# amul 

## Datasheet

DS000648

## TMF8801

## Time-of-Flight Sensor

v5-01•2020-Apr-28

## Abstract

The TMF8801 is a dToF (direct time of flight) optical distance sensor module achieving up to 2500 mm target detection distance.

## Content Guide

1 General Description ..... 3
1.1 Key Benefits \& Features ..... 3
1.2 Applications ..... 4
1.3 Block Diagram ..... 4
2 Ordering Information ..... 5
3 TMF8801 Module Description ..... 6
3.1 Pin Diagram ..... 6
3.2 Pin Description ..... 6
4 Absolute Maximum Ratings ..... 8
5 Electrical Characteristics ..... 9
5.1 Recommended Operating Conditions ..... 9
6 Typical Operating Characteristics ..... 10
7 Functional Description ..... 13
$7.1 \quad I^{2} \mathrm{C}$ Protocol ..... 13
7.2 System Parameters ..... 13
7.3 I/O ..... 14
7.4 Power Consumption ..... 15
7.5 Timing ..... 16
7.6 Algorithm Performance ..... 17
7.7 VCSEL ..... 19
7.8 Typical Optical Characteristics ..... 19
8 Register Description ..... 21
8.1 APPID Register (Address 0x00) ..... 21
8.2 APPREV_MAJOR Register (Address $0 \times 01$ ) ..... 21
8.3 APPREQID Register (Address 0x02) ..... 21
8.4 ENABLE Register (Address 0xE0) ..... 22
8.5 ..... 2
8.6
8.78.8 Register (Address 0xE3)8.8 REVID Register (Address 0xE4238.9 App0 Registers - appid=0xC0248.10 Bootloader Registers - appid=0x8024
9 Application Information ..... 56
9.1 SPAD Options ..... 56
9.2 Reference SPAD, TDC and Histogram. ..... 57
9.3 Schematic ..... 58
9.4 PCB Layout ..... 60
9.5 PCB Pad Layout ..... 61
10
Package Drawings \& Markings. ..... 62
Tape \& Reel Information ..... 63
12 Soldering \& Storage Information 64
12.1 Soldering Information ..... 64
12.2 Storage Information ..... 65
13 Laser Eye Safety ..... 67
14 Revision Information ..... 68
15
Legal Information ..... 69

## 1 General Description

The TMF8801 is a time-of-flight (TOF) sensor in a single modular package with associated VCSEL. The TOF device is based on SPAD, TDC and histogram technology. The device achieves 2500 mm detection range.

### 1.1 Key Benefits \& Features

The benefits and features of TMF8801, Time-of-Flight Sensor, are listed below:
Figure 1:
Added Value of Using TMF8801

| Benefits | Features |
| :--- | :--- |
| Small footprint fits in the mobile phone bezel | Modular package - $2.2 \mathrm{~mm} \times 3.6 \mathrm{~mm} \times 1.0 \mathrm{~mm}$ |
| Detecting central closest objects | $21^{\circ}$ FOI |
| Within $5 \%$ of measurement (accuracy); no <br> multipath and no multiple object problems as <br> for iToF | Time-to-Digital Converter (TDC) <br> Direct Time-of-Flight Measurement |
| Better accuracy detects reliably closest object <br> Minimum distance 20 mm <br> Maximum distance 2500 mm | Single Photon Avalanche Photodiode (SPAD) |
| No complex calibration | Histogram based architecture |
| Compensates for dirt on glass | Dynamic cover glass calibration |
| Improved accuracy over temperature and life | Reliable Operation under demanding use cases |
| Make better decisions | Distance and signal quality reported |
| Class 1 Eye Safe | Fast VCSEL driver with protection |
| Longer battery life | 27mA power consumption at 30 Hz operation |
|  | $0.26 \mu A$ power-down current consumption (EN=0) |

### 1.2 Applications

The device is ideal for use in the mobile phone market with applications including:

- Distance measurement for camera autofocus (Laser Detect Autofocus - LDAF)
- Supporting low-power system operation by enabling high-power components (i.e. 3D camera) only when an object is in the detection range
- Presence detection - Object detection
- Collision avoidance


### 1.3 Block Diagram

The functional blocks of this device are shown below:

Figure 2:
Functional Blocks of TMF8801


## 2 <br> Ordering Information

| Ordering Code | Package | Marking | Delivery Form | Delivery Quantity |
| :--- | :--- | :--- | :--- | :--- |
| TMF8801-1BM | Optical <br> Module | 5-digit tracecode <br> (coded) | Tape \& Reel <br> (7" reels) | $500 \mathrm{pcs} /$ reel |
| TMF8801-1B | Optical <br> Module | 5-digit tracecode <br> (coded) | Tape \& Reel <br> (13" reels) | $5000 \mathrm{pcs} /$ reel |

## 3 TMF8801 Module Description

### 3.1 Pin Diagram

Figure 3:
Pin Locations Top Through View (not to scale)


### 3.2 Pin Description

Figure 4:
Pin Description of TMF8801

| Pin Number | Pin Name | Signal Type | Description |
| :--- | :--- | :--- | :--- |
| 1 | VDDC | Supply | Charge pump supply voltage (3 V); add a <br> capacitor GRM155R70J104KA01 (0402 X7R <br> $0.1 \mu F 6.3 \mathrm{~V})$ to GND |
| 2 | GNDC | Ground | Charge pump ground; connect all ground pins <br> together |
| 3 | GPIOO | I/O | General purpose input/output; default output <br> low; leave open if not used |


| Pin Number | Pin Name | Signal Type | Description <br> Interrupt. Open-drain output; connect to GND <br> if not used |
| :--- | :--- | :--- | :--- |
| 4 | INT | Output | I'C Serial Clock $^{\text {I2C Serial Data }}$ |
| 5 | SCL | Input | I/O |
| 6 | SDA | Supply | Chip Supply voltage (3 V); add a capacitor <br> GRM155R70J104KA01 (0402 X7R 0.1 $\mu \mathrm{F}$ <br> 6.3 V) to GND |
| 7 | GDD | Ground | Chip Ground; connect all ground pins <br> together |
| 8 | GND | Input | Enable input active high; setting to low forces <br> the device into shutdown and all memory <br> content is lost; connect to VDD if not used |
| 10 | GNDV | Ground | General purpose input/output; default output <br> low; leave open if not used |
| 11 | VCSEL Ground; connect all ground pins |  |  |
| together |  |  |  |

(1) SDA, SCL, INT and EN have no diode to any VDD supply. Therefore even with VDD=0 V they do not block the interrupt line or ${ }^{2} \mathrm{C}$ bus.
(2) GPIO0 and GPIO1 are push/pull output and have a diode to VDD; therefore if VDD is not powered, GPIO0 and GPIO1 should not be driven from outside.

## 4 Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Operating Conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5
Absolute Maximum Ratings of TMF8801

| Symbol | Parameter | Min | Max | Unit | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Electrical Parameters |  |  |  |  |  |
| VDDC, VDDV, VDD | $3 \vee$ Supply voltage | -0.3 | 3.6 | V | Connect pins VDDC, VDDV, VDD on PCB with very short connections |
| GNDV, <br> GNDC, GND | Ground | 0.0 | 0.0 | V | Connect all GND pins on PCB with very short connections |
| GPIOO, GPIO1 | Digital I/O terminal voltage | -0.3 | $\begin{gathered} \mathrm{VDD}+ \\ 0.3 \mathrm{~V} \text { max. } \\ 3.6 \mathrm{~V} \end{gathered}$ | V | Protection diode to VDD |
| $\begin{aligned} & \text { INT, SCL, } \\ & \text { SDA, EN } \end{aligned}$ | Digital I/O terminal voltage | -0.3 | 3.6 | V | No protection diodes to any positive supply only to ground |
| I_SCR | Latch up immunity |  |  | mA | JEDEC JESD78D Nov 2011 |
| Electrostatic Discharge |  |  |  |  |  |
| ESD нвм $^{\text {d }}$ | Electrostatic Discharge HBM |  |  | V | JS-001-2014 |
| ESD ${ }_{\text {cDm }}$ | Electrostatic Discharge CDM |  |  | V | JEDEC JESD22-C101F Oct 2013 |
| Temperature Ranges and Storage Conditions |  |  |  |  |  |
| $\mathrm{T}_{\text {StRg }}$ | Storage Temperature Range | - 40 | 85 | ${ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\text {Boor }}$ | Package Body Temperature |  | 260 | ${ }^{\circ} \mathrm{C}$ | IPC/JEDEC J-STD-020 ${ }^{(1)}$ |
| $\mathrm{RH}_{\mathrm{NC}}$ | Relative Humidity (noncondensing) |  | 85 | \% |  |
| MSL | Moisture Sensitivity Level |  |  |  | Represents a maximum floor life time of 168 h with $T_{\text {AMB }}<30^{\circ} \mathrm{C}$ and $<60 \%$ r.h. |

(1) The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices."

## 5 Electrical Characteristics

All limits are guaranteed. The parameters with Min and Max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

### 5.1 Recommended Operating Conditions

Device parameters are guaranteed at nominal conditions unless otherwise noted. While the device is operational across the temperature range, functionality will vary with temperature.

Figure 6:
Recommended Operating Conditions of TMF8801

| Symbol | Parameter | Min | Typ | Max | Unit | Comment |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| VDDV, VDDC, VDD | 3 V supply voltage | 2.7 | 3 | 3.3 | V |  |
| Temperature Range | Free-air temperature | -30 | 25 | 70 | ${ }^{\circ} \mathrm{C}$ | Operational |

## 6

## Typical Operating Characteristics

Following operating characteristics are measured with calibrated devices with full optical stack including glass and IR ink with $>90 \%$ transmissivity. The airgap is set to 0.38 mm . The ambient light is measured on the $1 \mathrm{~m} \times 1 \mathrm{~m}$ target. A very diffuse scotch magic tape 810 is used for measurement with smudge.

Figure 7:
350 Lux Fluorescent Light and 18\% Grey Card


Figure 8:
350 Lux Fluorescent Light, 18\% Grey Card and Smudge on Glass


Figure 9:
1.4k Lux Halogen Light and 18\% Grey Card


Figure 10:
14k Lux Halogen Light and 18\% Grey Card


Figure 11:
Field of Illumination of VCSEL (FOI), X-Axis: $\pm 10.4^{\circ}, \mathrm{Y}$-Axis: $\pm 10.31^{\circ}, 1 / \mathrm{e}^{2}$


## 7 Functional Description

## $7.1 \quad I^{2} \mathrm{C}$ Protocol

The TMF8801 is controlled by an $\mathrm{I}^{2} \mathrm{C}$ bus, one interrupt pin and two GPIO pins.

The device uses $I^{2} \mathrm{C}$ serial communication protocol for communication. The device supports 7-bit chip addressing and standard, fast mode and fast mode plus modes. Read and Write transactions comply with the standard set by Philips (now NXP). For a complete description of the ${ }^{2} \mathrm{C}$ protocol, please review the NXP ${ }^{2}$ C design specification.

Internal to the device, an 8-bit buffer stores the register address location of the byte to read or write. This buffer auto-increments upon each byte transfer and is retained between transaction events (i.e. valid even after the master issues a STOP and the ${ }^{2} \mathrm{C}$ bus is released). During consecutive Read transactions, the future/repeated $I^{2} \mathrm{C}$ Read transaction may omit the memory address byte normally following the chip address byte; the buffer retains the last register address +1 .

A Write transaction consists of a START, CHIP-ADDRESSWRITE, REGISTER-ADDRESSWRITE, DATA BYTE(S), and STOP. Following each byte (9TH clock pulse) the slave places an ACKNOWLEDGE/NOT- ACKNOWLEDGE (ACK/NACK) on the bus. If NACK is transmitted by the slave, the master may issue a STOP.

A Read transaction consists of a START, CHIP-ADDRESSWRITE, REGISTER-ADDRESS, RESTART, CHIP-ADDRESSREAD, DATA BYTE(S), and STOP. Following all but the final byte the master places an ACK on the bus (9TH clock pulse). Termination of the Read transaction is indicated by a NACK being placed on the bus by the master, followed by STOP.

The default I2C address is $0 \times 41$. The address can be changed after power-up. Use the enable pin to enable only one device at a time to provide unique device addresses.

### 7.2 System Parameters

The on-chip microprocessor is a Cortex M0 $\mu \mathrm{P}$.

Figure 12:
ARM MO Parameters

| Parameter | Min | Nom | Max | Units |
| :--- | :---: | :---: | :--- | :--- | | Comment |
| :--- |
| $\mu$ P Operating Frequency |

7.3 I/O

Figure 13:
Typical I/O Level Specification

| Symbol | Parameter | Condition | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ILEAK | SDA, SCL, GPIO0/1, EN, INT |  | -5 |  | 5 | $\mu \mathrm{A}$ |
| $\mathrm{VIH}^{(1)}$ | SDA, SCL, GPIO0/1, |  | 1.26 |  |  | V |
| VIL_I2C ${ }^{(1)}$ | SDA, SCL | 2.7 V<VDD<2.9 V, $<400 \mathrm{kHz}{ }^{2} \mathrm{C}$ speed |  |  | 0.3 | V |
|  |  | VDD >2.9 V, <br> $<400 \mathrm{kHz} \mathrm{I}^{2} \mathrm{C}$ speed |  |  | 0.54 |  |
|  |  | $2.8 \mathrm{~V}<\mathrm{VDD}<3.0 \mathrm{~V}$, <br> $<1 \mathrm{MHz}{ }^{2} \mathrm{C}$ speed |  |  | 0.3 |  |
|  |  | $\begin{aligned} & \text { VDD>3.0 V, } \\ & <1 \mathrm{MHz} \mathrm{I}^{2} \mathrm{C} \text { speed } \end{aligned}$ |  |  | 0.54 |  |
| VIL | GPIOO/1, EN |  |  |  | 0.54 | V |
| VOL | SDA, GPIO0/1, INT | 2 mA sink | 0 |  | 0.36 | V |
|  |  | 4 mA sink | 0 |  | 0.6 | V |
| IDRIVE_H | GPIOO/1 | 1 V applied on GPIO | 3.6 |  |  | mA |
| IDRIVE_L | GPIO0/1 | 1 V applied on GPIO | 3.9 |  |  | mA |

(1) The input highlevel VIH and lowlevel VIL is defined to support a pullup supply of $1.8 \mathrm{~V} \pm 5 \%$

### 7.4 Power Consumption

All current consumption values include silicon process variation. Temperature and voltages are at nominal conditions ( $23{ }^{\circ} \mathrm{C}$ and 2.8 V ).

Figure 14:
Power Consumption

| Parameter | Condition | Min | Nom | Max | Units |
| :--- | :--- | :--- | :--- | :--- | :--- | Comment | Cnable Pin |
| :--- |
| Low I2C Off | 0.02

### 7.5 Timing

### 7.5.1 Ranging Acquisition Timing

Figure 15:
Ranging Acquisition Timing

| Parameter | Min | Nom | Max | Units |
| :--- | :--- | :--- | :--- | :--- | Comment | Ranging Time Default Settings |
| :--- | $3^{33}$ ms | Varies with operational |
| :--- |
| mode |

Figure 16:
Ranging Timing Diagram


### 7.5.2 Reset Pin and Power-Up Timing

Figure 17:
Reset Pin and Power-Up Timing

| Parameter | Min | Nom | Max | Units |
| :--- | :---: | :---: | :---: | :--- | Comment | Power On (Boot Time) | 3 | ms | Does not include <br> RAM download time |
| :--- | :--- | :--- | :--- |
| Enable high to ready for <br> measurement | 8 | ms |  |


| Parameter | Min | Nom | Max |
| :--- | :--- | :--- | :--- |
| Standby to Active Time | $\ll 1$ | Units | Comment |
| Active to Standby Time | $\ll 1$ | ms |  |
| Enable Low to Power Down Time | $\ll 1$ | ms |  |

### 7.6 Algorithm Performance

As the performance of the algorithm is dependent on the ROM version, following section only applies for devices with order code TMF8801-1B (and TMF8801-1BM), calibrated and in-application oscillator calibration using the reference driver code and patched with the latest software patch from ams contact ams to identify latest patch version.

To achieve the full distance of 250 cm , the on chip oscillator needs to be tuned to 4.7 MHz .

The TMF8801 is embedded in the application using a 0.38 mm airgap and a glass with an IR ink with $>90 \%$ transmissivity. The glass thickness is 0.5 mm . An additional mask on the opaque ink is implemented according to TMF8801 optical design guide (external document).

### 7.6.1 Calibration

To achieve the performance described in the next sections, a calibration of the algorithm needs to be performed (command $=0 \times 0 \mathrm{~A}$ ). The TMF8801 shall be embedded in the final application and the cover glass including the IR ink needs to be assembled. The calibration test shall be done in a housing with minimal ambient light and no target within 40 cm in field of view of the TMF8801.

The TMF8801 generates a calibration data set which is permanently stored on the host.
On each power-up of the TMF8801 the calibration data set is sent by ${ }^{2} \mathrm{C}$ to the TMF8801 prior to execution of any algorithms (commands $=0 \times 02$ or $0 \times 0 B$ ).

### 7.6.2 Algorithm Timings

The TMF8801 can adjust the number of iterations and detection threshold using registers. A default mode is defined having 900k iterations and threshold=0.

Figure 18:

## Algorithm Timings

| Parameter | Condition | Min | Nom | Max |
| :--- | :--- | :--- | :--- | :--- | Units

### 7.6.3 Algorithm Performance Parameters

The algorithm reports distance information of the closest object in 1 mm steps.
Using the timings described in 7.6 .2 following performance is achieved:
Figure 19:
Object Detection Algorithm Parameters

| Parameter | Condition | Min | Nom | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Reflectivity of object at 940 nm | Perpendicular to TMF8801 | 18 |  | 90 | \% |
| Maximum distance detection, <br> $1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$ object | 350 lux fluorescent on object, 18\% grey card |  | $2500{ }^{(1)}$ |  | mm |
|  | 360 lux halogen light on object ${ }^{(2)}$, $88 \%$ white card |  | $2500{ }^{(1)}$ |  | mm |
|  | 360 lux halogen light on object ${ }^{(2)}$, 18\% grey card |  | 1700 |  | mm |
|  | 1400 lux halogen light on object ${ }^{(3)}$, $88 \%$ white card |  | 1600 |  | mm |
|  | 1400 lux halogen light on object ${ }^{(4)}$, 18\% grey card |  | 1250 |  | mm |
|  | 14000 lux halogen light on object ${ }^{(4)}$, $18 \%$ grey card |  | 600 |  | mm |
| Minimum distance detection, 18 \% grey card, $20 \mathrm{~cm} \times 26 \mathrm{~cm}$ |  |  | 20 |  | mm |
| Accuracy | Object distance $\geq 200 \mathrm{~mm}$ |  | $\pm 5$ |  | \% |
|  | 100 mm < object distance < 200 mm |  | $\pm 10$ |  | mm |
|  | 20 mm < object distance < 100 mm |  | $\pm 15$ |  | mm |
| Transition short to long distance mode |  |  | 200 |  | mm |

(1) To achieve the full distance, the oscillator need to be tuned to 4.7 MHz . Use ams reference code to implement clock frequency tuning.
Any target reported above 2500 mm should be considered as no object.
(2) 360 lux halogen light represents 2.5 k sunlight equivalent; light on object only.
(3) 1400 lux halogen light represents 10 k sunlight equivalent; light on object only
(4) 14000 lux halogen light represents 100 k sunlight equivalent; light on object only

### 7.7 VCSEL

Internal protection ensures no single point of failure will cause the VCSEL to violate the Class 1 Laser Safety.

- Laser Safety
- VCSEL Pulse Rep Rate


## Class 1

23 ns ( $43 \mathrm{MHz} ; 37.6 \mathrm{MHz}$ if clock frequency tuned to 4.7 MHz ) If VCSEL_clk_div=1 the frequency is divided by two.

### 7.8 Typical Optical Characteristics

- VCSEL Field of Illumination (FOI) 21 full width from $5 \%$ of maximum up to maximum

19ㅇ $1 / \mathrm{e}^{\wedge} 2$

- TOF Sensor Field of View (FOV) 37ㅇ FWHM - for short distances

24ㅇ FWHM - for long distances
The SPAD FoV angular response uses the full TMF8801 SPADs for short distances. The SPAD FoV is reduced when the TMF8801 operates in long distance since the SPAD array is reduced. This helps to improve ambient light tolerance.

Figure 20:
FOI/FOV of TMF8801


### 7.8.1 Filter Characteristics:

- FWHM
- Passband Center Frequency
- Min Stopband Frequency
- Max Stopband Frequency

56 nm
940 nm
350 nm
1100 nm

## 8 Register Description

8.1 APPID Register (Address 0x00)

Figure 21:
APPID Register

| Addr: 0x00 |  |  |  | APPID |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | appid | 0 | RW | Currently running application: <br> 0xC0 App0 - Measurement application running <br> $0 \times 80$ bootloader running |

8.2 APPREV_MAJOR Register (Address 0x01)

Figure 22:
APPREV_MAJOR Register

| Addr: 0x01 |  | APPREV_MAJOR |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | apprevMajor | 0 | RW | Application major revision |

### 8.3 APPREQID Register (Address 0x02)

Figure 23:
APPREQID Register

| Addr : 0x02 |  |  |  | APPREQID |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Field | Name | Rst | Type | Description |  |

### 8.4 ENABLE Register (Address 0xE0)

Figure 24:
ENABLE Register

| Addr: 0xE0 |  |  | ENABLE |  |
| :---: | :---: | :---: | :---: | :---: |
| Field | Name | Rst | Type | Description |
| 7 | cpu_reset | 0 | RW_SC | Write a ' 1 ' here to reset CPU. This generates global reset, fully resetting CPU and all CPU registers. The bit resets itself, no need to explicitly clear it. |
| 6 | cpu_ready | 0 | RO | CPU is ready to handle $I^{2} \mathrm{C}$ - if this bit is zero, then only the registers 0xe0 and above are usable, the memory mapped $I^{2} \mathrm{C}$ space is not used. <br> Bit gets set only explicitly by software, therefore a functional and running firmware is necessary for this bit to work. |
| 0 | pon | 1 | R_PUSH | $1=$ activate oscillator $0=$ ask cpu to go to standby <br> Activating the oscillator is implemented in hardware. Whenever this register is ' 0 ' and a ' 1 ' is being written, the oscillator is being started and CPU receives a PON1 interrupt. It is implemented in the bootloader to execute a reset at this point, but the application goes to an IDLE state. <br> De-activating the oscillator is a software assisted process. It is important that the CPU powers down all modules properly before turning off the oscillator, therefore this is implemented in firmware. So writing a ' 0 ' to this register will trigger an internal CPU interrupt. The firmware, after powering down everything, sets the device into standby state. |

### 8.5 INT_STATUS Register (Address 0xE1)

Figure 25:
INT_STATUS Register

| Addr: 0xE1 |  | INT_STATUS |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |


| Addr: 0xE1 |  | INT_STATUS |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description | | Object detection interrupt for App0; asserted when a |
| :--- | :--- | :--- | :--- |
| result from object detection is available |

### 8.6 INT_ENAB Register (Address 0xE2)

Figure 26:
INT_ENAB Register

| Addr: 0xE2 |  | INT_ENAB |  |
| :--- | :--- | :--- | :--- | :--- |

### 8.7 ID Register (Address 0xE3)

Figure 27:
ID Register

| Addr: $0 \times$ E3 |  | ID |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $5: 0$ | id | 0 | RO | Chip ID, reads 07 h - do not rely on register bits 6 and <br> 7 7 of this register. |

### 8.8 REVID Register (Address 0xE4)

Figure 28:
REVID Register

| Addr: 0xE4 |  |  | REVID |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| 2:0 | rev_id | 0 | RO | Chip revision ID |

### 8.9 App0 Registers - appid=0xC0

Following registers are only available if appid=0xC0 (App0):

### 8.9.1 CMD_DATA9 Register (Address 0x06)

Figure 29:
CMD_DATA9 Register

| Addr: $0 \times 06$ |  | CMD_DATA9 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| 7:0 | cmd_data9 | 0 | W | Command data 9 - see COMMAND Register <br> (Address 0x10); for future extension of commands |

### 8.9.2 CMD_DATA8 Register (Address 0x07)

Figure 30:
CMD_DATA8 Register

| Addr: $0 \times 07$ |  | CMD_DATA8 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| 7:0 | cmd_data8 | 0 | W | Command data 8 - see COMMAND Register <br> (Address 0x10); for future extension of commands |

### 8.9.3 CMD_DATA7 Register (Address 0x08)

Figure 31:
CMD_DATA7 Register

| Addr: 0x08 |  |  | CMD_DATA7 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | cmd_data7 | 0 | W | Command data 7 - see COMMAND Register <br> (Address 0x10) |

### 8.9.4 CMD_DATA6 Register (Address 0x09)

Figure 32:

## CMD_DATA6 Register

| Addr: 0x09 |  |  | CMD_DATA6 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | cmd_data6 | 0 | W | Command data 6 - see COMMAND Register <br> (Address 0×10) |

### 8.9.5 CMD_DATA5 Register (Address 0x0A)

Figure 33:
CMD_DATA5 Register

| Addr: 0x0A |  |  | CMD_DATA5 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| 7:0 | cmd_data5 | 0 | W | Command data 5 - see COMMAND Register <br> (Address 0x10) |

### 8.9.6 CMD_DATA4 Register (Address 0x0B)

Figure 34:
CMD_DATA4 Register

| Addr: 0x0B |  | CMD_DATA4 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | cmd_data4 | 0 | W | Command data 4 - see COMMAND Register <br> (Address 0x10) |

### 8.9.7 CMD_DATA3 Register (Address 0x0C)

Figure 35:

## CMD_DATA3 Register

| Addr: 0x0C |  | CMD_DATA3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | cmd_data3 | 0 | W | Command data 3-see COMMAND Register <br> (Address 0x10) |

### 8.9.8 CMD_DATA2 Register (Address 0x0D)

Figure 36:
CMD_DATA2 Register

| Addr: 0x0D |  | CMD_DATA2 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | cmd_data2 | 0 | W | Command data 2 - see COMMAND Register <br> (Address 0x10) |

### 8.9.9 CMD_DATA1 Register (Address 0x0E)

Figure 37:
CMD_DATA1 Register

| Addr: 0x0E | CMD_DATA1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| 7:0 | cmd_data1 | 0 | W | Command data 1-see COMMAND Register <br> (Address 0x10) |

### 8.9.10 CMD_DATAO Register (Address 0x0F)

Figure 38:
CMD_DATA0 Register

| Addr: 0x0F |  | CMD_DATA0 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | cmd_data0 | 0 | W | Command data 0 - see COMMAND Register <br> (Address 0x10) |

### 8.9.11 COMMAND Register (Address 0x10)

Figure 39:
COMMAND Register


| Bits | Definition |
| :---: | :---: |
| 3:0 | GPIO0 settings <br> 0 - Input <br> 1 - Input: active low disables collection, immediately abandoning current measurement. Returning to high restarts new measurement <br> 2 - Input: active high disables collection, immediately abandoning current measurement. Returning to low restarts new measurement <br> 3 - Output: VCSEL pulse output - see cmd_data4 <br> 4 - Output low (default after startup) <br> 5 - Output high <br> 6:15 - Reserved, do not use |
| 7:4 | GPIO1 settings <br> 0 - Input <br> 1 - Input: active low disables collection, immediately abandoning current measurement. Returning to high restarts new measurement <br> 2 - Input: active high disables collection, immediately abandoning current measurement. Returning to low restarts new measurement <br> 3 - Output: VCSEL pulse output - see cmd_data4 <br> 4-Output low (default after startup) <br> 5 - Output high <br> 6:15 - Reserved, do not use |

cmd_data4 $=$ If cmd_data5 enables VCSEL pulse output for GPIOO and/or GPIO1, cmd_data4 sets its timings as follows:
Value Meaning
$0 \quad$ No signal
1 GPIOx, rises $0 \mu$ s time before VCSEL pulse starts
2 GPIOx rises $100 \mu$ s before VCSEL pulse
3 GPIOx rises $200 \mu$ s before VCSEL pulse and so on

The falling edge of GPIOx happens at the same time the VCSEL stops emitting light.
cmd_data3 $=$ Object detection threshold and spread spectrum mode
Bits $\quad$ Definition

$5: 0 \quad$| Object detection threshold - use 0 as default value |
| :--- |
| 6 | | spread_spectrum_mode: If set, avoids aliasing of objects into |
| :--- |
| measurement range. Use together with VCSEL_clk_div2=1 |
| otherwise maximum distance is reduced and false objects at far |
| distance can occur. |

7 | Set to ' 0 ' |
| :--- |

cmd_data2 $=$ repetition_period in mSec, use 0 for single measurement; if the repetition period is set lower than the ranging time for this mode, the TMF8801 runs at it maximum possible speed (best effort approach).
cmd_data1 $=$ Number of iterations, low byte; 1 LSB=1 $k$
cmd_data0 $=$ Number of iterations, high byte; 1 LSB=1 k*256
Once a measurement is finished, the interrupt is asserted if it is enabled by int1_enab. Additionally the transaction ID tid is updated


| Addr: $0 \times 10$ |  | COMMAND |
| :--- | :--- | :--- | :--- |
| Field $\quad$ Name $\quad$ Rst $\quad$ Type | Description |  |

3 Always set to '0'
4 Set to get short distance histograms
6:5 Always set to '00'
Set to get distance measurement histograms.
$7 \quad$ Bin 127 respectively bin 255 is used as scaling factor for this type of histograms. The scaling factor is 0 for no scaling, 1 for $2 x, 2$ for $4 x$ and so on.
cmd_data2 $=$ Set to $0 \times 00$
cmd_data1 $=$ = Bitmask for pileup correct histograms readout:

Bit Definition
0 Set to get pileup corrected distance measurement histograms
1 Set to get pileup corrected sum histogram
2 Set bit 2 to get pileup corrected short distance histogram
7:3 Always set to 0
cmd_data0 $=$ set to $0 \times 00$
Once above bitmask is set, the device is programmed to stop when the histogram is available. Set command=0x04 to actually perform the measurement.

| $0 \times 32$ | After the host has readout the histogram, continue with internal processing. |
| :---: | :--- |

Change the ${ }^{2} \mathrm{C}$ address of TMF8801
cmd_data $0=$ Condition if I ${ }^{2} \mathrm{C}$ address is changed; program the GPIOs input/output accordingly before using this feature (commands $0 \times 02,0 \times 03$ or $0 \times 0 \mathrm{~F}$ ):

| Bit | Definition |
| :--- | :--- |
| 0 | mask_gpio0 |
| 1 | mask_goio1 |
| 2 | value_gpio0 |
| 3 | value_gpio1 |
| $7: 4$ | always set to 0 |

The ${ }^{2} \mathrm{C}$ address change is executed only if (mask_gpio1 \& GPIO1) $\ll 1+$ (mask_gpio0 \& GPIOO) $==$ value_gpio1 $\ll$ 1 + value_gpio0
where GPIO1 and GPIO0 is the current status on pin GPIO1 and pin GPIO0. If this conditional programming is not used, set cmd_data0 to $0 \times 00$.
cmd_data $1=$ New ${ }^{2} \mathrm{C}$ address

| Bit | Definition |
| :--- | :--- |
| 0 | Set to ' 0 ' |
| $7: 1$ | New $I^{2} \mathrm{C}$ address to be used |



### 8.9.12 PREVIOUS Register (Address 0x11)

Figure 40:
PREVIOUS Register

| Addr: $0 \times 11$ |  | PREVIOUS |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | previousCommand | 0 | RO | Previous command that was executed <br> (or current if continues mode is selected) |

### 8.9.13 APPREV_MINOR Register (Address 0x12)

Figure 41:
APPREV_MINOR Register

| Addr: 0x12 |  | APPREV_MINOR |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| 7:0 | appRevMinor | 0 | RO | Application minor revision |

### 8.9.14 APPREV_PATCH Register (Address 0x13)

Figure 42:
APPREV_PATCH Register

| Addr: 0x13 |  | APPREV_PATCH |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | appRevPatch | 0 | RO | Application patch number |

### 8.9.15 STATUS Register (Address 0x1D)

Figure 43:
STATUS Register

| Addr: 0x1D |  |  |  | STATUS |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |  |

8.9.16 REGISTER_CONTENTS Register (Address 0x1E)

Figure 44:
REGISTER_CONTENTS Register

| Addr: 0x1E |  | RECISTER_CONTENTS |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |


| Addr: $0 \times 1 E$ |  | REGISTER_CONTENTS |  |
| :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type |

Raw histogram data where
80h = TDC0, bin 0... 63
81h = TDC0, bin $64 . . .127$
80h-93h
$82 \mathrm{~h}=$ TDC0, bin 128.. 195
$83 \mathrm{~h}=\mathrm{TDCO}$, bin 196.. 255
84h = TDC1, bin 0... 63
93 = TDC4, bin 196... 255

### 8.9.17 TID Register (Address 0x1F)

Figure 45:
TID Register

| Addr: 0x1F |  | TID |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | tid | 0 | RO | Unique transaction ID, changes with every update of <br> register map by TOF |

8.9.18 Object Detection Results - If Register register_contents $=0 \times 55$ (commands
$0 \times 02,0 \times 03$ or $0 \times 04$ )

RESULT_NUMBER Register (Address 0x20)
Figure 46:
RESULT_NUMBER Register

| Addr: $0 \times 20$ |  | RESULT_NUMBER |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | result_num | 0 | RO | Result number, incremented every time there is a <br> unique answer |

RESULT_INFO Register (Address 0x21)
Figure 47:
RESULT_INFO Register

| Addr: 0x21 |  | RESULT_INFO |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Field | Name | Rst | Type | Descript |  |
| 5:0 | reliability | 0 | RO | Reliability | object - valid range $0 . .63$ where 63 is best |
| 7:6 | measStatus | 0 | RO | When algln Will indicat | mediateInterrupt == 1 <br> the status of the measurement: |
|  |  |  |  | Reading | Meaning |
|  |  |  |  |  | Short distance capture interrupted, using previous short distance only result |
|  |  |  |  |  | Short distance capture interrupted, using previous short and long distance result |
|  |  |  |  |  | Long distance capture interrupted, result is from short distance algorithm only |
|  |  |  |  | 3 | Complete result (short and long distance algorithm) |
|  |  |  |  | When algln Will indicat | mediatelnterrupt $=0$ <br> the status of the measurement: |
|  |  |  |  | Reading | Meaning |
|  |  |  |  | 0 | Measurement was not interrupted |
|  |  |  |  | 1 | Reserved |
|  |  |  |  | 2 | Measurement was interrupted (delay) by GPIO interrupt |
|  |  |  |  | 3 | Reserved |

## DISTANCE_PEAK_0 Register (Address 0x22)

Figure 48:
DISTANCE_PEAK_0 Register

| Addr: $0 \times 22$ |  | DISTANCE_PEAK_0 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | distance_peak[7:0] | 0 | RO | Distance to the peak in $[\mathrm{mm}]$ of the object, least <br> significant byte |

## DISTANCE_PEAK_1 Register (Address 0x23)

Figure 49:
DISTANCE_PEAK_1

| Addr: $0 \times 23$ |  | DISTANCE_PEAK_1 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | distance_peak[15:8] | 0 | RO | Distance to the peak in $[\mathrm{mm}]$ of the object, <br> most significant byte |

The sys clock registers is a running timer information - this value is counting up (and wraps around to 0 again) as long as the internal clock is running. As it is derived from the internal RC oscillator and distance information is depending on its accuracy, it can be used to correct an algorithm result by comparing this clock with a more accurate clock inside the host. It is recommended to use several measurement cycles for this clock correction.

For correctly updating of these registers by TMF8801, an ${ }^{2} \mathrm{C}$ blockread starting from address $0 \times 1 \mathrm{D}$ until $0 \times 27$ shall be done.

## SYS_CLOCK_0 Register (Address 0x24)

Figure 50:
SYS_CLOCK_0 Register

| Addr: $0 \times 24$ |  | SYS_CLOCK_0 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | sys_clock[7:0] | 0 | RO | System clock/time stamp in units of $0.2 \mu \mathrm{~s}$ |

## SYS_CLOCK_1 Register (Address 0x25)

Figure 51:
SYS_CLOCK_1 Register

| Addr: 0x25 |  | SYS_CLOCK_1 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | sys_clock[15:8] | 0 | RO | System clock/time stamp in units of $0.2 \mu \mathrm{~s}$ |

SYS_CLOCK_2 Register (Address 0x26)
Figure 52:
SYS_CLOCK_2 Register

| Addr: $0 \times 26$ |  | SYS_CLOCK_2 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | sys_clock[23:16] | 0 | RO | System clock/time stamp in units of $0.2 \mu \mathrm{~s}$ |

## SYS_CLOCK_3 Register (Address 0x27)

Figure 53:
SYS_CLOCK_3 Register

| Addr: $0 \times 27$ |  | SYS_CLOCK_3 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | sys_clock[31:24] | 0 | RO | System clock/time stamp in units of $0.2 \mu \mathrm{~s}$ |

Algorithm state information is captured in the next registers. To allow resume of operation after poweroff, algorithm state can be stored temporarily inside the host and once after power-on of TMF8801 restored to resume operation.

## STATE_DATA_0 Register (Address 0x28)

Figure 54:
STATE_DATA_0 Register

| Addr: 0x28 |  |  | STATE_DATA_0 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_0 | 0 | RO | Algorithm state data |

## STATE_DATA_1 Register (Address 0x29)

Figure 55:
STATE_DATA_1 Register

| Addr: $0 \times 29$ |  | STATE_DATA_1 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_1 | 0 | RO | Algorithm state data |

## STATE_DATA_2 Register (Address 0x2A)

Figure 56:
STATE_DATA_2 Register

| Addr: $0 \times 2$ A |  | STATE_DATA_2 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_2 | 0 | RO | Algorithm state data |

## STATE_DATA_3 Register (Address 0x2B)

Figure 57:
STATE_DATA_3 Register

| Addr: 0x2B |  | STATE_DATA_3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_3 | 0 | RO | Algorithm state data |

## STATE_DATA_4 Register (Address 0x2C)

Figure 58:
STATE_DATA_4 Register

| Addr: 0x2C |  | STATE_DATA_4 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_4 | 0 | RO | Algorithm state data |

## STATE_DATA_5 Register (Address 0x2D)

Figure 59:
STATE_DATA_5 Register

| Addr: 0x2D |  |  | STATE_DATA_5 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_5 | 0 | RO | Algorithm state data |

## STATE_DATA_6 Register (Address 0x2E)

Figure 60:
STATE_DATA_6 Register

| Addr: 0x2E |  | STATE_DATA_6 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_6 | 0 | RO | Algorithm state data |

## STATE_DATA_7 Register (Address 0x2F)

Figure 61:
STATE_DATA_7 Register

| Addr: 0x2F |  | STATE_DATA_7 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_7 | 0 | RO | Algorithm state data |

## STATE_DATA_8_XTALK_MSB Register (Address 0x30)

Figure 62:
STATE_DATA_8 Register

| Addr: 0x30 |  | STATE_DATA_8_XTALK_MSB |  |
| :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | | Description |
| :--- |
| $7: 0$ |$\quad$ xtalk_msb $\quad 0 \quad$ RO | Crosstalk peak value MSB byte; only valid |
| :--- |
| with minimal ambient light and no target |
| within 40 cm in field of view of the |
| TMF8801 |

## STATE_DATA_9_XTALK_LSB Register (Address 0x31)

Figure 63:
STATE_DATA_9 Register

| Addr: 0x31 |  | STATE_DATA_9_XTALK_LSB |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | xtalk_Isb | 0 | RO | Crosstalk peak value LSB byte; only <br> valid with minimal ambient light and no <br> target within 40 cm in field of view of the <br> TMF8801 |

## STATE_DATA_10_TJ Register (Address 0x32)

Figure 64:
STATE_DATA_10_TEMPERATURE Register

| Addr: $0 \times 32$ |  | STATE_DATA_10_TJ |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | temperature | 0 | RO | 8 bit signed integer of the TMF8801 <br> sensor DII junction temperature in <br> oCelsius (e.g. "25" means $25^{\circ} \mathrm{C}$ ) |

Reference hits and object hits are used for information purposes of the target object and are only reported if a target is detected with the distance algorithm.

REFERENCE_HITS_0 Register (Address 0x33)
Figure 65:
REFERENCE_HITS_0 Register

| Addr: 0x33 |  | REFERENCE_HITS_0 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | reference_hits[7:0] | 0 | RO | Sum of the reference SPADs hits <br> during the distance measurement; zero <br> if no object is detected or distance <br> algorithm is not used |

## REFERENCE_HITS_1 Register (Address 0x34)

Figure 66:
REFERENCE_HITS_1 Register

| Addr: $0 \times 34$ |  | REFERENCE_HITS_1 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | reference_hits[15:8] | 0 | RO | Sum of the reference SPADs hits during the <br> distance measurement; zero if no object is <br> detected or distance algorithm is not used |

REFERENCE_HITS_2 Register (Address 0x35)
Figure 67:
REFERENCE_HITS_2 Register

| Addr: $0 \times 35$ |  | REFERENCE_HITS_2 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| 7:0 | reference_hits[23:16] | 0 | RO | Sum of the reference SPADs hits during the <br> distance measurement; zero if no object is <br> detected or distance algorithm is not used |

REFERENCE_HITS_3 Register (Address 0x36)
Figure 68:
REFERENCE_HITS_3 Register

| Addr: 0×36 |  | REFERENCE_HITS_3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | reference_hits[31:24] | 0 | RO | Sum of the reference SPADs hits during the <br> distance measurement; zero if no object is <br> detected or distance algorithm is not used |

OBJECT_HITS_0 Register (Address 0x37)
Figure 69:
OBJECT_HITS_0 Register

| Addr: $0 \times 37$ |  | OBJECT_HITS_0 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | object_hits[7:0] | 0 | RO | Sum of the object SPADs hits during the <br> distance measurement; zero if no object is <br> detected or distance algorithm is no used |

## OBJECT_HITS_1 Register (Address 0x38)

Figure 70:
OBJECT_HITS_1 Register

| Addr: $0 \times 38$ |  | OBJECT_HITS_1 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | object_hits[15:8] | 0 | RO | Sum of the object SPADs hits during the <br> distance measurement; zero if no object is <br> detected or distance algorithm is no used |

OBJECT_HITS_2 Register (Address 0x39)
Figure 71:
OBJECT_HITS_2 Register

| Addr: 0x39 |  | OBJECT_HITS_2 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | object_hits[23:16] | 0 | RO | Sum of the object SPADs hits during the <br> distance measurement; zero if no object is <br> detected or distance algorithm is no used |

OBJECT_HITS_3 Register (Address 0x3A)
Figure 72:
OBJECT_HITS_3 Register

| Addr: 0x3A |  | OBJECT_HITS_3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | object_hits[31:24] | 0 | RO | Sum of the object SPADs hits during the <br> distance measurement; zero if no object is <br> detected or distance algorithm is no used |

### 8.9.19 Calibration and Algorithm State Data Exchange

These registers shall be pre-loaded by the host before command $=0 \times 02$ or $0 \times 0 \mathrm{~B}$ is executed

## FACTORY_CALIB_0 Register (Address 0x20)

Figure 73:
FACTORY_CALIB_0 Register

| Addr: 0x20 |  | FACTORY_CALIB_0 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_0 | 0 | RW | Factory calibration data <br> Bits [3:0] are format revision <br> Bits [7:4] are bits [3:0] of crosstalk <br> measurement |

## FACTORY_CALIB_1 Register (Address 0x21)

Figure 74:
FACTORY_CALIB_1 Register

| Addr: 0x21 |  | FACTORY_CALIB_1 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_1 | 0 | RW | Factory calibration data <br> Bits [11:4] of crosstalk measurement |

## FACTORY_CALIB_2 Register (Address 0x22)

Figure 75:
FACTORY_CALIB_2 Register

| Addr: 0x22 |  | FACTORY_CALIB_2 |
| :--- | :--- | :--- | :--- | :--- |

## FACTORY_CALIB_3 Register (Address 0x23)

Figure 76:
FACTORY_CALIB_3 Register

| Addr: 0×23 |  | FACTORY_CALIB_3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_3 | 0 | RW | Factory calibration data |

## FACTORY_CALIB_4 Register (Address 0x24)

Figure 77:
FACTORY_CALIB_4 Register

| Addr: 0x24 |  |  | FACTORY_CALIB_4 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_4 | 0 | RW | Factory calibration data |

## FACTORY_CALIB_5 Register (Address 0x25)

Figure 78:
FACTORY_CALIB_5 Register

| Addr: 0x25 |  | FACTORY_CALIB_5 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_5 | 0 | RW | Factory calibration data |

FACTORY_CALIB_6 Register (Address 0x26)
Figure 79:
FACTORY_CALIB_6 Register

| Addr: 0x26 |  | FACTORY_CALIB_6 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_6 | 0 | RW | Factory calibration data |

## FACTORY_CALIB_7 Register (Address 0x27)

Figure 80:
FACTORY_CALIB_7 Register

| Addr: $0 \times 27$ |  | FACTORY_CALIB_7 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_7 | 0 | RW | Factory calibration data |

## FACTORY_CALIB_8 Register (Address 0x28)

Figure 81:
FACTORY_CALIB_8 Register

| Addr: 0x28 |  |  | FACTORY_CALIB_8 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_8 | 0 | RW | Factory calibration data |

FACTORY_CALIB_9 Register (Address 0x29)
Figure 82:
FACTORY_CALIB_9 Register

| Addr: 0x29 |  | FACTORY_CALIB_9 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_9 | 0 | RW | Factory calibration data |

FACTORY_CALIB_10 Register (Address 0x2A)
Figure 83:
FACTORY_CALIB_10 Register

| Addr: 0x2A |  | FACTORY_CALIB_10 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_10 | 0 | RW | Factory calibration data |

FACTORY_CALIB_11 Register (Address 0x2B)
Figure 84:
FACTORY_CALIB_11 Register

| Addr: 0x2B |  | FACTORY_CALIB_11 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_11 | 0 | RW | Factory calibration data |

## FACTORY_CALIB_12 Register (Address 0x2C)

Figure 85:
FACTORY_CALIB_12 Register

| Addr: 0×2C |  |  | FACTORY_CALIB_12 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | factory_calib_12 | 0 | RW | Factory calibration data |

## FACTORY_CALIB_13 Register (Address 0x2D)

Figure 86:
FACTORY_CALIB_13 Register

| Addr: $0 \times 2$ 2 |  |  | FACTORY_CALIB_13 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| 7:0 | factory_calib_13 | 0 | RW | Factory calibration data |

If algorithm state data is sent to TMF8801 following registers shall be pre-loaded by the host before command= $0 \times 02$ or $0 \times 0 \mathrm{~B}$ is executed.

## i <br> Information

If only algorithm state data and no calibration data is sent to TMF8801, pre-load algorithm state data starting from address $0 \times 20$ instead of 0x2E.

## STATE_DATA_WR_0 Register (Address 0x2E)

Figure 87:
STATE_DATA_WR_0 Register

| Addr: $0 \times 2$ E |  | STATE_DATA_WR_0 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| 7:0 | state_data_wr_0 | 0 | RW | Algorithm state data |

## STATE_DATA_WR_1 Register (Address 0x2F)

Figure 88:
STATE_DATA_WR_1 Register

| Addr: 0x2F |  |  | STATE_DATA_WR_1 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_wr_1 | 0 | RW | Algorithm state data |

## STATE_DATA_WR_2 Register (Address 0x30)

Figure 89:
STATE_DATA_WR_2 Register

| Addr: 0x30 |  |  | STATE_DATA_WR_2 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_wr_2 | 0 | RW | Algorithm state data |

STATE_DATA_WR_3 Register (Address 0x31)
Figure 90:
STATE_DATA_WR_3 Register

| Addr: 0x31 |  | STATE_DATA_WR_3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_wr_3 | 0 | RW | Algorithm state data |

## STATE_DATA_WR_4 Register (Address 0x32)

Figure 91:
STATE_DATA_WR_4 Register

| Addr: $0 \times 32$ |  | STATE_DATA_WR_4 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_wr_4 | 0 | RW | Algorithm state data |

## STATE_DATA_WR_5 Register (Address 0x33)

Figure 92:
STATE_DATA_WR_5 Register

| Addr: 0x33 |  |  | STATE_DATA_WR_5 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_wr_5 | 0 | RW | Algorithm state data |

## STATE_DATA_WR_6 Register (Address 0x34)

Figure 93:
STATE_DATA_WR_6 Register

| Addr: $0 \times 34$ |  | STATE_DATA_WR_6 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_wr_6 | 0 | RW | Algorithm state data |

## STATE_DATA_WR_7 Register (Address 0x35)

Figure 94:
STATE_DATA_WR_7 Register

| Addr: 0x35 |  | STATE_DATA_WR_7 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_wr_7 | 0 | RW | Algorithm state data |

STATE_DATA_WR_8 Register (Address 0x36)
Figure 95:
STATE_DATA_WR_8 Register

| Addr: 0x36 |  | STATE_DATA_WR_8 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_wr_8 | 0 | RW | Algorithm state data |

STATE_DATA_WR_9 Register (Address 0x37)
Figure 96:
STATE_DATA_WR_9 Register

| Addr: 0x37 |  |  | STATE_DATA_9 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_wr_9 | 0 | RW | Algorithm state data |

STATE_DATA_WR_10 Register (Address 0x38)
Figure 97:
STATE_DATA_WR_10 Register

| Addr: 0x38 |  | STATE_DATA_WR_10 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | state_data_wr_10 | 0 | RW | Algorithm state data |

8.9.20 Raw Histogram Output - If Register register_contents=0x80...0x93

HISTOGRAM_START Register (Address 0x20)
Figure 98:
HISTOGRAM_START Register

| Addr: 0x20 |  | HISTOGRAM_START |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | hist_start | 0 | RW | Quarter of histogram first byte |

...all bytes until...

HISTOGRAM_END Register (Address 0x9F)
Figure 99:
HISTOGRAM_END Register

| Addr: 0x9F |  |  | HISTOGRAM_END |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | hist_end | 0 | RW | Quarter of histogram last byte |

8.9.21 Serial Number Readout - If Register register_contents=0x47

## SERIAL_NUMBER_0 Register (Address 0x28)

Figure 100:
SERIAL_NUMBER_0 Register

| Addr: 0x28 |  |  | SERIAL_NUMBER_0 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | serial_number_0 | 0 | RW | Serial number byte 0 |

## SERIAL_NUMBER_1 Register (Address 0x29)

Figure 101:
SERIAL_NUMBER_1 Register

| Addr: 0x29 |  |  | SERIAL_NUMBER_1 |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | serial_number_1 | 0 | RW | Serial number byte 1 |

IDENTIFICATION_NUMBER_0 (Address 0x2A)
Figure 102:
IDENTIFICATION_NUMBER_0 Register

| Addr: 0x2A |  | IDENTIFICATION_NUMBER_0 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | identification_number_0 | 0 | RW | Identification number byte 0 |

IDENTIFICATION_NUMBER_1 (Address 0x2B)
Figure 103:
IDENTIFICATION_NUMBER_1 Register

| Addr: $0 \times 2 \mathrm{~EB}$ |  | IDENTIFICATION_NUMBER_1 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | identification_number_1 | 0 | RW | Identification number byte 1 |

The binary concatenated number of serial_number_0: serial_number_1: identification_number_0: identification_number_1 registers result in a unique number.

### 8.10 Bootloader Registers - appid=0×80

Following registers are only available if appid=0x80 (Bootloader):

### 8.10.1 BL_CMD_STAT (Address 0x08)

Figure 104:
BL_CMD_STAT Register

| Addr: $0 \times 08$ |  | BL_CMD_STAT |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| 7:0 | bl_cmd_stat | 0 | RW | Write: Bootloader Command - see section <br> Bootloader Commands <br> Read: Bootloader Status - anything else than <br> 0x00 means an error |

### 8.10.2 BL_SIZE (Address 0x09)

Figure 105:
BL_SIZE Register

| Addr: 0x09 |  | BL_SIZE |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| 6:0 | bl_size | 0 | RW | Data size in bytes |

### 8.10.3 BL_DATA (Address 0x0A-0x8A)

Figure 106:
BL_DATA Register

| Addr: 0x0A-0x8A |  | BL_DATA |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description |
| $7: 0$ | bl_data0 $\ldots$ bl_data127 | 0 | RW | Up to 128 data bytes for bootloader <br> commands |

### 8.10.4 BL_CSUM (Address 0x8B)

Figure 107:
BL_CSUM Register

| Addr: 0x8B |  | BL_CSUM |  |
| :--- | :--- | :--- | :--- |
| Field | Name | Rst | Type | Description | Data |
| :--- |
| $7: 0$ |
| bl_csum |

### 8.10.5 Bootloader Commands

The following commands (bl_cmd_stat) are supported by the bootloader:

| Command | Value | Meaning |
| :--- | :--- | :--- |
| RAMREMAP_RESET | $0 \times 11$ | Remap RAM to Address 0 and Reset |
| DOWNLOAD_INIT | $0 \times 14$ | Initialize for RAM download from host to TMF8801 |


| Command | Value | Meaning |
| :--- | :--- | :--- |
| W_RAM | $0 \times 41$ | Write RAM Region (Plain = not encoded into e.g. Intel Hex <br> Records) |
| ADDR_RAM | $0 \times 43$ | Set the read/write RAM pointer to a given address |

## RAMREMAP_RESET = Execute Program Downloaded to RAM

This command remaps the RAM to address 0 and performs a System reset (see also command RESET).

Command is performed immediately without any delay.
After this the application that is located in RAM will be running. If there is no valid application you will need to do a HW reset (toggle enable pin or power cycle).

Figure 108:
RAMREMAP_RESET

| Address | Value | Meaning |
| :--- | :--- | :--- |
| BL_CMD_STAT | $0 \times 11$ | REMAP RAM to 0 and RESET |
| BL_SIZE | 0 | No parameters |
| BL_CSUM | $0 \times E E$ |  |

## DOWNLOAD_INIT

This command is used to initialize the download HW for secure devices.
Figure 109:
DOWNLOAD_INIT

| Address | Value | Meaning |
| :--- | :--- | :--- |
| BL_CMD_STAT | $0 \times 14$ | Initialize the HW for download from host to <br> TMF8801 RAM |
| BL_SIZE | 1 |  |
| BL_DATA0 | $0 . .0 \times$ FF | Seed |
| BL_CSUM | $0 . .0 \times F F$ |  |

## W_RAM

This command writes the given data to a defined RAM region. Note that the RAM pointer has first to be set by the command ADDR_RAM. After the command is successfully executed the RAM pointer will point to the first byte after the written region.

Figure 110:
W_RAM

| Address | Value | Meaning |
| :--- | :--- | :--- |
| BL_CMD_STAT | $0 \times 41$ | Write to main RAM |
| BL_SIZE | $0 . .0 \times 80$ | Number of bytes to be written |
| BL_DATA0 | $0 . .0 \times F F$ | $1^{\text {st }}$ byte to be written |
| BL_DATA1 | $0 . .0 \times F F$ | $2^{\text {nd }}$ byte to be written |
| $\ldots$ |  |  |
| BL_DATA127 | $0 . .0 \times F F$ | $128^{\text {th }}$ byte to be written (only if size was 0x80) |
| BL_CSUM | $0 . .0 \times F F$ | The CSUM comes immediately after the data. |

## ADDR_RAM

This command is to specify the RAM pointer location for the next R_RAM or W_RAM command.

Figure 111:
ADDR_RAM

| Address | Value | Meaning |
| :--- | :--- | :--- |
| BL_CMD_STAT | $0 \times 43$ | Specify the address of the next RAM read or <br> write. |
| BL_SIZE | 2 | LSB of address in RAM |
| BL_DATA0 | $0 . .0 \times F F$ | MSB of address in RAM |
| BL_DATA1 | $0 . .0 x F F$ |  |
| BL_CSUM | $0 . .0 x F F$ |  |

## 9 Application Information

### 9.1 SPAD Options

### 9.1.1 Signal SPADs

Firmware can enable/disable SPADs in the array as needed.

Figure 112:
Signal SPADs

|  | Min | Nom | Max |
| :--- | :--- | :--- | :--- | Comment |  | 72 |  |
| :--- | :--- | :--- |
| $1 \times$ SPADS | 16 |  |
| $10 x$ Attenuated SPADs | 16 |  |
| $100 x$ Attenuated SPADs |  |  |

Physically there are $4 \times 32=128$ signal SPADs, but SPADs with too high dark count rate are disabled during production test. There are four TDCs (TDC1...TDC4) connected to the output of the SPADs. Each of the TDCs is connected to an array of 32 SPADs (SPADs with too high dark count rate are disabled). In distance mode the number of SPADs are reduced to typ. 40 SPADs to limit the FOV of the TMF8801.

### 9.1.2 Reference SPADs

Figure 113:
Reference SPADs

|  | Min | Nom | Max |
| :--- | :--- | :--- | :--- |
| $100 x$ Attenuated SPADs |  | 9 |  |

Due to the high light intensity form the VCSEL which is located very close to the reference SPADs and has no optical barrier like the signal SPADs only highly attenuated SPADs are used. Physically there are 12 reference SPADs, but SPADs with too high dark count rate are disabled during production test. There is one TDC (TDCO) connected to the output of the SPADs.

### 9.2 Reference SPAD, TDC and Histogram

There is an internal reference SPAD with associated TDC and histogram. This is used to determine the start time of each pulse. The reference SPAD is processed during calibration. The reference channel processing occurs internal to the device with no user interaction required.

All histograms can be processed inside the TMF8801 and/or readout through the ${ }^{2} \mathrm{C}$ interface. As the readout is constrained by the $I^{2} \mathrm{C}$ speed and the $\mathrm{I}^{2} \mathrm{C}$ bus utilization (TMF8801 can support $\mathrm{I}^{2} \mathrm{C}$ speed up to 1 MHz ), it is recommended to readout the histograms only for debugging purposes.

Figure 114 shows a histogram obtained from TMF8801. The x-axis is scaled in bins, where the nominal bin size is 100 ps per bin and each TDC has 256 bins. The y-axis is scaled in counts represented by 16-bit values. The green line shows the reference histogram from TDC0 and its peak marks the reference or zero distance. The other four lines (blue, cyan, red and violet) are the histograms obtained from TDC1 to TDC4. A target at 20 cm is used to generate the peak around bin 25.

Figure 114:
Histogram

(1) The above histogram is used for general device information only. The actual histogram differ due to different bin size and modes used.

### 9.3 Schematic

The TMF8801 needs only 3 small 0402 external capacitors for operation:
Figure 115:
TMF8801 Application Schematic


The SYNC signal connected to GPIO1 can be used to immediately interrupt the TMF8801 VCSEL operation if the high power illuminator is operating. It needs to be ensured that SYNC does not exceed the VDD supply of TMF8801 as otherwise an internal protection diode will start conducting. The VCSEL operation is controlled by setting cmd_data5 of command= $0 \times 02$ or $0 \times 03$ according (see App0 registers). On SYNC assertion, the VCSEL is immediately switched off (typically after $10 \mu \mathrm{~s}$ ), on SYNC de-assertion the VCSEL operation is resumed within $>100 \mu \mathrm{~s}$.

GPIO0 can be used as a general GPIO output signal.

The signals INT/SDA/SCL need an external pullup resistor to the VIO supply (typically 1.8 V ).

### 9.3.1 Operating Several TMF8801 on a Single ${ }^{2} \mathrm{C}$ Bus

Several TMF8801 devices can share a single ${ }^{2} \mathrm{C}$ bus if there are dedicated enable (EN) connections to each of these devices.

Figure 116:
Sharing a Single ${ }^{2}{ }^{2} \mathrm{C}$ Bus for Operating Several TMF8801s


The procedure to initialize the devices to different $\mathrm{I}^{2} \mathrm{C}$ addresses is as follows:

1. Set $E N 1=0, E N 2=0, E N 3=0$ (reset all devices)
2. Set $\mathrm{EN} 1=1$
3. Upload firmware patch to first TMF8801
4. Reprogram ${ }^{2} \mathrm{C}$ address for first TMF8801 using command $=0 \times 49$ where cmd_data $0=0$ and cmd_data1 $={ }^{2} \mathrm{C}$ address for first TMF8801
5. Set EN2=1
6. Upload firmware patch to second TMF8801
7. Reprogram $\mathrm{I}^{2} \mathrm{C}$ address for second TMF8801 using command=0x49 where cmd_data0 $=0$ and cmd_data $1=I^{2} \mathrm{C}$ address for second TMF8801
8. Set EN3=1
9. Upload firmware patch to third TMF8801
10. Reprogram $I^{2} \mathrm{C}$ address for third TMF8801 using command $=0 \times 49$ where cmd_data0 $=0$ and cmd_data $1=I^{2} \mathrm{C}$ address for third TMF8801
11. If there are further devices, repeat last three steps accordingly.

### 9.4 PCB Layout

Figure 117:
PCB Layout Recommendation


Use GRM155R70J104KA01 (0402 X7R $0.1 \mu \mathrm{~F} 6.3 \mathrm{~V}$ ) or capacitors with same or better performance for CVDDC, CVDD and CVDDV.

### 9.5 PCB Pad Layout

Figure 118:
PCB Pad Layout

(1) All linear dimensions are in millimeters.
(2) Dimension tolerances are 0.05 mm unless otherwise noted.
(3) This drawing is subject to change without notice.

Use the PCB pad layout as a recommendation only. The actual pad layout shall be optimized for the customer production line.

## Package Drawings \& Markings

Figure 119:
Package Drawing

(1) All linear dimensions are in millimeters.
(2) Contact finish is $\mathrm{Au} / \mathrm{Ni}$.
(3) This package contains no lead (Pb).
(4) This drawing is subject to change without notice.
(5) 5-digit tracecode is only on bottom side of the package.

## 11 Tape \& Reel Information

Figure 120:
Tape and Reel Drawing


B-B

(1) All linear dimensions are in millimeters. Dimension tolerance is $\pm 0.10 \mathrm{~mm}$ unless otherwise noted.
(2) The dimensions on this drawing are for illustrative purposes only. Dimensions of an actual carrier may vary slightly.
(3) Symbols on drawing A0, B0, and K0 are defined in ANSI EIA Standard 481-B 2001.
(4) There are two reel sizes available (see section Ordering Information)
i) 7 " reels: Each reel is 7 inch in diameter and contains 500 parts.
ii) 13 " reels: Each reel is 13 inch in diameter and contains 5000 parts.
(5) ams packaging tape and reel conform to the requirements of EIA Standard 481-B.
(6) In accordance with EIA standard, device pin 1 is located next to sprocket holes in the tape.
(7) This drawing is subject to change without notice.

## 12 Soldering \& Storage Information

### 12.1 Soldering Information

The package has been tested and has demonstrated an ability to be reflow soldered to a PCB substrate.

The solder reflow profile describes the expected maximum heat exposure of components during the solder reflow process of product on a PCB. Temperature is measured on top of component. The components should be limited to a maximum of three passes through this solder reflow profile.

Figure 121:
Solder Reflow Profile Graph


Figure 122:
Solder Reflow Profile

| Parameter | Reference | Device |
| :--- | :--- | :--- | :--- |
| Average temperature gradient in preheating |  | $2.5^{\circ} \mathrm{C} / \mathrm{s}$ |
| Soak time | $\mathrm{t}_{\text {soak }}$ | 2 to 3 minutes |
| Time above $217^{\circ} \mathrm{C}(\mathrm{T} 1)$ | $\mathrm{t}_{1}$ | Max 60 s |


| Parameter | Reference | Device |
| :--- | :--- | :--- |
| Time above $230^{\circ} \mathrm{C}$ (T2) | $\mathrm{t}_{2}$ | Max 50 s |
| Time above $\mathrm{T}_{\text {peak }}-10^{\circ} \mathrm{C}$ (T3) | $\mathrm{t}_{3}$ | Max 10 s |
| Peak temperature in reflow | $\mathrm{T}_{\text {peak }}$ | $260^{\circ} \mathrm{C}$ |
| Temperature gradient in cooling |  | Max $-5^{\circ} \mathrm{C} / \mathrm{s}$ |

### 12.2 Storage Information

### 12.2.1 Moisture Sensitivity

Optical characteristics of the device can be adversely affected during the soldering process by the release and vaporization of moisture that has been previously absorbed into the package.

To ensure the package contains the smallest amount of absorbed moisture possible, each device is baked prior to being dry packed for shipping. Devices are dry packed in a sealed aluminized envelope called a moisture-barrier bag with silica gel to protect them from ambient moisture during shipping, handling, and storage before use.

## Shelf Life

The calculated shelf life of the device in an unopened moisture barrier bag is 12 months from the date code on the bag when stored under the following conditions:

- Shelf Life: 12 months
- Ambient Temperature: $<40^{\circ} \mathrm{C}$
- Relative Humidity: <90 \%

Rebaking of the devices will be required if the devices exceed the 12 month shelf life or the Humidity Indicator Card shows that the devices were exposed to conditions beyond the allowable moisture region.

## Floor Life

The module has been assigned a moisture sensitivity level of MSL 3. As a result, the floor life of devices removed from the moisture barrier bag is 168 hours from the time the bag was opened, provided that the devices are stored under the following conditions:

- Floor Life: 168 hours
- Ambient Temperature: $<30^{\circ} \mathrm{C}$
- Relative Humidity: <60 \%

If the floor life or the temperature/humidity conditions have been exceeded, the devices must be rebaked prior to solder reflow or dry packing.

## Rebaking Instructions

When the shelf life or floor life limits have been exceeded, rebake at $50^{\circ} \mathrm{C}$ for 12 hours.

## 13 Laser Eye Safety

The TMF8801 is designed to meet the Class 1 laser safety limits including single faults in compliance with IEC / EN 60825-1:2014. This applies to the stand-alone device and the included software supplied by ams. In an end application system environment, the system may need to be tested to ensure it remains compliant. The system must not include any additional lens to concentrate the laser light or parameters set outside of the recommended operating conditions. Use outside of the recommended condition or any physical modification to the module during development could result in hazardous levels of radiation exposure.

## 14 Revision Information

$\left.\left.\begin{array}{lll}\text { Document Status } & \text { Product Status } & \begin{array}{l}\text { Definition } \\ \text { Product Preview } \\ \text { Preliminary Datasheet }\end{array} \\ \hline \text { Pre-Production } & \begin{array}{l}\text { Information in this datasheet is based on products in the design, validation or } \\ \text { qualification phase of development. The performance and parameters shown } \\ \text { in this document are preliminary without any warranty and are subject to } \\ \text { change without notice }\end{array} \\ \text { of development. All specifications are design goals without any warranty and } \\ \text { are subject to change without notice }\end{array}\right] \begin{array}{lll}\text { Information in this datasheet is based on products in ramp-up to full production } \\ \text { or full production which conform to specifications in accordance with the terms } \\ \text { of ams AG standard warranty as given in the General Terms of Trade }\end{array}\right]$

Changes from previous version to current revision v5-01
Added detailed explanation for soldering profile. 64
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

- Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- Correction of typographical errors is not explicitly mentioned.


## 15 Legal Information


#### Abstract

Copyrights \& Disclaimer Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed. ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.


## RoHS Compliant \& ams Green Statement

RoHS Compliant: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories plus additional 4 substance categories (per amendment EU 2015/863), including the requirement that lead not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.
ams Green (RoHS compliant and no $\mathbf{S b} / \mathrm{Br} / \mathbf{C l}$ ): ams Green defines that in addition to RoHS compliance, our products are free of Bromine ( Br ) and Antimony ( Sb ) based flame retardants ( Br or Sb do not exceed $0.1 \%$ by weight in homogeneous material) and do not contain Chlorine (CI not exceed $0.1 \%$ by weight in homogeneous material).
Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

## Headquarters

ams AG
Tobelbader Strasse 30
8141 Premstaetten
Austria, Europe
Tel: +43 (0) 31365000

Please visit our website at www.ams.com
Buy our products or get free samples online at www.ams.com/Products
Technical Support is available at www.ams.com/Technical-Support
Provide feedback about this document at www.ams.com/Document-Feedback
For sales offices, distributors and representatives go to www.ams.com/Contact
For further information and requests, e-mail us at ams_sales@ams.com

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Distance Sensor Development Tool category:
Click to view products by Ams manufacturer:
Other Similar products are found below :
SEN0004 MIKROE-2509 172 DFR0315 SEN0006 SEN0007 SEN0008 SEN0187 SEN0202 SEN0208 DM160234 SEN0143 SEN-13968 3316 SEN-08504 SEN-08502 DFR0445 $3317 \underline{984}$ SEN0014 SEN0001 SEN0171 $3942 \underline{979} \underline{981} \underline{982} \underline{985}$ TMF8701-DB TMF8801-DB TMF8801-EVM AD8283CP-EBZ AD8285CP-EBZ ADUX1020-EVAL-SDP SEN0245 EVALBGT24LTR22TOBO1 DM160238 MIKROE3339 MIKROE-3439 MIKROE-1589 MIKROE-1991 MIKROE-2086 MIKROE-3103 SECO-RANGEFINDER-GEVK PIM058 PIM062 $\underline{\text { PIM373 } 101020083 \underline{101020353} \underline{101020532} \underline{101020617}}$

