User guide

TMD3782 EVM

TMD3782 Light-To-Digital Color Ambient Light / Proximity Sensor Evaluation Kit

Content

1	Establishing basic functionality	4
2	TMD3782 EVM graphical user interface (GUI)	6
2.1	Software overview	6
2.1.1	Input side, "Functional" tab	8
2.1.2	Input side, "Register" tab	10
2.1.3	Output side, "Functional" tab	16
2.1.4	Output side, "PROXHISTO" tab	17
2.1.5	Output side, "PLOT" tab	17
2.1.6	Output Side "Plot" Tab	18

TMD3782 Color Light-To-Digital Converter with Proximity Sensing

The TMD3782 device will perform color temperature measurement, ambient light sensing (ALS) and proximity detection with background light rejection. The device detects light intensity under a variety of lighting conditions and through a variety of attenuation materials, including dark glass.

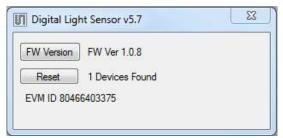
The proximity detection feature allows a large dynamic range of operation for accurate distance detection, such as in a cell phone when the user positions the phone close to their ear. IR LED sink current is factory trimmed to provide consistent proximity response without requiring customer calibrations. An internal state machine provides the ability to put the device into a low power state between proximity and RGBC measurements providing very low average power consumption.

The color sensing feature is useful in applications such as backlight control, solid state lighting, reflected LED color sampler, or fluorescent light color temperature detection. The integrated IR blocking filter makes this device an excellent ambient light sensor, color temperature monitor, and general purpose color sensor.

Initial hardware setup

The software should be installed prior to connecting any hardware to the computer. Follow the instructions found in the Quick Start Guide (QSG). This will load the required driver for the USB interface and also the control software and graphical user interface (GUI).

The hardware consists of the EVM Controller v2.1, the TMD3782 evaluation daughterboard and a USB interface cable and a USB Flash Drive. When the USB cable is connected the green LED should flash indicating that power is being received via the USB interface, and the motherboard processor is running. If the green LED does not flash, check the USB cable connections; unplug the USB cable and try again. If the green LED still does not flash, check the PC for USB error messages.


Note: After the "DigitalLightSensor" application program begins executing, it will turn this LED off so that it does not interfere with testing.

1 Establishing basic functionality

The software should be started using the desktop icon or by double clicking the DigitalLightSensor.exe file from the installation directory. The default installation directory, depending on the device and the operating system you are using, is:

C:\Program Files\ams\TMD3782EVM Windows 32 bit operating systems C:\Program Files (x86)\ams\TMD3782EVM Windows 64 bit operating systems

A different install path may be selected by the user. When started, two windows will open on the PC. The top window, or Parent Window (PW), is not typically needed and may be placed out of the way. The bottom window, or Child Window (CW), is the main user interface and should be positioned on the screen for easy access. Clicking on the red "X" on the PW will close both windows and terminate the application. Clicking on the red "X" on the CW will close only the CW.

The "Functional" tabs on both the left and right side of the main display (bottom window) will be selected by default. On the right side, numbers should be changing, showing that the ALS and proximity functions are operational. By changing the ambient light source or waving your hand over the sensor at <4 inch (100mm) separation you should see the ALS and proximity readings change respective to the light intensity reaching the sensor.

am

nput	TMD37823x39 ID75038991200	Output	Total Inter	val = 55 ms 80 n
Register Functional		Register Functional	ProxHisto Pla	ot
ALS Sensor Gain 4 Time (ms) 50 50 n	Proximity Sensor Averaging Length 2.00 ms Prox Release Threshold 400	Raw Color Clear Red Green Blue Calculations	282 90 108 64	Proximity 79 Raw Prox Count ProxAvg = 66 Stdev = 6.2 Prox Samples 631
Wait Time Time (ms) 2.4 Lux DGF: 348	ns Prox Detect Threshold 6 ~ 600	and a second sec	173.0 5039 0.000% 62.000% Backlight	Detect / Release

The balance of this document identifies and describes the controls available on the different tabs of the GUI. In combination with the TMD3782 datasheet, the QSG and application notes available on the ams website, <u>www.**cms**.com</u>, there should be enough information to allow evaluation of the TMD3782 device.

2 TMD3782 EVM graphical user interface (GUI)

2.1 Software overview

On initialization the software displays two windows – a smaller "Digital Light Sensor" window and a larger window containing controls pertinent to the device connected.

If "No Devices" appears, verify that the daughterboard is connected to the motherboard properly. If "No_HID" appears, verify the USB cable is connected. A green LED on the motherboard flashes when the USB cable is connected to the system. The "Reset" button on the screen can be pressed, or the software can be restarted, to reinitialize the system.

FW Version	FW Ver 1.0.8	
Reset	1 Devices Found	

The Child Window contains the user interface with control buttons, fields, selection boxes and output values for the identified device connected. Tabs are used to make control and evaluation of specific device functions easy. For the TMD3782 devices the initial display screen is shown:

put		TMD37823x39 ID7503	8991200	Output		Total	Interva	= 55 ms 80 ms
Register Fund	tional			Register	Functional	ProxHisto	Plot	
ALS Sensor Gain Time (ms)	4 ▼ 50 ▼ 50 ms	2.00 ms Prox Release Threshold	Averaging Length 32 -	Raw C Clear Red Green Blue		282 90 108 64	3	roximity 79 Raw Prox Count ProxAvg = 66 Stdev = 6.2 Prox Samples 631
Wait Time Time (ms)	2.4 ▼ 2 ms	Prox Detect Threshold	et stdev 6 ↓ 00	LUX CCT IR/Cle Color Lux No	ar Sat	173.0 5039 0.000% 52.000%		Detect / Release

This window has inputs organized on the left, and outputs organized on the right. Values for register variables may be set using multiple techniques. The Functional tab is commonly used to quickly evaluate the device with nominal settings. The Input Register tab allows the register settings to be changed, and the Output Register tab allows registers to be viewed. Other tabs provide additional demonstration and test features for evaluation.

By default the "Functional" tabs have the focus. The values shown in this document will not exactly match a user's system but the basic window and controls should be identical. This document will identify the usage and operation of these items in detail.

Always visible along the bottom are the following controls:

- LED Off ON/OFF/ON toggle for the green motherboard LED. This LED is a good poweron indicator but can introduce errors in the optical tests. It is recommended for accurate measurements to turn the LED off.
- A section containing logging controls and sampling status information:

- 1. Toggles LED on the motherboard.
- Text entered here is appended to the default file name and stored in the log file. The file
 name contains the Part Name and address shown in the large "Digital Light Sensor"
 window, an underscore "_" and the text entered. The default if nothing is entered is a
 period (".").
- 3. Secondary comment box. Text entered here is also appended to the log file name and stored in the log. The default if nothing is entered is a period (".").

Sample:

TMD37821Bx39 _ A-B-C _ 1-2-3 _ Log.csv

- From DigitalLightSensor.exe
- ------ From User Input
- 4. The start button tells the program to start logging. The fields entered in #2 and #3 will be used as field names in the output. If you change the values in #2 or #3, the corresponding field names will change in the output beginning at the time of the change. The default log file name be based on the values in #2 and #3 at the time the log file is written.
- 5. Clear –The Clear button will flush the previous optical sample readings and reset the elapsed time indicator (see #7).

am

- Log Creates a comma-separated values file containing the log data. The name will be assigned as explained in #3. This will cause the system to write out any data currently in the log buffer.
- 7. Count of samples in the log buffer. When that number reaches the limit selected in #9, the system will show a file dialog to save the log in a named file.
- 8. The elapsed time since the beginning of logging data.
- 9. The number of log samples collected before log entry is written to the log file.

2.1.1 Input side, "Functional" tab

Simple commonly used controls exist for the ALS functionality, the proximity detection functionality, the wait time between samples, and the proximity threshold level.

Register Fu	Inctional		
ALS Sen		Proximity Sensor	Averaging
Gain	4 🗸	Too ma, o Puises 👻	Length
Time (ms	s) 50 👻	2.00 ms	32 👻
		Prox Release Threshold	
	50 ms		400
-Wait Tim	e		set stdev
Time (ms) 2.4 👻	Prox Detect Threshold	6 🗸
	2 ms		600
Lux	DGF: 348		

ALS sensor

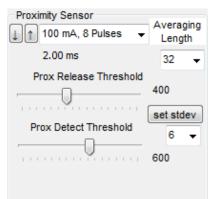
- Gain The gain control allows the user access to the AGAIN settings in the Control Register (0x0F). The gain amplifies the ADC signal to increase sensitivity. The gain options include 1x, 8x, 16x and 120x and are selected from the list box when the down arrow is depressed
- Time (mS) This list box has numerous preselected values for the integration time of both channels (Ch0 and Ch1). If a value other than what is shown in the list box is desired it must be entered manually using the Register tab (documented later). Manually entering a value will NOT work in this location. The actual integration time is shown on the line below.

NOTE: The saturation level of the device is partially dependent on the integration time. Digital saturation occurs when the ADC output registers overflow. Digital saturation is reached at 65,536, thus the full-scale output of the TMD3782 is 65,535 (16-bits). If the integration time is set less than 172ms, however, the dynamic range of the device will be limited to the following:

Integration Time > 172ms Saturation = 65,535 Integration Time < 172ms Saturation = ((Integration Time / 2.7) x 1024) - 1

Wait time

When the software initializes, a default wait period of 2.7mS is inserted between the Prox execution and the ALS execution. This duration can be adjusted in 2.72mS steps from 0 to 696mS. A wait


multiplier (WLONG=1) may also be used to multiply the wait period by 12x. Using these controls the duration of the wait may be adjusted from none (WEN=0) to 8.3 seconds (WEN=1, WLONG=1, WTIME=0x00).

The Wait Time list box provides a quick mechanism for setting preselected wait periods from 2.72mS to 696mS. The wait period is completely disabled by setting WEN=0 (Enable Register (0x00, bit3)).

Proximity sensor / prox threshold

The control fields to vary the proximity sensor settings are found in this section. Two drop-down controls allow adjustment of the sink current and number of LED pulses, and selection of which photodiodes are used to detect the reflected energy. Two slider controls are provided for selection of proximity release and proximity detection thresholds.

The first list box allows rapid selection of LED sink current and the number of LED pulses. Clicking the down arrow brings up a list box with several predefined combinations:

- Individual settings for the sink current and/or number of pulses can also be made using the device registers as documented later in this manual.
- The photodiodes receiving the reflected optical energy are chosen in the second line. The list box shows options for Neither, Ch 0, Ch 1 or Both.
- The "Prox Release Threshold" and "Prox Detect Threshold" sliders allow a threshold (with hysteresis) to be selected to determine when a proximity detection occurs. The thresholds can be set to any value from 1 to 1022. The numeric values selected by the sliders are shown near the right-hand end of the sliders.
- A separate pull-down menu and a button labeled "set stdev" are provided to quickly set the
 proximity release and detect thresholds. The software calculates and displays the standard
 deviation of some number of the most recent proximity readings (determined by the
 "Averaging Length" pull-down menu. Pressing the "set stdev" button will automatically
 calculate thresholds which are N standard deviations above and below the average of the
 most recent readings. The value of N is controlled by the pull-down menu immediately
 below the "set stdev" button and can be an integer value from 1 through 6.

2.1.2 Input side, "Register" tab

"Control" Sub Tab

The Register tab provides for direct control of the registers of the device.

Register Functional		
Control ALS ALS Int	Proximity Prox Int	
Enable (0x00)	IRBEN SAI	All Off 👻
PIEN AIEN	WEN VEN	AEN V PON
WTIME (0x03)	×	2.4 ms WLONG

The Control sub-tab allows enabling and disabling functionality in the part and also controls the wait time multiplier (WLONG).

Additionally, a list box provides options for turning ON all parts (All On) of the device or turning OFF all parts (All Off) of the device simultaneously.

- Enable Register (0x00) Provides the ON/OFF control of the device.
- Check boxes are provided to allow selection of specific functions on the device:
 - 1. PON Power on. Activates internal oscillator. When =0 device is in standby.
 - 2. AEN ALS Enable. Writing a one (1) enables the ALS
 - 3. PEN Proximity Enable. Writing a one (1) enables the proximity detection.
 - 4. WEN Wait Enable. Writing a one (1) activates the wait timer.
 - 5. AIEN ALS Interrupt Enable. Writing a one (1) enables the ALS interrupt.
 - 6. PIEN Proximity Interrupt Enable. Writing a one (1) enables the Proximity interrupt.
 - SAI Stop After Interrupt. Writing a one (1) causes the device to power down at the end of the ALS cycle when an interrupt has been generated.
- WTIME (0x03) Wait time in 2.72ms increments, unless the WLONG bit is set, in which case the wait time is multiplied by 12. The number to the right is the computed WTIME. See the ATIME note in the ALS Sub Tab description.
- Config Register (0x0D) Controls the wait time multiplication factor of x12.
 - 1. WLONG Wait Long. When checked (=1) enables the wait multiplier.

"ALS" Sub Tab

The ALS tab shows the registers associated with ambient light sensing control. Register values in hex are shown on the left, preselected values are available in list boxes in the middle, and actual values are shown on the right.

Register Functional	
Control ALS ALS Int Proximity Prox Int	
ATIME (0x01) EB 🚖	50.4 ms
CONTROL (0x0F) AGAIN (1:0) 1 (A)	4 X

 ATIME Register (0x01) controls the ALS integration time. The actual time is: (256-ATIME) * 2.72 ms

Note: The column on the right is the computed value for ATIME and is always correct. Sometimes the value shown in the list box will be one of the preselected values but it has not been selected. If this happens the number will not be the same as the computed number for WTIME on the Control Sub-Tab. The computed value is the one that is correct. This can be fixed by selecting a preselected value from the list box or by cycling the register value UP/DOWN or DOWN/UP. This will set the list box value or clear the value from the list box so the screen is correct.

- Control Register (0x0F) Controls the ALS gain settings.
 - 1. AGAIN Adjusts the ALS input gain. Valid values are 1x, 8x, 16x, and 120x.
 - 2. AGL Setting this bit to one (1) causes the actual gain value to be 1/6 of the selected AGAIN value.

"ALS Interrupt" Sub Tab

This tab contains the settings for controlling the generation of ALS interrupts to a control processor.

Control ALS ALS	S Int	Proximity	Prox Ir	nt	
AILTH (0x05)	0	÷ 0	* *	AILTL (0x04)	0
AIHTH (0x07)	FF	≑ FF	* *	AIHTL (0x06)	+/-25%
PERS (0x0C)	_				
APERS(3:0)	1	-			

The AILT and AIHT values are 16 bit thresholds for the upper and lower trigger points. Each is set using two 8-bit registers. Another control (APERS) establishes the required persistence of the interrupt signal.

Also on this screen is a button that will automatically generate the register values to provide threshold settings 25% higher and lower than the currently measured amount of ambient light.

- ALS Interrupt Low Threshold (0x04, 0x05) Low light threshold for ALS interrupt.
 - 1. AILTL (0x04) The lower 8 bits of the 16 bit low threshold value.
 - 2. AILTH (0x05) The upper 8 bits of the 16 bit low threshold value.
- ALS Interrupt High Threshold (0x06, 0x07) High light threshold for ALS interrupt.
 - 1. AIHTL (0x06) The lower 8 bits of the 16 bit high threshold value.
 - 2. AIHTH (0x07) The upper 8 bits of the 16 bit high threshold value.
- APERS (0x0C) The APERS field (bits 3:0) controls the number of times the ALS interrupt threshold (AILT, AIHT) is exceeded before the interrupt is generated. Setting a zero means an interrupt is generated on every ALS reading. The meaning of the other settings is shown in this table.
- The +/-25% button takes the current ambient light reading and automatically computes new values for the AILT and AIHT registers, each with a 25% wider latitude.

"Proximity" Sub Tab

The Proximity tab shows editable registers associated with proximity sensing control. Register values in hex are shown on the left, the middle section contains preset controls for quick configurations, and the column on the right displays the actual values in use.

Note: Values entered via the registers and list boxes do not automatically update each other, so the values displayed may not match. The computed values on the right are always correct and show the values currently in use.

Register Functional	
Control ALS ALS Int Proximity Prox Int	
PPULSE (0x0E) 8	112 uS
CONTROL (0x0F)	
PDRIVE (7:6) 0 🚔 100 mA	

• PTIME (0x02) – Sets the integration time of the proximity ADC in 2.72mS increments. The actual time is:

(256-PTIME) * 2.72 ms

- PPULSE (0x0E) This control allows the user to select the number of LED pulses for proximity detection. The pulses have a frequency of 125kHz and a 50% duty cycle.
- PDRIVE sets the sink current through the IR LED.

"Prox Interrupt" Sub Tab

This tab contains the settings for controlling the generation of Prox interrupts to a control processor.

The PILT and PIHT values are 16 bit thresholds for the upper and lower trigger points. Each is set using two 8-bit registers. Another control (PPERS) establishes the required persistence of the interrupt signal. Also on this screen is a button that will automatically generate the register values to provide threshold settings 3 standard deviations higher and lower than the Proximity Data Register value.

Register Functional		
Control ALS ALS	S Int Proximity Prox Int	
PILTH (0x09) PIHTH (0x0B)	0 (x) (0 (x) PILTL (0x08) 3 (x) FF (x) PIHTL (0x0A)	0 +/-3Stdev
PERS (0x0C) PPERS(7:4)		0

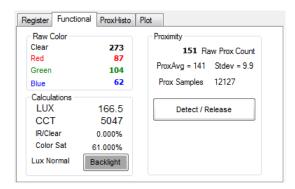
Also on this screen is a control that will automatically generate the register values to provide threshold settings 3 standard deviations higher and lower than the Proximity Data Register value. See the description of the Stdev button on the Input Side Functional tab above, for details.

- Proximity Interrupt Low Threshold (0x04, 0x05) Low threshold for proximity interrupt.
 - 1. PILTL (0x08) The lower 8 bits of the 16 bit low threshold value.
 - 2. PILTH (0x09) The upper 8 bits of the 16 bit low threshold value.
- Proximity Interrupt High Threshold (0x06, 0x07) High threshold for proximity interrupt.
 - 1. PIHTL (0x0A) The lower 8 bits of the 16 bit high threshold value.
 - 2. PIHTH (0x0B) The upper 8 bits of the 16 bit high threshold value.
- PERS (0x0C) The PPERS field (bits 7:4) allows the number of times the Prox interrupt threshold (PILT, PIHT) is exceeded before the interrupt is generated to be controlled. Setting a zero means an interrupt is generated on every proximity reading.
- The +/-3 Stdev maintains a running average of the most recent Proximity Data Register values and automatically computes new values for the PILT and PIHT, each with a 3 standard deviation wider latitude.

Output side, "Register" tab

The values of internal registers are displayed on this tab. Register values cannot be set here. To set registers use the Register tab on the input side of the screen.

Controls are provided for clearing the Proximity interrupt (PINT) and the ALS interrupt (AINT). The current interrupt status is also shown.


The CDATA, RDATA, GDATA, and BDATA are the ADC values from the Clear, Red, Green and Blue channel photodiodes. PDATA values are the proximity detection value. Each is read via two 8-bit registers.

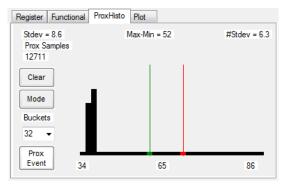
Register Functi	ional ProxHisto	Plot			
ID (0x12)	×69	Color Data			
(0x12)		CDATA(0x14/15)	x1a	x1	282
STATUS (0x1	3) x3	RDATA(0x16/17)	x59	хO	89
Prox OK	ALS OK	GDATA(0x18/19)	x6c	×0	108
		BDATA(0x1A/1B)	x41	хO	65
Interrupts		Proximity			
PINT False Clear		PDATA (0x1C)		48	72
AINT False	Clear	PDATAH (0x1D)	×	D	
Clear E	Both				

- Status (0x13) Internal status. Interrupts active (2 bits) and ALS valid bits are here.
- ID (0x12) The ID register provides the value for the part number.
- CDATA (0x14, 0x15):
 - 1. CDATA (0x14) The lower 8 ADC bits of the Clear photodiode.
 - 2. CDATAH (0x15) The upper 8 ADC bits of the Clear photodiode.
- RDATA (0x16, 0x17):
 - 1. IRDATA (0x16) The lower 8 ADC bits of the Red photodiode.
 - 2. IRDATAH (0x17) The upper 8 ADC bits of the Red photodiode.
- GDATA (0x18, 0x19):
 - 1. IRDATA (0x18) The lower 8 ADC bits of the Green photodiode.
 - 2. IRDATAH (0x19) The upper 8 ADC bits of the Green photodiode.
- BDATA (0x1A, 0x1B):
 - 1. IRDATA (0x1A) The lower 8 ADC bits of the Blue photodiode.
 - 2. IRDATAH (0x1B) The upper 8 ADC bits of the Blue photodiode.
- PDATA (0x1C, 0x1D):
 - 1. PDATA (0x1C) The lower 8 bits of the proximity value.
 - 2. PDATAH (0x1D) The upper 8 bits of the proximity value.

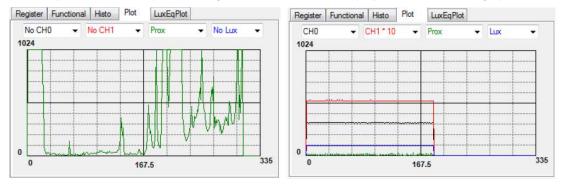
2.1.3 Output side, "Functional" tab

The Raw Color box displays the output register values of the Clear, Red, Green and Blue photodiodes.

The Prox indication shows the current reading (Raw Count), the rolling average, and the standard deviation of the prox readings. The average and standard deviation are computed over the number of samples specified on the INPUT/Functional tab.


The Detect/Release box is a visual indicator of proximity detection. When the prox threshold is exceeded the box will turn red.

The Calculations box displays the calculated lux and color temperature values. This box also displays the ratio of detected IR to Clear light and a saturation indicator. This saturation value should normally be small. As it approaches 0.75 or higher, it indicates that the color detectors are becoming saturated.


2.1.4 Output side, "PROXHISTO" tab

This tab contains a histogram of the recent prox evaluations. It is displayed as a rolling histogram spanning the number of readings in the Test tab of the input. Changing the "Averaging Length" control on the Input Side Functional tab will change the number of samples used for these calculations.

2.1.5 Output side, "PLOT" tab

The two photodiodes, the prox reading and the LUX can be displayed vs. time on the graph.

The first plot shows proximity events happening and the second graph shows all outputs for a static system. Multipliers (selected from the list boxes) may be used to scale the display accordingly. On the second plot the Ch1 photodiode is scaled by a factor of 10x relative to the other plotted signals.

Stdev - standard deviation of the displayed data

Max-Min - difference between the maximum reading and the minimum reading

The range of the horizontal axis is based on the PTIME register value, but is not displayed. The numbers below the axis show the minimum value and the maximum value, and the mean of the samples. The red vertical line shows the proximity detection threshold and the green line shows the release threshold as set by the sliders on the functional input tab of the GUI.


The Clear button will discard the accumulated samples and restart a new running average. The Mode button toggles the graph so that all of the samples remain drawn on the screen, rather than only the number of samples selected. This function operates similarly to the Max-Hold function on an oscilloscope.

The Buckets pull-down menu controls the number of vertical bars displayed on the graph. Specifying a higher number will cause more bars to be displayed.

The Prox Event control will turn red when the prox average exceeds the Prox Detect Threshold set on the Input Side Function tab, and will remain red until the average goes below the Prox Release Threshold specified.

2.1.6 Output Side "Plot" Tab

The four photodiodes and the proximity reading can be displayed vs. time on the graph.

This sample graph shows all the color outputs for a typical system. The X-axis plots 337 points then rolls over back to 1 on the graph. The Y-axis is set to range 0 to 1024; this range cannot be adjusted. However Multipliers (selected from the list boxes) may be used to scale the display accordingly.

Resources

TMD3782 datasheet Quick Start Guide (QSG) Designer's Notebooks

For additional information regarding the TMD3782, please refer to the respective datasheet. For information regarding the installation of the TMD3782EVM host application please refer to the Quick Start Guide.

Designer's Notebooks dealing with various aspects of optical measurement and optical measurement applications are available. All content is available on the ams website <u>www.**cms**.com</u>

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Optical Sensor Development Tools category:

Click to view products by ams manufacturer:

Other Similar products are found below :

MT9V034C12STCH-GEVB MT9V115EBKSTCH-GEVB 416015300-3 ISL29102IROZ-EVALZ MT9M021IA3XTMH-GEVB AR1335CSSC11SMKAH3-GEVB MAXCAMOV10640# MT9M031112STMH-GEVB TSL2581CS-DB TMD3700-DB NANOUSB2.2 ASX340AT3C00XPEDH3-GEVB AR0144ATSM20XUEAH3-GEVB AR0144CSSC00SUKAH3-GEVB AR0522SRSC09SURAH3-GEVB AR0522SRSM09SURAH3-GEVB AR0521SR2C09SURAH3-GEVB MARS1-MAX9295A-GEVK MARS1-MAX9296B-GEVB ISL29112IROZ-EVALZ AR0233AT2C17XUEAH3-GEVB AR0431CSSC14SMRAH3-GEVB MARS-DEMO3-MIPI-GEVB TCS3430-DB AR0234CSSC00SUKAH3-GEVB AR0130CSSM00SPCAH-GEVB TSL2521-DB TSL2520-DB EVALZ-ADPD2212 TMD2772EVM TMG3993EVM MIKROE-2103 TSL2672EVM 1384 MT9M114EBLSTCZDH-GEVB SEN0043 SEN0162 TMD2771EVM TMD3782EVM TSL4531EVM 1918 AS7225 DEMO KIT SEN0097 SEN0212 SEN0228 AR0134CSSC00SUEAH3-GEVB AP0100AT2L00XUGAH3-GEVB AR0144CSSM20SUKAH3-GEVB 725-28915 EVAL-ADPD1081Z-PPG