

HMC194AMS8 / 194AMS8E

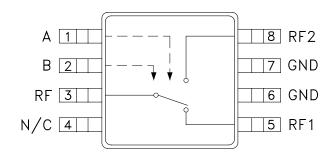
v00.0812

GaAs MMIC SPDT SWITCH DC - 3 GHz

Typical Applications

The HMC194AMS8 /HMC194AMS8E is ideal for:

- Cellular/PCS Base Stations
- Portable Wireless
- MMDS & WirelessLAN


Features

Ultra Small Package: MSOP8

High Isolation: 50 dB

Positive Control: 0/+3V to 0/+7V

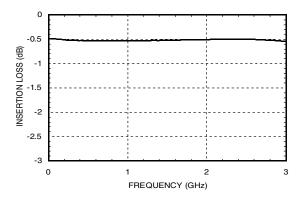
Functional Diagram

General Description

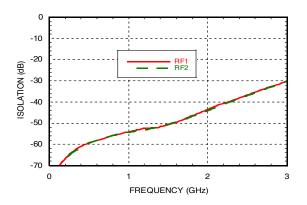
The HMC194AMS8 & HMC194AMS8E are low-cost SPDT switches in 8-lead MSOP packages for use in applications which require high isolation between two RF paths. The devices can control signals from DC to 3 GHz and have been optimized to provide extremely high isolation with minimal insertion loss in medium and low power applications. On chip circuitry allows positive voltage control operation at very low DC currents with control inputs compatible with CMOS and most TTL logic families. RF1 and RF2 are reflective opens when "OFF".

Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C, Vctl = 0/+5 Vdc, 50 Ohm System

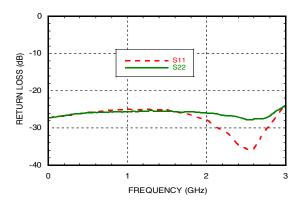
Parameter	Frequency	Min.	Тур.	Max.	Units
Insertion Loss	DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz		0.5 0.5 0.5	0.9 1.0 1.1	dB dB dB
Isolation	DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz	50 42 31 24	55 45 38 30		dB dB dB dB
Return Loss	DC - 2.0 GHz DC - 3.0 GHz		26 24		dB dB
Input Power for 1 dB Compression 0/+5V Control	0.5 - 3.0 GHz	24	28		dBm
Input Third Order Intercept (Two-tone Input Power = +7 dBm Each Tone) 0/+5V Control	0.5 - 3.0 GHz	49	53		dBm
Switching Characteristics	DC - 3.0 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)			3 20		ns ns

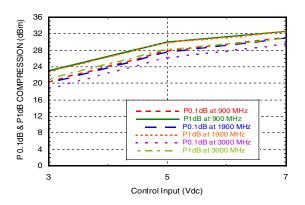


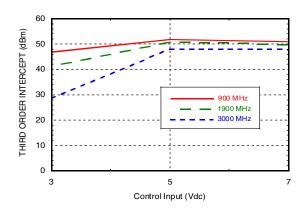
v00.0812



GaAs MMIC SPDT SWITCH DC - 3 GHz


Insertion Loss


Isolation


Return Loss

Input 0.1 and 1.0 dB Compression vs. Control Voltage

Input Third Order Intercept Point vs. Control Voltage

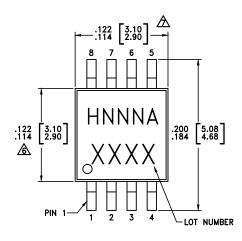
Truth Table*Control Input Voltage Tolerances are ± 0.2 Vdc.

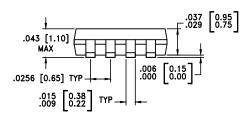
Contro	l Input*	Control Current		Signal Path State		
A (Vdc)	B (Vdc)	la (uA)	lb (uA)	RF to RF1	RF to RF2	
0	+3	-0.05	+0.05	ON	OFF	
+3	0	+0.05	-0.05	OFF	ON	
0	+5	-0.6	+0.6	ON	OFF	
+5	0	+0.6	-0.6	OFF	ON	
0	+7	-5	+5	ON	OFF	
+7	0	+5	-5	OFF	ON	

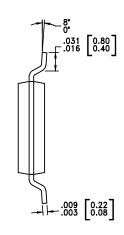
HMC194AMS8 / 194AMS8E

v00.0812

GaAs MMIC SPDT SWITCH DC - 3 GHz


Absolute Maximum Ratings


RF Input Power (Vctl= 0V/+5V)	+27 dBm
Control Voltage Range (A & B)	-0.2 to +7.5 Vdc
Hot Switch Power Level (Vctl= 0V/+5V)	+24 dBm
Channel Temperature	150 °C
Continuous Pdiss (T= 85 °C) (derate 4.6 mW/°C above 85 °C)	300 mW
Thermal Resistance	216 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A


Note: DC blocking capacitors are required at ports RFC, RF1 and RF2. Their value will determine the lowest transmission frequency.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 6. CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.

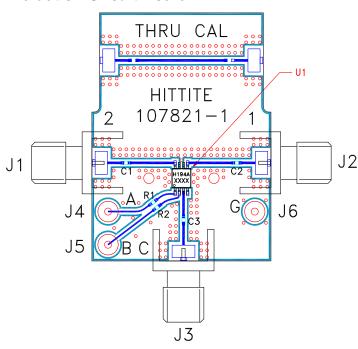
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC194AMS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H194A XXXX
HMC194AMS8E RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 [2]	H194A XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

v00.0812

GaAs MMIC SPDT SWITCH DC - 3 GHz


Typical Application Circuit

Notes:

- Set logic gate and switch Vdd = +3V to +5V and use HCT series logic to provide a TTL driver interface.
- Control inputs A/B can be driven directly with CMOS logic (HC) with Vdd of 3 to 7 Volts applied to the CMOS logic gates.
- 3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
- 4. Highest RF signal power capability is achieved with Control set to 0/+7V.

RF2 0 RF1 8 7 6 5 +Vdd A 1 B 2 3 4 PRFC 74HC04 or 74HC104

Evaluation Circuit Board

List of Materials for Evaluation PCB 105143 [1]

Item	Description
J1 - J3	PC Mount SMA RF Connector
J4 - J6	DC Pin
C1 - C3	100 pF capacitor, 0402 Pkg.
R1, R2	100 Ω resistor, 0402 Pkg.
U1	HMC194AMS8 / 194AMS8E SPDT Switch
PCB [2]	107821 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4
EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT#
MAX2692EVKIT# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2
EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4
MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1
SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB