2cm_read() and i2cm_write() functions in previous Figures are dependent upon the nature and implementation of the external I2C master device.

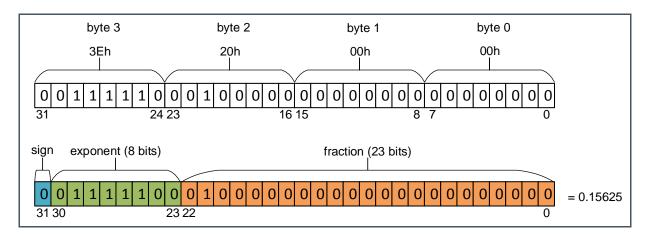
8.4 I²C Slave Timing Characteristics


Figure 14: Electrical Characteristics of AS7225

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I ² C Interface						
f _{SCLK}	SCL Clock Frequency		0	100	400	kHz
t _{BUF}	Bus Free Time Between a STOP and START		1.3			μs
thd:sta	Hold Time (Repeated) Start		0.6			μs
tLOW	LOW Period of SCL Clock		1.3			μs
tніgн	HIGH Period of SCL Clock		0.6			μs
tsu:sta	Setup Time for a Repeated START		0.6			μs
t _{HD:DAT}	Data Hold Time		0		0.9	μs
t _{SU:DAT}	Data Setup Time		100			ns
t _R	Rise Time of Both SDA and SCL		20		300	ns
t _F	Fall Time of Both SDA and SCL		20		300	ns

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tsu:sto	Setup Time for STOP Condition		0.6			μs
Св	Capacitive Load for Each Bus Line	CB — total capacitance of one bus line in pF			400	pF
C _{I/O}	I/O Capacitance (SDA, SCL)				10	pF

Figure 15: I²C Slave Timing Diagram



8.5 4-Byte Floating-Point (FP) Registers

In addition to single and two byte, several 4-byte registers (hex) are shown in the tables starting below. Here is an example of how the registers are used to represent floating point data (based on the IEEE 754 standard):

Figure 16: Example of the IEEE 754 Standard

The floating-point (FP) value assumed by 32-bit binary data with a biased exponent e (the 8-bit unsigned integer) and a 23-bit fraction is (for the above example):

Equation 1:

FPvalue =
$$(-1)^{sign} \left(1 + \sum_{i=1}^{23} b_{23-i} 2^{-i} \right) \times 2^{(e-127)}$$

Equation 2:

FP value =
$$(-1)^0 \left(1 + \sum_{i=1}^{23} b_{23-i} 2^{-i}\right) \times 2^{(124-127)}$$

Equation 3:

$$FPvalue = 1 \times (1 + 2^{-2}) \times 2^{(-3)} = 0.15625$$

8.6 I²C Virtual Register Set

A register overview and a detailed description of the AS7225 I²C register set you find in chapter 10. All register data are hex, and all multi-byte entities are Big Endian (most significant byte is situated at the lowest register address).

Multiple byte registers (2-byte integer or 4-byte floating point) must be read in the order of ascending register addresses (low to high). In addition, if capable of being written to, have to be written in the order of ascending register addresses as well.

9 I²C Master Interface (Local Sensor Interface)

The I²C Master interface can be used to connect external sensors such as the current TSL25721 or legacy TSL45315 ambient light sensor (or other external sensors with AS7225 native support). Once the AS7225 has detected the supported ambient light sensor, daylight-responsive dimming directives can be activated by using the ATCHANMOD command or DIR_CONF register.

9.1 I²C Feature List

- Clock is set to 400 kHz
- 7+1-bit addressing mode.
- Write formats: Single-Byte-Write, Page-Write
- Read formats: Random-Read, Sequential-Read

9.2 I²C Protocol

Figure 17:

I²C Symbol Definition

Symbol	Definition	RW	Note
S	Start condition after stop	R	1-bit
Sr	Repeated start	R	1-bit
SW	Slave address for write	R	Slave address
SR	Slave address for read	R	Slave address
WA	Word address	R	8-bit
А	Acknowledge	W	1-bit
N	No Acknowledge	R	1-bit
Data	Data/write	R	8-bit
Data(n)	Data/read	W	8-bit
Р	Stop condition	R	1-bit
WA++	Slave increment word address	R	During acknowledge

The above I²C symbol definition table describes the symbols used in the following Read and Write descriptions.

9.3 I²C Write Access

Byte Write and Page Write formats are used to write data to the slave.

Figure 18: I²C Byte Write

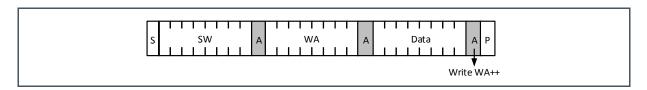
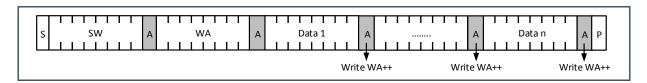
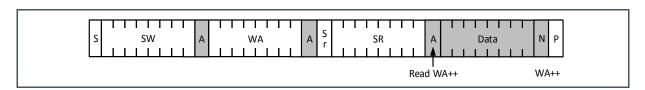



Figure 19: I²C Page Write


The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-write address is followed by the word address. After the word address, any number of data bytes can be sent to the slave. The word address is incremented internally, in order to write subsequent data bytes on subsequent address locations.

For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by the device-read address, when the bus is in IDLE state. The device-read address is always followed by the first register byte transmitted from the slave. In Read Mode, any number of subsequent register bytes can be read from the slave. The word address is incremented internally.

9.4 I²C Read Access

Random, Sequential and Current Address Read are used to read data from the slave.

Figure 20: I²C Random Read

Random Read and Sequential Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master.

The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address.

In order to change the data direction a repeated START condition is issued on the first SCL pulse after the acknowledge bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state, the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a not-acknowledge, and issues a STOP condition on the bus.

Figure 21: I²C Sequential Read

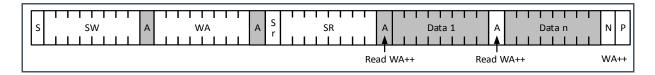
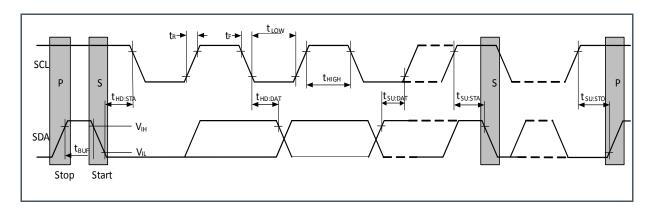


Figure 21 shows the format of an I²C sequential read access. Sequential Read is the extended form of Random Read, as more than one register-data bytes are transferred subsequently. In difference to the Random Read, for a sequential read the transferred register-data bytes are responded by an acknowledgement from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to send a not-acknowledge following the last data byte and generate the STOP condition subsequently.

The AS7225 is compatible to the NXP two wire specifications. http://www.nxp.com/documents/user_manual/UM10204.pdf Version 4.0 Feb 2012 for standard mode and fast mode.

9.5 I²C Master Timing Characteristics


Figure 22: I²C Master Timing Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I ² C Interfa	ce					
fsclk	SCL Clock Frequency			400	400	kHz
tBUF	Bus Free Time Between a STOP and START		1.3			μs
thd:STA	Hold Time (Repeated) START		0.6			μs
t _{LOW}	LOW Period of SCL Clock		1.3			μs

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tнідн	HIGH Period of SCL Clock		0.6			μs
tsu:sta	Setup Time for a Repeated START		0.6			μs
thd:dat	Data Hold Time		0		0.9	μs
tsu:dat	Data Setup Time		100			ns
t _R	Rise Time of Both SDA and SCL		20		300	ns
t _F	Fall Time of Both SDA and SCL		20		300	ns
tsu:sto	Setup Time for STOP Condition		0.6			μs
Св	Capacitive Load for Each Bus Line	CB – total capacitance of one bus line in pF			400	pF
C _{I/O}	I/O Capacitance (SDA, SCL)				10	pF

Figure 23: I²C Master Timing Diagram

10 Register Description

10.1 Register Overview

Figure 24: I²C Virtual Register Overview

Adress	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
Device V	ersion Registers								
0x00	HW_V_H								
0x01	HW_V_L								
0x02	FW_V_H								
0x03	FW_V_L								
General	Setup and Control R	egisters							
0x04	CONFIGURATIO N	SRST	RSVD	G	AIN	RS	SVD	DATA _RDY	FRST
0x05	INTEGRATION_T IME								
0x06	TEMPERATURE								
0x07	LED_CONFIG								LED_I ND
0x4F	ESP								
Director	Operations Register	•							
0x60	DIR_CONF		CHAN_	_MODE				INT	LEAR N
0x61	DIR_CTRL								STAR T
0x62	DIR_CH_1_H								
0x63	DIR_CH_1_L								
0x64	DIR_CH_2_H								
0x65	DIR_CH_2_L								
0x66	DIR_CH_3_H								
0x67	DIR_CH_3_L								
0x70	DIR_LUXT_H								
0x71	DIR_LUXT_L								
0x72	DIR_CCTT_H								
0x73	DIR_CCTT_L								

Adress	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
Raw Valu	ue Registers								
0x08	RAW_VALUE_0_ H								
0x09	RAW_VALUE_0_ L								
0x0A	RAW_VALUE_1_ H								
0x0B	RAW_VALUE_1_ L								
0x0C	RAW_VALUE_2_ H								
0x0D	RAW_VALUE_2_ L								
0x0E	RAW_VALUE_3_ H								
0x0F	RAW_VALUE_3_ L								
0x10	RAW_VALUE_4_ H								
0x11	RAW_VALUE_4_ L								
0x12	RAW_VALUE_5_ H								
0x13	RAW_VALUE_5_ L								
Calibration	on Coefficient Regis	sters							
0x50	COEF_DATA_0								
0x51	COEF_DATA_1								
0x52	COEF_DATA_2								
0x53	COEF_DATA_3								
0x54	COEF_READ								
0x55	COEF_WRITE								
Calibrate	ed Sensor Result Re	gister							
0x14: 0x17	Cal_X								
0x18: 0x1B	Cal_Y								
0x1C: 0x1F	Cal_Z								
0x20: 0x23	Cal_x_1931								

Adress	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
0x24: 0x27	Cal_y_1931								
0x28: 0x2B	Cal_u_pri								
0x2C: 0x2F	Cal_v_pri								
0x30: 0x33	Cal_u								
0x34: 0x37	Cal_v								
0x38: 0x3B	DUV								
0x3C	LUX_H								
0x3D	LUX_L								
0x3E	CCT_H								
0x3F	CCT_L								
Firmware	Update Registers								
0x48	FW_CNTRL	STAR T	STOP	BYTE S_TR ANSF ERED	LOCK	SWIT CH	BANK 1	ERR OR	CHKS UM
0x49	FW_BYTE_COU NT_H								
0x4A	FW_BYTE_COU NT_L								
0x4B	FW_PAYLOAD								

10.2 Detailed Register Description

10.2.1 Hardware Version Registers (Address 0x00/0x01)

These byte registers are used together as HW_V_H: HW_V_L

Figure 25:

Hardware Version Register High

Addr: 0x00		HW_VERSION_	Н	
Bit	Bit Name	Default	Access	Bit Description
7:0	Device Type	0x40	R	Device type number

Figure 26:

Hardware Version Register Low

Addr: 0x01		HW_VERSION_	L	
Bit	Bit Name	Default	Access	Bit Description
7:0	HW Version	0x19	R	Hardware version number

10.2.2 Firmware Version Registers (Address 0x02/0x03)

These byte registers are used together as FW_V_H : FW_V_L . Set register 0x02 or 0x03 to 1-3 to get each firmware positions. Other write values set registers 0x02/0x03 to zero.

Figure 27:

Firmware Version Register High

Addr: (Addr: 0x02 (R/W)		FW_VERSION_H			
Bit	Bit Name	Default	Access	Bit Description		
15:8	MAJOR Version	0	R	Major version high byte		
15:8	PATCH Version	0	R	Patch version high byte		
15:8	BUILD Version	0	R	Build version high byte		
7:0	Firmware Position	0	W	FW position setting 1= Read out Major version 2= Read out Patch version 3= Read out Build version		

Figure 28: Firmware Version Register Low

Addr: 0x03 (R/W)		FW_VERSIC	FW_VERSION_L			
Bit	Bit Name	Default	Access	Bit Description		
7:0	MAJOR Version	0	R	Major version low byte		
7:0	PATCH Version	0	R	Patch version low byte		
7:0	BUILD Version	0	R	Build version low byte		
7:0	Firmware Position	0	W	FW position setting 1= Read out Major version 2= Read out Patch version 3= Read out Build version		

10.2.3 Configuration Register (Address 0x04)

Figure 29: Configuration Register

Addr: 0x04 (R/W)		CONFIGURATION		
Bit	Bit Name	Default	Access	Bit Description
7	SRST	0	R/W	R = Gain error W= Software reset
6	RSVD	0	-	Reserved, do not use
5:4	GAIN	00	R/W	Gain Setting 00= 1x Gain; 01= 3.7x; 10= 16x; 11= 64x
3:2	RSVD	00	-	Reserved, do not use
1	DATA_RDY	0	R	1= Conversion Data Ready to read Cleared (=0) after read if set Cleared (=0) after device reset
0	FRST	0	W	Soft reset set to 1 for soft reset. Goes to 0 when complete

10.2.4 Integration Time Register (Address 0x05)

Figure 30:

INTEGRATION_TIME Register

Addr: 0x05 (R/W)		INTEGRATION_TIME		
Bit	Bit Name	Default	Access	Bit Description
7:0	INTEGRATION_TIME	20	R/W	Sensor integration time = <value>*2.8 ms (valid value range 1-255)</value>

10.2.5 Device Temperature Register (Address 0x06)

Figure 31:

Temperature Register

Addr: 0x06		TEMPERATURE		
Bit	Bit Name	Default	Access	Bit Description
7:0	TEMPERATURE	-	R	Device internal temperature (1byte). Byte is a hex integer value, in °C.

10.2.6 LED Configuration Register (Address 0x07)

Figure 32:

LED_CONFIG Register

Addr: 0x07 (R/W)		LED_CONFIG	LED_CONFIG		
Bit	Bit Name	Default	Access	Bit Description	
7:1	RSVD	-	-	Reserved	
0	LED_CONFIG	0x01	R/W	Enable/disable LED_IND	

10.2.7 External Device Status Register (Address 0x4F)

Figure 33: ESP Register

Addr: 0x4F		ESP	ESP		
Bit	Bit Name	Default	Access	Bit Description	
7	RSVD	-	-	Reserved	
6	ESP	-	R	1= An external ALS is available (TSL25721 or TSL45315)	
5:0	RSVD	-	-	Reserved	

10.2.8 Director Configuration Register (Address 0x60)

Figure 34: DIR_CONF Register

Addr: 0x60 (R/W)		DIR_CONF		
Bit	Bit Name	Default	Access	Bit Description
7:4	CHAN_MODE	-	R/W	Select channel mode 0= Daylighting (CH1) 1= Daylighting (CH1) + Color Tuning (CH2/3) 2= Daylighting + Color Tuning (CH2/3) 3-15= Reserved, do not use
1	INT	-	R/W	1= Enable interrupt pin 0= Disable
0	LEARN	-	R/W	1= Activate learn mode Cleared by AS7225 automatically after being set and device reset.

10.2.9 Director Control Register (Address 0x61)

Figure 35: DIR_CTRL Register

Addr: 0x61		DIR_CTRL		
Bit	Bit Name	Default	Access	Bit Description
				1 = Host MCU has completed last directive and is ready for new AS7225 conversion start.
0	START	0	R/W	Cleared by AS7225 automatically when PWM target values are ready for the MCU or after a device reset.

10.2.10 Director Channel_1 Result Registers (Addresses 0x62, 0x63)

These byte registers are used together as DIR_CH_1_H: DIR_CH_1_L.

In Color Tuning operation, the registers create a 16-bit integer value from 0 to 65535 representing a PWM (Color + Dimming) tuning percentage between 0.00 and 100.00%.

Example: 0001101001001111 = 1A4F = 6735 = 10.28%

In Daylighting operation, the registers create a 16-bit integer value from 0 to 65535 representing a PWM Lux tuning percentage between 0.00 and 100.00%.

Figure 36:
Director Channel_1 Result Register High

Addr: 0x62		DIR_CH_1_H		
Bit	Bit Name	Default	Access	Bit Description
15:8	DIR_CH_1_H	00000000	R	Channel 1 high byte CHAN_MODE 0 = Dimming CHAN_MODE 1 = Dimming CHAN_MODE 2 = Overall brightness (only for information)

Figure 37:

Director Channel_1 Result Register Low

Addr: 0)x63	DIR_CH_1_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	DIR_CH_1_L	00000000	R	Channel 1 low byte

10.2.11 Director Channel_2 Result Registers (Addresses 0x64, 0x65)

These byte registers are used together as DIR_CH_2_H: DIR_CH_2_L

The registers create a 16-bit integer value from 0 to 65535 representing a PWM (Color + Dimming) tuning percentage between 0.00 and 100.00%.

Example: 0001101001001111 = 1A4F = 6735 = 10.28%

Figure 38:

Director Channel_2 Result Register High

Addr: 0x64		DIR_CH_2_H	DIR_CH_2_H		
Bit	Bit Name	Default	Access	Bit Description	
15:8	DIR_CH_2_H	00000000	R	Channel 2 high byte CHAN_MODE 0 = Disabled (0) CHAN_MODE 1 = String1 COLOR_TUNING CHAN_MODE 2 = String 2 COLOR_TUNING incl. dimming	

Figure 39:

Director Channel_2 Result Register Low

Addr:	0x65	DIR_CH_2_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	DIR_CH_2_L	00000000	R	Channel 2 low byte

10.2.12 Director Channel_3 Result Registers (Addresses 0x66, 0x67)

These byte registers are used together as DIR_CH_3_H: DIR_CH_3_L

The registers create a 16-bit integer value from 0 to 65535 representing a PWM (Color + Dimming) tuning percentage between 0.00 and 100.00%.

Example: 0001101001001111 = 1A4F = 6735 = 10.28%

Figure 40:

Director Channel_3 Result Register High

Addr: 0x66		DIR_CH_3_H		
Bit	Bit Name	Default	Access	Bit Description
15:8	DIR_CH_3_H	00000000	R	Channel 3 high byte CHAN_MODE 0 = Disabled (0) CHAN_MODE 1 = String1 complement COLOR_TUNING CHAN_MODE 2 = String 2 COLOR_TUNING incl. dimming

Figure 41:

Director Channel_3 Result Register Low

Addr: ()x67	DIR_CH_3_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	DIR_CH_3_L	00000000	R	Channel 3 low byte

10.2.13 Director Target for LUX Registers (Addresses 0x70, 0x71)

These byte registers are used together as DIR_LUXT_H: DIR_LUXT_L.

They create a 16-bit integer value for LUX target.

Example: 0000001111101000 = 1000 LUX

Figure 42:

Director Target for LUX Register High

Addr: (0x70 (R/W)	DIR_LUXT_H		
Bit	Bit Name	Default	Access	Bit Description
15:8	DIR_LUXT_H	00000000	R/W	Director target for LUX high byte

Figure 43:

Director Target for LUX Register Low

Addr:	0x71 (R/W)	DIR_LUXT_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	DIR_LUXT_L	00000000	R/W	Director target for LUX low byte

10.2.14 Director Target for CCT Registers (Addresses 0x72, 0x73)

These byte registers are used together as DIR_CCTT_H: DIR_CCTT_L.

They create a 16-bit integer value for CCT target (Kelvin).

Example: 0000101110111000 = 3000 K

Figure 44:

Director Target for CCT Register High

Addr: (0x72 (R/W)	DIR_CCTT_H		
Bit	Bit Name	Default	Access	Bit Description
15:8	DIR_CCTT_H	00000000	R/W	Director target for CCT high byte

Figure 45:

Director Target for CCT Register Low

Addr: (0x73 (R/W)	DIR_CCTT_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	DIR_CCTT_L	00000000	R/W	Director target for CCT low byte

10.2.15 Raw Value Registers (Addresses 0x08:0x13)

These byte registers are used together as RAW_VALUE_x_H: RAW_VALUE_x_L.

Figure 46:

Raw Value X Register High

Addr: 0x08		RAW_VALUE	RAW_VALUE_0_H		
Bit	Bit Name	Default	Access	Bit Description	
15:8	RAW_VALUE_0_H	-	R	Raw Value X Channel high byte	

Figure 47:

Raw Value X Register Low

Addr: 0x09		RAW_VALUE	RAW_VALUE_0_L		
Bit	Bit Name	Default	Access	Bit Description	
7:0	RAW_VALUE_0_L	-	R	Raw Value X Channel low byte	

Figure 48:

Raw Value Y Register High

Addr: 0x0A		RAW_VALUE	RAW_VALUE_1_H		
Bit	Bit Name	Default	Access	Bit Description	
15:8	RAW_VALUE_1_H	-	R	Raw Value Y Channel high byte	

Figure 49:

Raw Value Y Register Low

Addr: 0x0B		RAW_VALUE	RAW_VALUE_1_L		
Bit	Bit Name	Default	Access	Bit Description	
7:0	RAW_VALUE_1_L	-	R	Raw Value Y Channel low byte	

Figure 50:

Raw Value Z Register High

Addr: 0x0C		RAW_VALUE	RAW_VALUE_2_H		
Bit	Bit Name	Default	Access	Bit Description	
15:8	RAW_VALUE_2_H	-	R	Raw Value Z Channel high byte	

Figure 51:

Raw Value Z Register Low

Addr: 0x0D		RAW_VALUE	RAW_VALUE_2_L		
Bit	Bit Name	Default	Access	Bit Description	
7:0	RAW_VALUE_2_L	-	R	Raw Value Z Channel low byte	

Figure 52:

Raw Value NIR Register High

Addr: 0x0E		RAW_VALUE	RAW_VALUE_3_H		
Bit	Bit Name	Default	Access	Bit Description	
15:8	RAW_VALUE_3_H	-	R	Raw Value NIR Channel high byte	

Figure 53:

Raw Value NIR Register Low

Addr: 0x0F		RAW_VALUE	RAW_VALUE_3_L		
Bit	Bit Name	Default	Access	Bit Description	
7:0	RAW_VALUE_3_L	-	R	Raw Value NIR Channel low byte	

Figure 54:

Raw Value DK Register High

Addr: 0x10		RAW_VALUE	RAW_VALUE_4_H		
Bit	Bit Name	Default	Access	Bit Description	
15:8	RAW_VALUE_4_H	-	R	Raw Value Dark Channel high byte	

Figure 55:

Raw Value DK Register Low

Addr: 0x11		RAW_VALUE	RAW_VALUE_4_L		
Bit	Bit Name	Default	Access	Bit Description	
7:0	RAW_VALUE_4_L	-	R	Raw Value Dark Channel low byte	

Figure 56:

Raw Value CL Register High

Addr: 0x12		RAW_VALUE	RAW_VALUE_5_H		
Bit	Bit Name	Default	Access	Bit Description	
15:8	RAW_VALUE_5_H	-	R	Raw Value Clear Channel high byte	

Figure 57:

Raw Value CL Register Low

Addr: 0x13		RAW_VALUE_5_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	RAW_VALUE_5_L	-	R	Raw Value Clear Channel low byte

10.2.16 Calibration Coefficient Registers (Addresses 0x50:0x53, 0x54, 0x55)

If the requirements of the factory calibration cannot fulfilled or the factory calibration do not match the application requirements, these registers enable settings of an additional calibration coefficient for a customized calibration to improve the accuracy of the light system.

These 4-byte floating-point registers can be used as needed by the MCU to individually scale the calibration coefficient data registers.

Figure 58: COEF_DATA Register

Addr: (0x50:0x53 (R/W)	COEF_DATA		
Bit	Bit Name	Default	Access	Bit Description
31:0	COEF_DATA	-	R/W	Calibration coefficient (4-byte floating point)

Figure 59: COEF_READ Register

Addr: 0x54 (R/W)		COEF_READ		
Bit	Bit Name	Default	Access	Bit Description
7:0	COEF_READ		R/W	Set sub addresses to read different calibration data from COEF_DATA registers 0x00 - 0x08: Production matrix 0x10 - 0x18: Application matrix 0x30: Norm gain (UINT8 - ADDR 0x50) 0x31: Norm integration time (UINT8 - ADDR 0x50) 0x32: Set IR scalar X 0x33: Set IR scalar Y 0x34: Set IR scalar Z 0x35: ALS scalar K0 (TSL2572 only) 0x36: ALS scalar K1 (TSL2572 only) Value out of range: 0xFFFFFFFF - NaN (Error)

Figure 60: COEF_WRITE Register

Addr:	0x55 (R/W)	COEF_WRITE		
Bit	Bit Name	Default	Access	Bit Description
7:0	COEF_WRITE	-	R/W	Set sub addresses to write different calibration data from COEF_DATA registers to persistent memory 0x00 - 0x08: Production matrix 0x10 - 0x18: Application matrix 0x30: Norm gain (UINT8 - ADDR 0x50) 0x31: Norm integration time (UINT8 - ADDR 0x50) 0x32: Set IR scalar X 0x33: Set IR scalar Y 0x34: Set IR scalar Z 0x35: ALS scalar K0 (TSL2572 only) 0x36: ALS scalar K1 (TSL2572 only) Value out of range: 0xFFFFFFFF - NaN (Error)

10.2.17 Calibrated XYZ Result Registers (Addresses 0x14:0x17, 0x18:0x1B, 0x1C:0x1F)

Figure 61: Calibrated X Result Register

Addr: ()x14:0x17	Cal_X		
Bit	Bit Name	Default	Access	Bit Description
31:0	Cal_X	-	R	Calibrated X data (4-byte floating point)

Figure 62:

Calibrated Y Result Register

Addr: ()x18:0x1B	Cal_Y		
Bit	Bit Name	Default	Access	Bit Description
31:0	Cal_Y	-	R	Calibrated Y data (4-byte floating point)

Figure 63:

Calibrated Z Result Register

Addr: (0x1C:0x1F	Cal_Z		
Bit	Bit Name	Default	Access	Bit Description
31:0	Cal_Z	-	R	Calibrated Z data (4-byte floating point)

10.2.18 Calibrated CIE 1931 x and y Result Registers (Addresses 0x20:0x23, 0x24:0x27)

Figure 64:

Calibrated CIE 1931 x Result Register

Addr: 0x20:0x23		Cal_SMALL_X	Cal_SMALL_X	
Bit	Bit Name	Default	Access	Bit Description
31:0	Cal_SMALL_X	-	R	Calibrated x data (4-byte floating point)

Figure 65:

Calibrated CIE 1931 y Result Register

Addr: 0)x24:0x27	Cal_SMALL_Y	,	
Bit	Bit Name	Default	Access	Bit Description
31:0	Cal_SMALL_Y	-	R	Calibrated y data (4-byte floating point)

10.2.19 Calibrated CIE 1976 u', v', u, v Result Registers (Addresses 0x28;0x2B, 0x2C:0x2F, 0x30:0x33, 0x34:0x37)

Figure 66:

Calibrated CIE 1976 u' Result Register

Addr: 0)x28:0x2B	Cal_U_PRIME		
Bit	Bit Name	Default	Access	Bit Description
31:0	Cal_U_PRIME	-	R	Calibrated u' data (4-byte floating point)

Figure 67:

Calibrated CIE 1976 v' Result Register

Addr: 0)x2C:0x2F	Cal_V_PRIME		
Bit	Bit Name	Default	Access	Bit Description
31:0	Cal_V_PRIME	-	R	Calibrated v' data (4-byte floating point)

Figure 68:

Calibrated CIE 1976 u Result Register

Addr: 0x30:0x33		Cal_SMALL_U		
Bit	Bit Name	Default	Access	Bit Description
31:0	Cal_SMALL_U	-	R	Calibrated u data (4-byte floating point)

Figure 69:

Calibrated CIE 1976 v Result Register

Addr: 0x34:0x37		Cal_SMALL_V		
Bit	Bit Name	Default	Access	Bit Description
31:0	Cal_SMALL_V	-	R	Calibrated v data (4-byte floating point)

10.2.20 Calibrated DUV Result Register (Address 0x38:0x3B)

Figure 70:

Calibrated DUV Result Register

Addr: ()x38:0x3B	DUV		
Bit	Bit Name	Default	Access	Bit Description
31:0	DUV	-	R	Calibrated DUV data (4-byte floating point)

10.2.21 Calibrated LUX Result Registers (Addresses 0x3C, 0x3D)

These byte registers are used together as LUX_H: LUX_L.

They create a 16-bit integer value for calibrated LUX.

Example 0000001111101000 = 1000 Lux

Figure 71:

Calibrated LUX Result Register High

Addr: ()x3C	LUX_H		
Bit	Bit Name	Default	Access	Bit Description
15:8	LUX_H	-	R	Measured LUX data, high byte

Figure 72:

Calibrated LUX Result Register Low

Addr: 0)x3D	LUX_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	LUX_L	-	R	Measured LUX data, low byte

10.2.22 Calibrated CCT Result Registers (Addresses 0x3E, 0x3F)

These byte registers are used together as CCT_H: CCT_L.

They create a 16-bit integer value for sensed CCT in Kelvin.

Example: 0000101110111000 = 3000 K

Figure 73:
Calibrated CCT Result Register High

Addr: ()x3E	сст_н		
Bit	Bit Name	Default	Access	Bit Description
7:0	CCT_H	-	R	Calibrated CCT data, high byte

Figure 74:
Calibrated CCT Result Register Low

Addr: (0x3F	CCT_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	CCT_L	-	R	Calibrated CCT data, low byte

10.2.23 Firmware Update Registers (Addresses 0x48:0x4B)

The firmware handles two independent images in the flash device: the first one is located on address 0x12000 and the second is on address 0x22000 available. The firmware file has a size of 56k bytes.

Figure 75: Firmware Control Register

Addr: 0)x48 (R/W)	FW_CNTRL		
Bit	Bit Name	Default	Access	Bit Description
7	START	-	R/W	Set bit once to configure the device for firmware update
6	STOP	-	W	Reset firmware update state machine
5	BYTES_TRANSFERED	-	R	All 56k bytes are transferred
4	LOCK	-	R/W	Lock this firmware for next start
3	SWITCH	-	W	Switch between both firmware versions
2	BANK1	-	R	Set if bank1 is active, else bank2
1	ERROR	-	R	Error occurred while firmware update

Addr:	0x48 (R/W)	FW_CNTRL		
Bit	Bit Name	Default	Access	Bit Description
0	CHKSUM	-	R	Checksum of other bank is valid

Figure 76:

Firmware Byte Counter Register High

Addr: ()x49	FW_BYTE_COUNT_H		
Bit	Bit Name	Default	Access	Bit Description
7:0	FW_BYTE_COUNT_H	0	R	Byte counter of transferred image high byte

Figure 77:

Firmware Byte Counter Register Low

Addr: (0x4A	FW_BYTE_COUNT_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	FW_BYTE_COUNT_L	0	R	Byte counter of transferred image low byte

Figure 78:

Firmware Payload Register

Addr: (0x4B (R/W)	FW_PAYLOAD		
Bit	Bit Name	Default	Access	Bit Description
7:0	FW_PAYLOAD	0	R/W	Transfer of the firmware byte

11 UART Command Interface

The UART block implements the TX and RX signals as defined in the RS-232 / V.24 standard communication protocol. A SPI Flash is a required operating companion device for the AS7225 to function or to communicate via the UART interface. Using non-verified flash devices can cause communication issues and may not be compatible. See Figure 83 for a subset of supported devices, which are tested by **ams**. The "xx" in the serial flash name stands for alternative packages and a reference is provided to the current list of verified flash devices. Flash timing is provided in Figure 81 and Figure 82 for debug purposes.

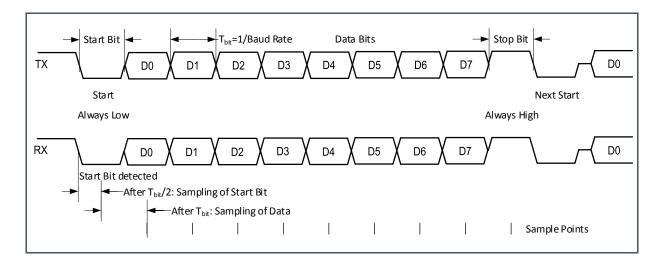
11.1.1 UART Feature List

- Full Duplex Operation (Independent Serial Receive and Transmit Registers)
- Factory set to 115.2 kBaud
- Supports Serial Frames with 8 Data Bits, no Parity and 1 Stop Bit.

11.1.2 Operation

Transmission

If data is available, it will be moved into the output shift register and the data will be transmitted at the Baud Rate, starting with a Start Bit (logic zero) and followed by a Stop Bit (logic one).


Reception

At any time, with the receiver being idle, if a falling edge of a Start Bit is detected on the input, a byte will be received. The following Stop Bit will be checked to be logic one.

11.2 UART Protocol

Figure 79: UART Protocol

11.3 SPI Timing Characteristics

The AS7225 contains a serial UART interface to connect to a flash memory. An overview can be found in Figure 83. The required timing characteristics for a serial interface is shown in Figure 81 and in Figure 82 accordingly. If a Flash memory is used which is not listed in Figure 83 it should be ensured that the SPI timing is achieved (for debug purposes). Contact **ams** for requests to support/verify additional flash devices beyond those listed in the most current device verification listing.

Figure 80: SPI Timing Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
SPI Interfa	ce					
fsck	Clock frequency		0		16	MHz
tsck_H	Clock high time		40			ns
tsck_L	Clock low time		40			ns
tsck_rise	SCK rise time		5			ns
tsck_fall	SCK fall time		5			ns
tcsn_s	CSN setup time	Time between CSN high- low transition to first SCK high transition	5			ns

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tcsn_h	CSN hold time	Time between last SCK falling edge and CSN low-high transition	5			ns
t _{CSN_DIS}	CSN disable time		10			ns
t _{DO_S}	Data-out setup time		5			ns
t _{DO_H}	Data-out hold time		5			ns
t _{DI_V}	Data-in valid		10			ns

Figure 81: SPI Master Write Timing

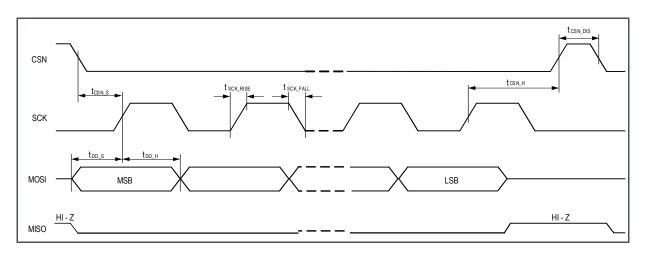
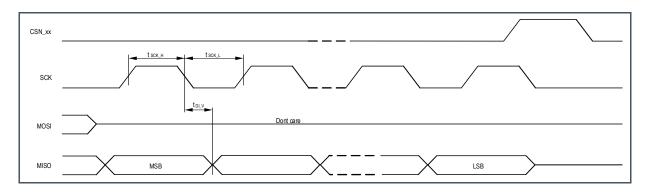



Figure 82: SPI Master Read Timing

11.4 Serial Flash

A SPI Flash device is a required operating companion to the AS7225. See Figure 83 for supported devices, which are tested by **ams**. Using other devices can cause communication issues and may not be compatible. Flash timing is provided in Figure 81 and Figure 82 for debug purposes.

Figure 83: Flash Memory Overview

Serial Flash	Manufacturer
AT25SF041xx	Adesto Technologies
AT25DF041xx	Adesto Technologies
MX25L4006ExxI-12G	Macronix
SST25PF040C	Microchip Technology
W25X40CLSNIG	Winbond Electronics
LE25U40CMD	ON Semiconductor
GD25Q40C	GigaDevice
FS25Q004F1	Foresee

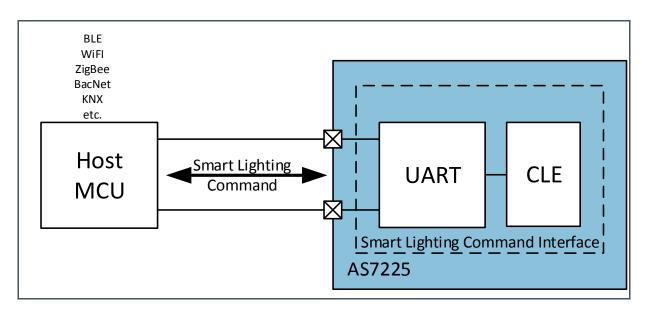
Additional devices may have been added to this list after publication of this datasheet. See "AS72xx External Flash program and update" application note available on the **ams** AS7225 product document section of the **ams** website.

12 Smart Lighting Command Interface

The Smart Lighting Director supports a high-level, driverless text control interface using its Smart Lighting Command Set (SLCS) communicated through the UART interface. The SLCS provides a rich configuration and control interface to speed the time-to-design and time-to-market for luminaire, replacement lamp and driver manufacturers. The Smart Lighting Director uses a variation of an "AT command model" as popularized by early Hayes modems. The SLCS is integrated into the required binary operating image that is included on the USB memory stick provided with the AS7225 Smart Lighting Demo Kit. Updates or the latest version of the SLCS can be downloaded via https://download.ams.com. Login is required and a login can be obtained through the email address provided on the download site.

A configuration tool is available from **ams** to allow the luminaire, lamp or driver manufacturer to create their own "factory default" conditions that will be integrated with the **ams** -supplied initial binary image to create a ready-to-program default Flash image. The configuration tool is also available from https://download.ams.com.

Write commands are constructed in the format "ATcmd=xxx" with the SLD returning the requested data value followed by the "OK" text reply. Commands that are unsuccessfully interpreted or are otherwise invalid will return an "ERROR" text reply.


For example:

•	Set the desired daylight LUX level target:	ATLUXT=500	<ok></ok>
•	Read current lux target set point:	ATLUXT	<500 OK>
•	Read current calibrated lux level as observed by the sensor:	ATLUXC	<497 OK>

The "Smart Lighting Command Interface", shown below between the network interface and the core of the system, provides access to the Smart Lighting Director's lighting control and configuration functions.

Figure 84: Smart Lighting Command Interface

12.1 AT Commands

The command interface to control the AS7225 is via the UART, using AT commands across the UART interface. The AT command interface block diagram, shown in Figure 84 between the host MCU interface and the core of the system, provides access to the AS7225's Cognitive Light Engine's control and configuration functions (see also chapter UART Command Interface).

In the command description below, numeric values may be specified with no leading prefix, in which case they will be interpreted as decimals, with leading "0x" to indicate that they are hexadecimal numbers, or with a leading "b" to indicate, that they are binary numbers. The commands are grouped into functional areas Texts appearing between angle brackets ('<' and '>') are commands or response argument. A carriage return character, a linefeed character, or both may terminate commands to the SLD. The SLD command output is a response followed by a linefeed character. Note that any command that cannot interpreted or which encounters an error will generate "ERROR" response.

Figure 85: AT Commands

Command	Direction	Description	Format	Value Range	Default
Status					
AT	R	NOP	-	-	-
ATVERSW	R	Return the current software version number	DEZ	<major.minor.patch></major.minor.patch>	-

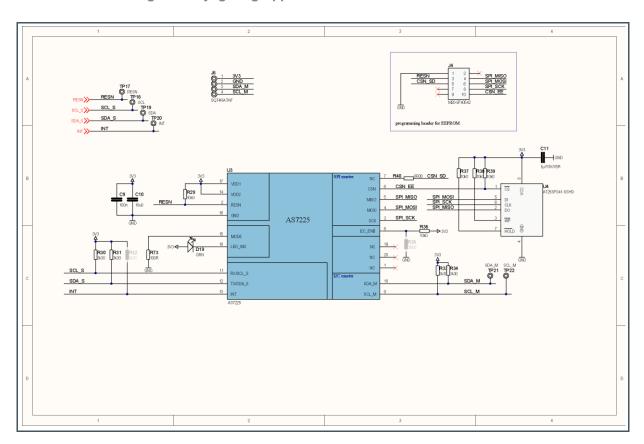
Command	Direction	Description	Format	Value Range	Default
ATVERHW	R	Returns the system hardware version as a HEX value of the form PRDTx where are P=PartID and R=ChipRevision and DT=DeviceType.	HEX	<0xPRDT> PR = 40 DT = 19 (AS7225)	0x4019
ATTEMP	R	Read the current device temperature in degrees Celsius	DEZ	-	-
ATXYZC	R	Read calibrated X, Y and Z data	DEZ	<xxx.x, yyy.y,="" zzz.z=""></xxx.x,>	-
ATSMALLXYC	R	Read calibrated x and y for CIE 1931 color gamut	DEZ	<xxxx.xxxx, yyyy.yyyy=""></xxxx.xxxx,>	-
ATUVPRIMEC	R	Read calibrated u', v' and u, v for CIE 1976 color gamut	DEZ	<u'u'u'u'u'.u'u'u'u',v'v'v'v'v'.v'v'v', uuuuu.uuuu,vvvvv.vvv></u'u'u'u'u'.u'u'u'u',v'v'v'v'v'.v'v'v', 	-
ATDATA	R	Read all six raw values: red, green, blue, ir, dark, clear	DEZ	<r, b,="" c="" d,="" g,="" ir,=""></r,>	-
ATDUVC	R	Read delta uv values	DEZ	XXXXX.XXXX	-
ATESP	R	Read the single 16 bit sum of ESP1 board device available	HEX	Bit0 = TSL25721 or TSL45315	-
Director Config					
ATCHAN1	R	CHAN_MODE 0: Dimming CHAN_MODE1: Dimming CHAN_MODE 2: overall brightness (only for information)	DEZ		0
ATCHAN2	R	CHAN_MODE 0: disabled (0) CHAN_MODE 1: STRING1 COLOR_TUNING CHAN_MODE 2: STRING1 COLOR_TUNING with DIMMING	DEZ		0
ATCHAN3	R	CHAN_MODE 0: disabled (0) CHAN_MODE 1: STRING1 complement COLOR_TUNING CHAN_MODE 2: STRING2 COLOR_TUNING with DIMMING	DEZ		0

Command	Direction	Description	Format	Value Range	Default
ATCHANMOD	R/W	Select the channel mode. After channel switch, learning is again necessary	DEZ	CHAN_MODE: 0: DIMMING (CH1) 1: DIMMING (CH1) + COLOR_TUNING (CH2/3) 2: DIMMING + COLOR_TUNING (CH2/3) 3 - 15: Reserved, not used yet	0
ATLEARN	R/W	Enables the channel learn mode. The maximum ratings will be saved internally. On software reset or power cycle the data will be available again and learn mode will be disabled	DEZ	R: 1 - Learn mode is active W: Only 1 for activate learn mode	1
ATINTRP	R/W	Enable/Disable Interrupt Pin, Default pin state: low (pin disabled) or high (pin enabled) Goes to low when new channel values are available. Will be reset to high, if channel data were read	DEZ	0 - Disable, 1 - Enable Interrupt pin functionality	0
ATCALC	R/W	Starts new calculation	DEZ	R: 1 – Calculation is running W: Only 1 for start calculation	0
Control					
ATINTTIME	R/W	Set sensor integration time. Integration time = <value> x ~2.8ms</value>	DEZ	1-255	20
ATGAIN	R/W	Set sensor gain: 0=1x gain, 1=3.7x, 2=16x, 3=64x	DEZ	0-3	1
ATLED0	R/W	Enables or disables the indication LED	DEZ	0 - LED off / 1 – LED on	1
ATSRST	W	Software reset	-	-	-
ATFRST	W	Factory Reset. Stored values are reset to 'Factory' defaults. Afterwards a software reset is started.	-	-	-
Correlated Colo	r Temperatur	e (CCT)			
ATCCTT	R/W	Set the color control target value in integer (in Kelvin)	DEZ	400-15000	2700
ATCCTC	R	Return the calibrated CCT value	DEZ	400-15000	-

Command	Direction	Description	Format	Value Range	Default
Daylight Harves	ting / Illumina	ation Control			
ATLUXT	R/W	Set illumination target LUX value	DEZ	0-64000	400
		Read the internal or external LUX value (if connected)			
ATLUXC	R	Information: External ALS LUX value will be calculated every 700ms, internal ALS LUX dependence on the configured integration time	DEZ	0-64000, 65535 – LUX value is in saturation	-
Calibration Valu	es				
ATNORMGAIN	R/W	Set/Get the gain which the calibration values were measured	DEZ	Same as ATGAIN	1
ATNORMINTT	R/W	Set/Get the integration time which the calibration values were measured	DEZ	Same as ATINTTIME	59
ATIRXS	R/W	Write IR scalar for value X	DEZ	-	p2ram value 0.0
ATIRYS	R/W	Write IR scalar for value Y	DEZ	-	p2ram value 0.0
ATIRZS	R/W	Write IR scalar for value Z	DEZ	-	p2ram value 0.0
АТСМху	R/W	Write 3x3 color matrix to flash, x,y = [02]	DEZ	-	p2ram value 1,0,0 0,1,0 0,0,1
АТАМху	R/W	Write 3x3 application matrix to flash, x,y = [02]	DEZ	-	1,0,0 0,1,0 0,0,1
		Write a calibration scalar K0 for external ambient light sensor Formula			
ATLXSL0	R/W	K0 & K1>0: LUX=K0*ADC0- K1*ADC1	DEZ	≥0	0.2178
		K0=0: LUX=K1*ADC1 K1=0: LUX=K0*ADC0			

Command	Direction	Description	Format	Value Range	Default
ATLXSL1	R/W	Write a calibration scalar K1 for external ambient light sensor Formula K0 & K1>0: LUX=K0*ADC0- K1*ADC1 K0=0: LUX=K1*ADC1 K1=0: LUX=K0*ADC0 (TSL2572 only)	DEZ	≥0	0
Firmware Upd	late	(TOLZOTZ OTTY)			
ATFWU	W	Starts firmware update process and transfer the bin file checksum	-	-	-
ATFW	W	Download new firmware Up to 10 bytes of firmware image at a time (20 hex bytes with no leading or trailing 0x) Repeat command till all 56k bytes of firmware are downloaded	-	HEX STRING (without 0x), max 10 bytes	-
ATFWS	W	Test the checksum on the non-active FW partition and if correct switches active partition. This is a toggle and can be used to toggle between 2 firmware partitions. Note the first 5 bytes in	-	-	-
		page 0 are not touched. It is only temporary switch and must be used to check the new firmware whether the communication works!			
ATFWL	W	This command locks the current firmware to start on power cycles. It rewrites the first 5 bytes in page 0!	-	-	-
ATFWC	R	This command gives information about the current firmware state	HEX	Bit0 – Checksum of non-active firmware ok Bit1 – Error occurred Bit2 – Is bank 1 active Bit3 – Not used Bit4 – Current firmware is locked Bit5 – 56k bytes transferred Bit6 –Not used Bit7 – Firmware update active	-

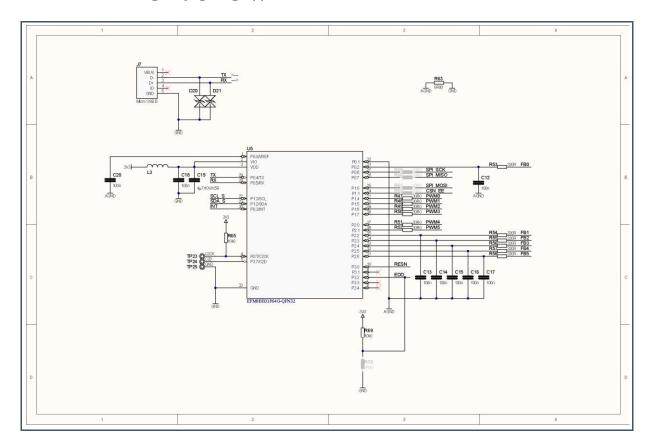
Command	Direction	Description	Format	Value Range	Default
ATFWA	W	Only for backward compatibility to support old firmware update mechanism. Always returns with OK. Because of flash devices, it is not possible to increment the address separately (Page erase necessary!)	-	-	-



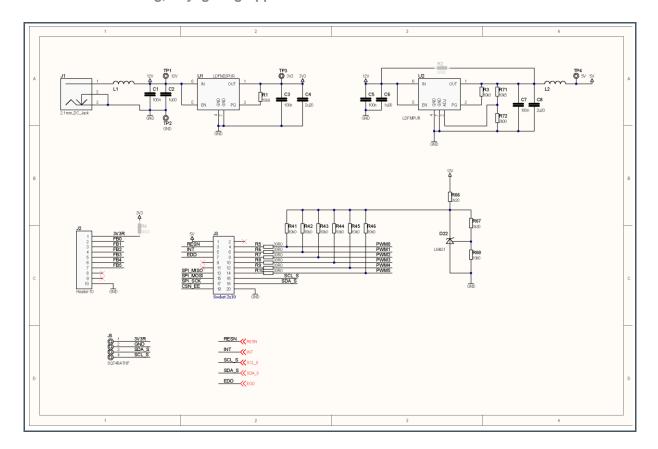
13 Application Information

Figure 86, Figure 87 and Figure 88 show typical application schematics for the AS7225. Figure 89 illustrates a routing example for the device and Figure 90 gives the recommended pad layout for the LGA package.

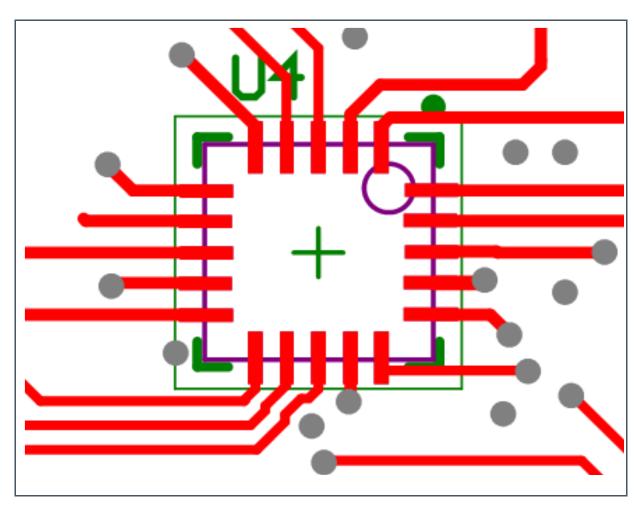
13.1 Schematic


Figure 86: AS7225 Color Tuning and Daylighting Application

AS7225 Color Tuning and Daylighting Application: AS7225 Inward-looking luminaire integration requires additional supported sensor via I²C for daylighting.


Figure 87: AS7225 Color Tuning, Daylighting Application

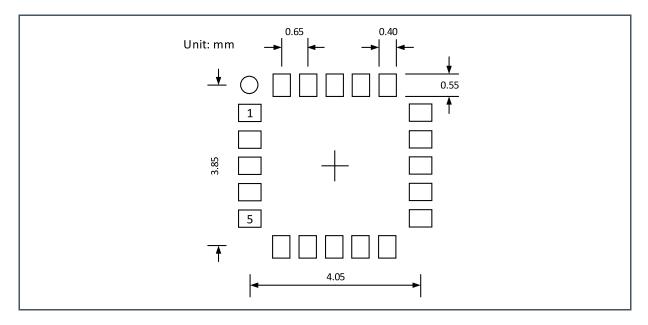
AS7225 Daylighting Application: AS7225 Outward-looking luminaire integration uses the integrated sensor for daylighting. CCT-tuning is not supported for outward looking configurations.


Figure 88: AS7225 Color Tuning, Daylighting Application

13.2 PCB Layout

Figure 89: Typical Layout Routing

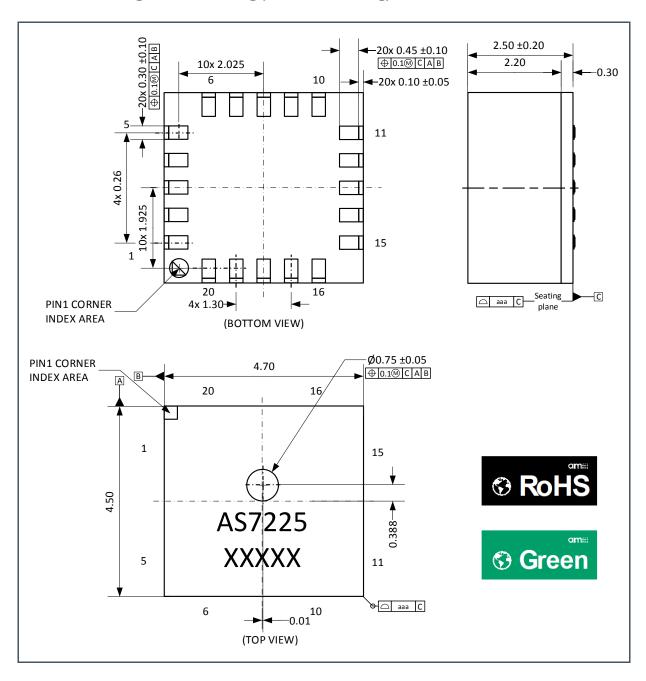
In order to prevent interference, avoid trace routing feedthroughs with exposure directly under the AS7225. An example routing is illustrated in the diagram.


The AS7225 Smart Lighting Integration Kit (SLIK) demo board with schematic and PCB layout documentation is available from **ams** for additional design information.

13.3 PCB Pad Layout

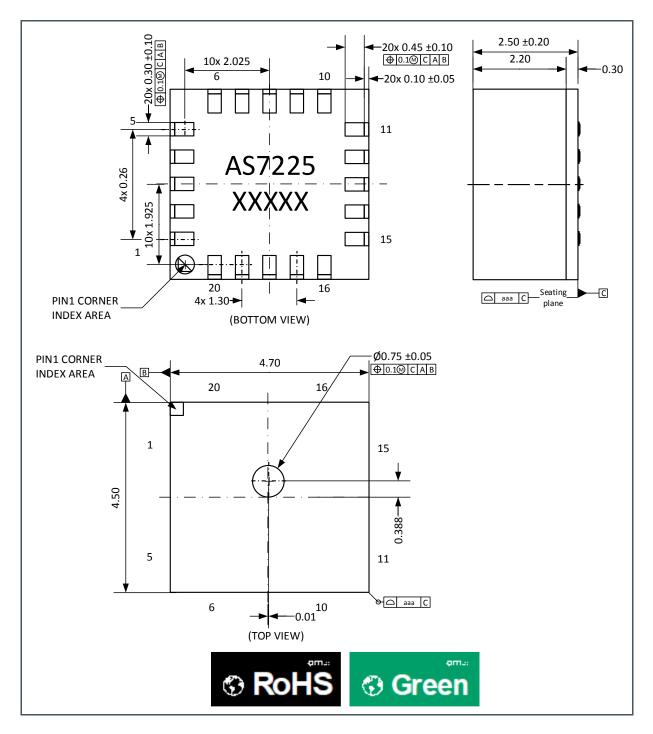
Suggested PCB pad layout guidelines for the LGA package are shown. Flash Gold is recommended as a surface finish for the landing pads.

Figure 90: Recommended PCB Pad Layout (Top View)



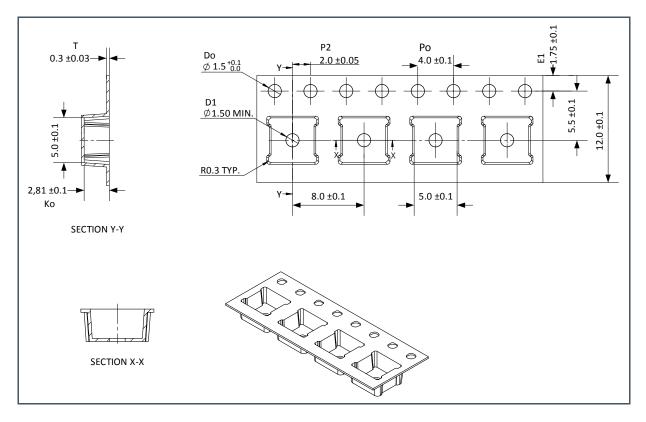
- (1) Unless otherwise specified, all dimensions are in millimeters.
- (2) Add 0.05 mm all around the nominal lead width and length for the PCB pad land pattern.
- (3) This drawing is subject to change without notice.

14 Package Drawings & Markings


Figure 91: 20-Pin LGA Package Outline Drawing (Front Side Marking)

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- (3) This package contains no lead (Pb).
- (4) XXXXX = tracecode
- (5) This drawing is subject to change without notice.

Figure 92: 20-Pin LGA Package Outline Drawing (Back Side Marking)



- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- (3) This package contains no lead (Pb).
- (4) XXXXX = tracecode
- (5) This drawing is subject to change without notice.

15 Tape & Reel Information

Figure 93: Tape Dimensions

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Geometric dimensioning and tolerance conform to ASME Y14.5M-1994.
- (3) This drawing is subject to change without notice.

16 Soldering & Storage Information

The module has been tested and has demonstrated an ability to be reflow soldered to a PCB substrate. The solder reflow profile describes the expected maximum heat exposure of components during the solder reflow process of product on a PCB. Temperature is measured on top of the component. The components should be limited to a maximum of three passes through this solder reflow profile.

Figure 94: Solder Reflow Profile Graph

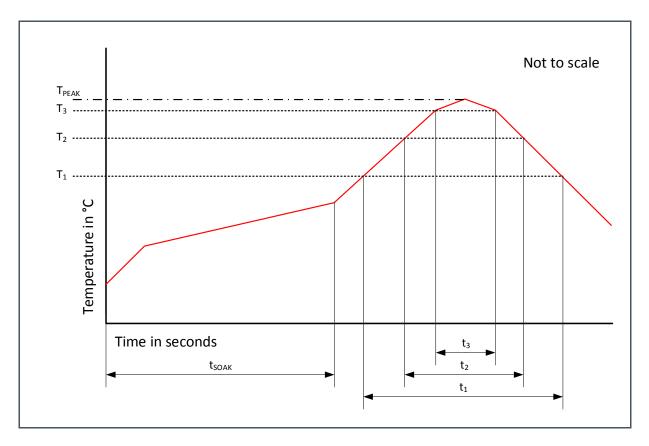


Figure 95: Solder Reflow Profile

Parameter	Reference	Device
Average temperature gradient in preheating		2.5 °C/s
Soak time	t _{soak}	2 to 3 minutes
Time above 217 °C (T1)	t ₁	Max 60 s
Time above 230 °C (T2)	t ₂	Max 50 s

Parameter	Reference	Device
Time above T _{peak} – 10 °C (T3)	t ₃	Max 10 s
Peak temperature in reflow	T _{peak}	260 °C
Temperature gradient in cooling		Max −5 °C/s

16.1 Manufacturing Process Considerations

The AS7225 package is compatible with standard reflow no-clean and cleaning processes including aqueous, solvent or ultrasonic techniques. However, as an open-aperture device, precautions must be taken to avoid particulate or solvent contamination as a result of any manufacturing processes, including pick and place, reflow, cleaning, integration assembly and/or testing. Temporary covering of the aperture is allowed. To avoid degradation of accuracy or performance in the end product, care should be taken that any temporary covering and associated sealants/debris are thoroughly removed prior to any optical testing or final packaging.

16.2 Storage Information

Moisture sensitivity optical characteristics of the device can be adversely affected during the soldering process by the release and vaporization of moisture that has been previously absorbed into the package. To ensure the package contains the smallest amount of absorbed moisture possible, each device is baked prior to being dry packed for shipping. Devices are dry packed in a sealed aluminized envelope called a moisture-barrier bag with silica gel to protect them from ambient moisture during shipping, handling, and storage before use.

16.2.1 Shelf Life

The calculated shelf life of the device in an unopened moisture barrier bag is 12 months from the date code on the bag when stored under the following conditions:

- Shelf Life: 12 months
- Ambient Temperature: <40 °C
- Relative Humidity: <90%</p>

Rebaking of the devices will be required if the devices exceed the 12 month shelf life or the Humidity Indicator Card shows that the devices were exposed to conditions beyond the allowable moisture region.

16.2.2 Floor Life

The module has been assigned a moisture sensitivity level of MSL 3. As a result, the floor life of devices removed from the moisture barrier bag is 168 hours from the time the bag was opened, provided that the devices are stored under the following conditions:

Floor Life: 168 hours

Ambient Temperature: <30 °C

Relative Humidity: <60%

If the floor life or the temperature/humidity conditions have been exceeded, the devices must be rebaked prior to solder reflow or dry packing.

16.3 Rebaking Instructions

When the shelf life or floor life limits have been exceeded, rebake at 50 °C for 12 hours.

17 Revision Information

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Changes from previous version to current revision v2-00	Page
TSL25721 added to TSL45315	3, 4, 15, 26, 36, 44, 45, 57, 59
1.2 Applications updated	4
1.3 Block Diagram updated	5
2 Ordering Information updated	6
3.1 Pin Diagram updated	7
3.2 Pin Description updated	7, 8
4 Absolute Maximum Ratings updated	9
5 Electrical Characteristics updated	10
6 Optical Characteristics updated	11, 12
7.1 Calibrated XYZ Chromatic Smart Lighting Director – Overview updated	14, 15
7.1 Calibrated XYZ Chromatic Smart Lighting Director – Calibration TSL2572 added	15, 16
7.3.1 Indicator LED updated	16, 17
8.4 I ² C Slave Timing Characteristics updated	22, 23
8.6. I ² C Virtual Registers section headline "XYZ Scale Registers" added	25
9.5 I ² C Master Timing Characteristics f _{sclk} updated	28, 29
10.1 Register Overview section headline "XYZ Scale Registers" added	30, 31, 32

Changes from previous version to current revision v2-00	Page
10.2 Detailed Register Description updated	33 – 43
11 UART Command Interface chapter added	51, 52
11.3 SPI Timing Characteristics updated	52, 53
11.4 Serial Flash EPROM updated	54
12 Smart Lighting Command Interface chapter added	55, 56
12.1 AT Commands added	56-61
13.1 Schematic figures 86, 87, 88 updated	62, 63, 64
13.3 PCB Pad Layout Figure 90 updated	66
14 Package Drawing & Markings Figure 91 updated	67
14 Added Figure 92 back side marking	68
15 Tape & Reel Information Figure 92 updated	69
16 Soldering & Storage Information Figure 94 updated	70

Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

Correction of typographical errors is not explicitly mentioned.

18 Legal Information

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

RoHS Compliant & ams Green Statement

RoHS Compliant: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Headquarters

ams AG

Tobelbader Strasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0

Please visit our website at www.ams.com

Buy our products or get free samples online at www.ams.com/Products
Technical Support is available at www.ams.com/Technical-Support

Provide feedback about this document at www.ams.com/Document-Feedback For sales offices, distributors and representatives go to www.ams.com/Contact For further information and requests, e-mail us at ams_sales@ams.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Optical Sensor Development Tools category:

Click to view products by ams manufacturer:

Other Similar products are found below:

MT9V034C12STCH-GEVB MT9V115EBKSTCH-GEVB 416015300-3 ISL29102IROZ-EVALZ MT9M021IA3XTMH-GEVB

AR1335CSSC11SMKAH3-GEVB MAXCAMOV10640# MT9M031I12STMH-GEVB TSL2581CS-DB TMD3700-DB NANOUSB2.2

ASX340AT3C00XPEDH3-GEVB AR0144ATSM20XUEAH3-GEVB AR0144CSSC00SUKAH3-GEVB AR0522SRSC09SURAH3-GEVB

AR0522SRSM09SURAH3-GEVB AR0521SR2C09SURAH3-GEVB MARS1-MAX9295A-GEVK MARS1-MAX9296B-GEVB

ISL29112IROZ-EVALZ AR0233AT2C17XUEAH3-GEVB AR0431CSSC14SMRAH3-GEVB MARS-DEMO3-MIPI-GEVB TCS3430-DB

AR0234CSSC00SUKAH3-GEVB AR0130CSSM00SPCAH-GEVB TSL2521-DB TSL2520-DB EVALZ-ADPD2212 TMD2772EVM

TMG3993EVM MIKROE-2103 TSL2672EVM 1384 MT9M114EBLSTCZDH-GEVB SEN0043 SEN0162 TMD2771EVM TMD3782EVM

TSL4531EVM 1918 AS7225 DEMO KIT SEN0097 SEN0212 SEN0228 AR0134CSSC00SUEAH3-GEVB AP0100AT2L00XUGAH3-GEVB AR0144CSSM20SUKAH3-GEVB 725-28915 EVAL-ADPD1081Z-PPG