LTC6800

Rail-to-Rail, Input and Output, Instrumentation Amplifier

feATURES

- 116dB CMRR Independent of Gain
- Maximum Offset Voltage: 100 $\mu \mathrm{V}$
- Maximum Offset Voltage Drift: 250nV/ ${ }^{\circ} \mathrm{C}$
- $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operation
- Rail-to-Rail Input Range
- Rail-to-Rail Output Swing
- Supply Operation: 2.7 V to 5.5 V
- Available in MS8 and $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ DFN Packages

APPLICATIONS

- Thermocouple Amplifiers
- Electronic Scales
- Medical Instrumentation
- Strain Gauge Amplifiers
- High Resolution Data Acquisition

DESCRIPTIOn

The LTC ${ }^{\circledR} 6800$ is a precision instrumentation amplifier. The CMRR is typically 116 dB with a single 5 V supply and is independent of gain. The input offset voltage is guaranteed below $100 \mu \mathrm{~V}$ with atemperature drift of less than $250 \mathrm{nV} /{ }^{\circ} \mathrm{C}$. The LTC6800 is easy to use; the gain is adjustable with two external resistors, like a traditional op amp.
The LTC6800 uses charge balanced sampled data techniques to convert a differential input voltage into a single ended signal that is in turn amplified by a zero-drift operational amplifier.

The differential inputs operate from rail-to-rail and the single ended output swings from rail-to-rail. The LTC6800 is available in an MS8 surface mount package. For space limited applications, the LTC6800 is available in a $3 \mathrm{~mm} \times$ $3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ dual fine pitch leadless package (DFN).

[^0]
TYPICAL APPLICATION

High Side Power Supply Current Sense

Typical Input Referred Offset vs Input Common Mode Voltage ($V_{S}=3 \mathrm{~V}$)

ABSOLUTE MAXIMUM RATINGS (Nole 1)

Total Supply Voltage (V^{+}to V^{-})5.5	
$\left\|V_{+ \text {IN }}-V_{\text {ReF }}\right\|$.	
$\left\|\mathrm{V}_{- \text {IN }}-\mathrm{V}_{\text {ReF }}\right\|$	5.5 V
Output Short-Circuit Duration....................... Indefinite	
Operating Temperature Range	
(Note 7).	$-40^{\circ} \mathrm{C}$ to 125

PIn COnfiguration

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC6800HDD\#PBF	LTC6800HDD\#TRPBF	LAEP	8 -Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6800HMS8\#PBF	LTC6800HMS8\#TRPBF	LTADE	8 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

[^1]ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{OV}, \mathrm{REF}=200 \mathrm{mV}$. Output voltage swing is referenced to V^{-}- All other specifications reference the OUT pin to the REF pin.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 2)	$\mathrm{V}_{\text {CM }}=200 \mathrm{mV}$				± 100	$\mu \mathrm{V}$
Average Input Offset Drift (Note 2)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	\bullet		-1	$\begin{aligned} & \hline \pm 250 \\ & -2.5 \end{aligned}$	$\mathrm{nV} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio (Notes 4, 5)	$\mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{C M}=0 \mathrm{~V}$ to 3 V	\bullet	85	113		dB
Integrated Input Bias Current (Note 3)	$\mathrm{V}_{\text {CM }}=1.2 \mathrm{~V}$			4	10	nA
Integrated Input Offset Current (Note 3)	$\mathrm{V}_{\text {CM }}=1.2 \mathrm{~V}$			1	3	nA
Input Noise Voltage	DC to 10Hz			2.5		$\mu \mathrm{V}$ P-P
Power Supply Rejection Ratio (Note 6)	$\mathrm{V}_{S}=2.7 \mathrm{~V}$ to 5.5 V	\bullet	110	116		dB
Output Voltage Swing High	$\begin{aligned} & R_{L}=2 k \text { to } V^{-} \\ & R_{L}=10 k \text { to } V^{-} \end{aligned}$	\bullet	$\begin{aligned} & 2.85 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 2.98 \end{aligned}$		V
Output Voltage Swing Low		\bullet			20	mV
Gain Error	$A_{V}=1$				0.1	\%
Gain Nonlinearity	$A_{V}=1$				100	ppm
Supply Current	No Load	\bullet			1.2	mA
Internal Op Amp Gain Bandwidth				200		kHz
Slew Rate				0.2		V/us
Internal Sampling Frequency				3		kHz

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{REF}=200 \mathrm{mV}$. Output voltage swing is referenced to V^{-}. All other specifications reference the OUT pin to the REF pin.
$\left.\begin{array}{l|l|l|l|r|r}\hline \text { PARAMETER } & \text { CONDITIONS } & \text { MIN } & \text { TYP } & \text { MAX } & \text { UNITS } \\ \hline \text { Input Offset Voltage (Note 2) } & \mathrm{V}_{\mathrm{CM}}=200 \mathrm{mV} & & \pm 100 & \mu \mathrm{~V} \\ \hline \text { Average Input Offset Drift (Note 2) } & \mathrm{T}_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\end{array}\right)$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: These parameters are guaranteed by design. Thermocouple effects preclude measurement of these voltage levels in high speed automatic test systems. $V_{0 S}$ is measured to a limit determined by test equipment capability.

ELECTRICAL CHARACTERISTICS

Note 3: If the total source resistance is less than 10k, no DC errors result from the input bias currents or the mismatch of the input bias currents or the mismatch of the resistances connected to $-I N$ and $+I N$.
Note 4: The CMRR with a voltage gain, A_{V}, larger than 10 is 120 dB (typ). Note 5: At temperatures above $70^{\circ} \mathrm{C}$, the common mode rejection ratio lowers when the common mode input voltage is within 100 mV of the supply rails.

Note 6: The power supply rejection ratio (PSRR) measurement accuracy depends on the proximity of the power supply bypass capacitor to the device under test. Because of this, the PSRR is 100% tested to relaxed limits at final test. However, their values are guaranteed by design to meet the data sheet limits.
Note 7: The LTC6800H is guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ range (denoted by \bullet) are assured by design and characterization but are not tested or QA sampled at these temperatures.

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

LTC6800

TYPICAL PERFORMANCG CHARACTERISTICS

Input Referred Noise in 10Hz Bandwidth

Gain Nonlinearity, G = 1

Input Voltage Noise Density vs Frequency

Output Voltage Swing vs Output Current

Gain Nonlinearity, G = 10

Input Referred Noise in 10Hz Bandwidth

TYPICAL PERFORMANCE CHARACTERISTICS

PIn fUnCTIOnS

NC (Pin 1): Not Connected.
-IN (Pin 2): Inverting Input.
+IN (Pin 3): Noninverting Input.
\mathbf{V}^{-}(Pin 4): Negative Supply.
REF (Pin 5): Voltage Reference ($\mathrm{V}_{\text {REF }}$) for Amplifier Output.

RG (Pin 6): Inverting Input of Internal Op Amp. See Figure 1.
OUT (Pin 7): Amplifier Output. See Figure 1.
V^{+}(Pin 8): Positive Supply.

BLOCK DIAGRAM

APPLICATIONS INFORMATION

Theory of Operation

The LTC6800 uses an internal capacitor (C_{s}) to sample a differential input signal riding on a DC common mode voltage (see the Block Diagram). This capacitor's charge is transferred to a second internal hold capacitor (C_{H}) translating the common mode of the input differential signal to that of the REF pin. The resulting signal is amplified by a zero-drift op amp in the noninverting configuration. The RG pin is the negative input of this op amp and allows external programmability of the DC gain. Simple filtering can be realized by using an external capacitor across the feedback resistor.

Input Voltage Range

The input common mode voltage range of the LTC6800 is rail-to-rail. However, the following equation limits the size of the differential input voltage:

$$
\mathrm{V}^{-} \leq\left(\mathrm{V}_{+ \text {IN }}-\mathrm{V}_{-I N}\right)+\mathrm{V}_{\text {REF }} \leq \mathrm{V}^{+}-1.3
$$

Where $\mathrm{V}_{+ \text {IN }}$ and $\mathrm{V}_{- \text {IN }}$ are the voltages of the +IN and -IN pins, respectively, $\mathrm{V}_{\text {REF }}$ is the voltage at the REF pin and V^{+}is the positive supply voltage.
For example, with a 3 V single supply and a 0 V to 100 mV differential input voltage, $\mathrm{V}_{\text {REF }}$ must be between OV and 1.6 V .

Settling Time

The sampling rate is 3 kHz and the input sampling period during which C_{S} is charged to the input differential voltage $V_{\text {IN }}$ is approximately $150 \mu \mathrm{~s}$. First assume that on each input sampling period, C_{S} is charged fully to V_{IN}. Since $C_{S}=C_{H}(=1000 \mathrm{pF})$, a change in the input will settle to N bits of accuracy at the op amp noninverting input after N clock cycles or $333 \mu \mathrm{~s}(\mathrm{~N})$. The settling time at the OUT pin is also affected by the settling of the internal op amp. Since the gain bandwidth of the internal op amp is typically 200 kHz , the settling time is dominated by the switched capacitor front end for gains below 100 (see the Typical Performance Characteristics section).

APPLICATIONS INFORMATION

$0 V<V_{-I N}<5 V$ AND $\left|V_{-I N}-V_{\text {REF }}\right|<5.5 \mathrm{~V}$
$0 V<V_{+ \text {IN }}<5 \mathrm{~V}$ AND
$0 V<V_{\text {IN }}+V_{\text {REF }}<3.7 \mathrm{~V}$
$V_{\text {REF }} \mid<5.5 \mathrm{~V}$

NONUNITY GAIN

$0 \mathrm{~V}<\mathrm{V}_{-I N}<5 \mathrm{~V}$ AND $\left|\mathrm{V}_{- \text {IN }}-\mathrm{V}_{\text {REF }}\right|<5.5 \mathrm{~V}$ $0 \mathrm{~V}<\mathrm{V}_{+ \text {IN }}<5 \mathrm{~V}$ AND $\left|\mathrm{V}_{+ \text {IN }}-\mathrm{V}_{\text {REF }}\right|<5.5 \mathrm{~V}$ $0 \mathrm{~V}<\mathrm{V}_{\text {IN }}+\mathrm{V}_{\mathrm{REF}}<3.7 \mathrm{~V}$
$V_{\text {OUT }}=\left(1+\frac{R 2}{R 1}\right)\left(V_{I N}+V_{\text {REF }}\right)$

Figure 1

Input Current

Whenever the differential input $\mathrm{V}_{\text {IN }}$ changes, C_{H} must be charged up to the new input voltage via C_{s}. This results in an input charging current during each input sampling period. Eventually, C_{H} and C_{S} will reach $\mathrm{V}_{\mathbb{I N}}$ and, ideally, the input current would go to zero for DC inputs.

In reality, there are additional parasitic capacitors which disturb the charge on C_{S} every cycle even if $\mathrm{V}_{\text {IN }}$ is a DC voltage. For example, the parasitic bottom plate capacitor on C_{S} must be charged from the voltage on the REF pin to the voltage on the -IN pin every cycle. The resulting input charging current decays exponentially during each input sampling period with a time constant equal to $\mathrm{R}_{S} \mathrm{C}_{s}$. If the voltage disturbance due to these currents settles before the end of the sampling period, there will be no errors due to source resistance or the source resistance mismatch between $-I N$ and $+1 N$. With R_{S} less than 10 k , no DC errors occur due to this input current.

In the Typical Performance Characteristics section of this data sheet, there are curves showing the additional error from nonzero source resistance in the inputs. If there are no large capacitors across the inputs, the amplifier is less sensitive to source resistance and source resistance mismatch. When large capacitors are placed across the inputs, the input charging currents previously described result in larger DC errors, especially with source resistor mismatches.

Power Supply Bypassing

The LTC6800 uses a sampled datatechnique and, therefore, contains some clocked digital circuitry. It is, therefore, sensitive to supply bypassing. A $0.1 \mu \mathrm{~F}$ ceramic capacitor must be connected between Pin $8\left(\mathrm{~V}^{+}\right)$and $\operatorname{Pin} 4\left(\mathrm{~V}^{-}\right)$with leads as short as possible.

TYPICAL APPLICATIONS

$$
\text { Precision } \div 2
$$

Precision Doubler (General Purpose)

Precision Inversion (General Purpose)

DD Package

8-Lead Plastic DFN (3mm $\times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698 Rev C)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE

MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660 Rev F)

REVISION HISTORY (Revision history begins at Rev B)

REV	DATE	DESCRIPTION	PAGE NUMBER
B	$7 / 10$	Corrected text in the Absolute Maximum Ratings section	2
		Updated Pin 6 and Pin 7 text in the Pin Functions section Replaced Figure 1	7

LTC6800

TYPICAL APPLICATION

Differential Bridge Amplifier

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1100	Precision Zero-Drift Instrumentation Amplifier	Fixed Gains of 10 or 100, 10 HV Offset, 50pA Input Bias Current
LT®1101	Precision, Micropower, Single Supply Instrumentation Amplifier	Fixed Gains of 10 or 100 , $\mathrm{I}_{\mathrm{S}}<105 \mu \mathrm{~A}$
LT1167	Single Resistor, Gain-Programmable, Precision Instrumentation Amplifier	Single-Gain Set Resistor: G = 1 to 10,000, Low Noise: $7.5 \mathrm{nV} \sqrt{\mathrm{Hz}}$
LT1168	Low Power, Single Resistor, Gain-Programmable, Precision Instrumentation Amplifier	$I_{\text {SUPPLY }}=530 \mu \mathrm{~A}$
LTC1043	Dual Precision Instrumentation Switched-Capacitor Building Block	Rail-to-Rail Input, 120dB CMRR
LT1789-1	Single Supply, Rail-to-Rail Output, Micropower Instrumentation Amplifier	$\mathrm{I}_{\text {SUPPLY }}=80 \mu \mathrm{~A}$ Maximum
LTC2050	Zero-Drift Operational Amplifier	SOT-23 Package, $3 \mu \mathrm{~V}$ Max $\mathrm{V}_{\text {OS }}, 30 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ Max Drift
LTC2051	Dual Zero-Drift Operational Amplifier	MS8 Package, $3 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 \mathrm{~S}}$, 30nV/ ${ }^{\circ} \mathrm{C}$ Max Drift
LTC2052	Quad Zero-Drift Operational Amplifier	GN-16 Package, 3 3 V Max $\mathrm{V}_{\text {OS }}$, 30nV/ ${ }^{\circ} \mathrm{C}$ Max Drift
LTC2053	Single Supply, Zero-Drift, Rail-to-Rail Input and Output Instrumentation Amplifier	MS8 Package, 10 $\mu \mathrm{V}$ Max $\mathrm{V}_{0 S}, 50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ Max Drift

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Instrumentation Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
JM38510/13501BPA MAX4460EUT+T ADA4254RU-EBZ MCP6N16-100EMF JM38510/13501BGA LMV324IYPT INA118U/2K5
LMV324IYDT EL8172ISZ-T7 AD8229HRZ TS934IYDT MAX5426BEUD MAX5426AEUD+ MAX5426CEUD+ MAX4461TESA+ TSV991IYLT TSV914AIYPT TS982IYDWT AD8422ARMZ-RL AD8422BRZ-R7 AD8422ARMZ-R7 AD8422BRMZ-R7 LT1789CS81\#TRPBF LT1167AIN8\#PBF LTC2053CMS8\#PBF LT1167CN8\#PBF LTC6800HMS8\#PBF ADR03TKSZ-EP-R7 ADP1720TRMZ5-EPR7 LT1167CS8\#TRPBF LTC6915IDE\#PBF LTC6800HDD\#PBF LT1789CS8-1\#PBF AMP02FSZ-RL LT1920CN8\#PBF LTC6915CDE\#PBF AD8237ARMZ-RL AD8426BCPZ-R7 LT1167IN8\#PBF INA188IDRJR LTC2053IDD\#PBF LT1101CN8\#PBF LT1920IS8\#PBF AD8220BRMZ-R7 LTC6915HGN\#PBF LTC2053HDD\#PBF LTC2053HMS8\#PBF LTC2053IMS8\#PBF

LT1167CS8\#PBF LT1167AIS8-1\#PBF

[^0]: ©T, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

[^1]: Consult LTC Marketing for parts specified with wider operating temperature ranges.
 Consult LTC Marketing for information on non-standard lead based finish parts.
 For more information on lead free part marking, go to: http://www.linear.com/leadfree/
 For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

