

Typical Applications

The HMC574MS8 / HMC574MS8E is ideal for:

- Cellular/3G Infrastructure
- Private Mobile Radio Handsets
- WLAN, WiMAX \& WiBro
- Automotive Telematics
- Test Equipment

Functional Diagram

Features

Low Insertion Loss: 0.3 dB
High Third Order Intercept: +65 dBm
Isolation: 30 dB
Single Positive Supply: +3 to +8 V
SMT Package: MSOP8
Included in the HMC-DK005 Designer's Kit

General Description

The HMC574MS8 \& HMC574MS8E are low-cost SPDT switches in 8 -lead MSOP packages for use in transmit/receive applications which require very low distortion at high incident power levels. The device can control signals from DC to 3 GHz and is especially suited for Cellular/3G infrastructure, WiMAX and WiBro applications with only 0.3 dB typical insertion loss. The design provides 5 watt power handling performance and +65 dBm third order intercept at +8 Volt bias. RF1 and RF2 are reflective shorts when "Off".

Electrical Specifications,

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vctl}=0 /+5 \mathrm{Vdc}, \mathrm{Vdd}=+5 \mathrm{Vdc}$ (Unless Otherwise Stated), 50 Ohm System

Parameter	Frequency	Min.	Typ.	Max.	Units
Insertion Loss	$\begin{aligned} & \text { DC }-1.0 \mathrm{GHz} \\ & \mathrm{DC}-2.0 \mathrm{GHz} \\ & \mathrm{DC}-2.5 \mathrm{GHz} \\ & \mathrm{DC}-3.0 \mathrm{GHz} \end{aligned}$		$\begin{gathered} \hline 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ \hline \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.6 \\ & 0.7 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	$\begin{aligned} & \text { DC }-1.0 \mathrm{GHz} \\ & \text { DC }-2.0 \mathrm{GHz} \\ & \text { DC }-2.5 \mathrm{GHz} \\ & \mathrm{DC}-3.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 26 \\ & 24 \\ & 21 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 28 \\ & 25 \\ & 20 \end{aligned}$		dB dB dB dB
Return Loss	$\begin{aligned} & \text { DC }-1.0 \mathrm{GHz} \\ & \mathrm{DC}-2.0 \mathrm{GHz} \\ & \mathrm{DC}-2.5 \mathrm{GHz} \\ & \mathrm{DC}-3.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 35 \\ & 25 \\ & 18 \\ & 16 \\ & \hline \end{aligned}$		dB dB dB dB
$\begin{array}{ll}\text { Input Power for 1dB Compression } & \mathrm{Vctl}=0 /+3 \mathrm{~V} \\ \mathrm{VctI}=0 /+5 \mathrm{~V} \\ \mathrm{Vctl}=0 /+8 \mathrm{~V}\end{array}$	$0.5-3.0 \mathrm{GHz}$	$\begin{aligned} & 33 \\ & 35 \\ & 37 \end{aligned}$	$\begin{aligned} & 36 \\ & 38 \\ & 39 \\ & \hline \end{aligned}$		dBm dBm dBm
Input Third Order Intercept $\mathrm{Vctl}=0 /+3 \mathrm{~V}$ (Two-tone Input Power $=+27 \mathrm{dBm}$ Each Tone) $\mathrm{Vctl}=0 /+5 \mathrm{~V}$ $\mathrm{Vctl}=0 /+8 \mathrm{~V}$	$0.5-3.0 \mathrm{GHz}$		$\begin{aligned} & 55 \\ & 63 \\ & 65 \end{aligned}$		dBm dBm dBm
Switching Characteristics tRISE, tFALL (10/90\% RF) tON, tOFF (50\% CTL to 10/90\% RF)	DC - 3.0 GHz		$\begin{gathered} 80 \\ 120 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

Insertion Loss

RF1 to RF2 Isolation

Input P0.1dB vs. Vdd

Isolation Between RFC \& RF1/RF2

Return Loss

Input P1dB vs. Vdd

Input IP3 vs. Input Power @ 900 MHz

Input Third Order Intercept

2nd \& 3rd Harmonics @ 900 MHz
Vdd $=+5$ Volts

Input IP3 vs. Input Power @ 1900 MHz

2nd \& 3rd Harmonics @ 900 MHz Vdd = +3 Volts

2nd \& 3rd Harmonics @ 900 MHz Vdd $=+8$ Volts

Input P0.1dB vs. Vdd

Max. Input Power $V_{d d}=0 /+8 \mathrm{~V}$	0.5-2.5 GHz	39 dBm
Bias Voltage Range (Vdd)		-0.2 to +10 Vdc
Control Voltage Range (A \& B)		-0.2 to +Vdd Vdc
Hot Switching Power Level$V_{d d}=+8 \mathrm{~V}$		39 dBm
Channel Temperature		$150{ }^{\circ} \mathrm{C}$
Continuous Pdiss ($\mathrm{T}=+85^{\circ} \mathrm{C}$) (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $85^{\circ} \mathrm{C}$)		0.65W
Thermal Resistance		$100^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature		-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature		-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)		Class 1A

DC Blocks are required at ports RFC, RF1 and RF2

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Input P1dB vs. Vdd

Bias Voltage \& Current

Vdd (Vdc)	Typical Idd $(\mu \mathrm{A})$
+3	2
+5	10
+8	40

Control Voltages

State	Bias Condition
Low	0 to +0.2 Vdc @ $10 \mu \mathrm{~A}$ Typical
High	Vdd $\pm 0.2 \mathrm{Vdc} @ 10 \mu \mathrm{~A}$ Typical

Truth Table

Control Input (Vctl)		Signal Path State	
A	B	RFC to RF1	RFC to RF2
High	Low	Off	On
Low	High	On	Off

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[3]}$
HMC574MS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ${ }^{[1]}$	H574 XXXX
HMC574MS8E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ${ }^{[2]}$	$\underline{\text { H574 }}$

[1] Max peak reflow temperature of $235^{\circ} \mathrm{C}$
[2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	A	See truth table and control voltage table.	
2	B	See truth table and control voltage table.	
$3,5,8$	RFC, RF1, RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required.	
6,7	Gdd	This pin must be connected to RF/DC ground.	

Typical Application Circuit

Notes:

1. Set logic gate and switch $\mathrm{Vdd}=+3 \mathrm{~V}$ to +5 V and use HCT series logic to provide a TTL driver interface.
2. Control inputs A / B can be driven directly with CMOS logic (HC) with Vdd of +3 to +8 Volts applied to the CMOS logic gates and to pin 4 of the RF switch.
3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
4. Highest RF signal power capability is achieved with Vdd set to +8 V . The switch will operate properly (but at lower RF power capability) at bias voltages down to +3 V .

Evaluation Circuit Board

RoHS $\sqrt{ }$

List of Materials for Evaluation PCB $104124{ }^{[1]}$

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J7	DC Pin
C1 - C3	100 pF capacitor, 0402 Pkg.
C4	$10,000 \mathrm{pF}$ capacitor, 0603 Pkg.
R1, R2	100 Ohm resistor, 0402 Pkg.
U1	HMC574MS8 / HMC574MS8E T/R Switch
PCB [2]	104122 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

RoHS $\sqrt{ }$

Notes:

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC252AQS24 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL01-HMC1048LC3B EVAL01-HMC661LC4B EVAL-ADF7020-1DBZ4 EVAL-ADF7020-1DBZ5 EVAL-ADF7020-1DBZ6 EVAL-ADF7021DB9Z EVALADF7021DBJZ EVAL-ADF7021DBZ2 EVAL-ADF7021DBZ6 EVAL-ADF7021-NDBZ2 EVAL-ADF7021-VDB3Z EVAL-ADF7023DB3Z EVAL-ADF7023-JDB3Z EVAL-ADF70XXEKZ1 EVAL-ADF7241DB1Z EVAL-ADG919EBZ F0440EVBI F1423EVB-DI F1423EVB-SI F1701EVBI F1751EVBI F2250EVBI MICRF219A-433 EV MICRF220-433 EV 122410-HMC686LP4E AD6679-500EBZ 126223 HMC789ST89E ADL5363-EVALZ ADL5369-EVALZ 130437-HMC1010LP4E 131352-HMC1021LP4E 131372-HMC951LP4E 130436HMC1010LP4E EKIT01-HMC1197LP7F Si4705-D60-EVB SI4825-DEMO Si4835-Demo LMV228SDEVAL SKYA21001-EVB SMP1331-08-EVB EV1HMC618ALP3 EV1HMC641ALC4 EV1HMC8410LP2F EVAL_PAN4555ETU EVAL01-HMC1041LC4

