Typical Applications

The HMC284AMS8G / HMC284AMS8GE is ideal for:

- Cellular/PCS Base Stations
- 2.4 GHz ISM
- 3.5 GHz Wireless Local Loop

Functional Diagram

SPDT NON-REFLECTIVE SWITCH
DC - 3.5 GHz

Features
High Isolation: >45 dB
Positive control: 0/+5V
Non-Reflective Design
Ultra Small Package: MSOP8G

General Description

The HMC284AMS8G \& HMC284AMS8GE are lowcost SPDT switches in 8-lead grounded base MSOP packages. The design has been optimized to provide high isolation with minimal insertion loss for medium and low power applications. On-chip circuitry allows positive voltage control operation at very low DC currents with control inputs compatible with CMOS and most TTL logic families. In the "OFF" state, RF1 and RF2 are non-reflective.

Electrical Specifications, $T_{A}=+25^{\circ}$ C, Vctl $=0 /+5$ Vdc, 50 Ohm System

Parameter	Frequency	Min.	Typ.	Max.	Units
Insertion Loss	$\begin{aligned} & \mathrm{DC}-2.0 \mathrm{GHz} \\ & \mathrm{DC}-3.0 \mathrm{GHz} \\ & \mathrm{DC}-3.5 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.1 \\ & \hline \end{aligned}$	dB dB dB
RF1 \& RF2 Isolation RF1 / RF2 RF1 / RF2 RF1 \& RF2	$\begin{aligned} & \mathrm{DC}-2.0 \mathrm{GHz} \\ & \mathrm{DC}-2.5 \mathrm{GHz} \\ & \mathrm{DC}-3.0 \mathrm{GHz} \\ & \mathrm{DC}-3.5 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 41 \\ 38 / 41 \\ 34 / 36 \\ 30 \end{gathered}$	$\begin{gathered} 45 \\ 44 / 45 \\ 42 / 45 \\ 40 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss (On State)	$\begin{aligned} & \mathrm{DC}-2.0 \mathrm{GHz} \\ & \mathrm{DC}-2.5 \mathrm{GHz} \\ & \mathrm{DC}-3.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 21 \\ & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \\ & 17 \end{aligned}$		dB dB dB
Return Loss (Off State)	$0.5-3.5 \mathrm{GHz}$	10	15		dBm
Input Power for 1 dB Compression	$\begin{aligned} & 0.5-1.0 \mathrm{GHz} \\ & 0.5-3.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 29 \end{aligned}$		dBm dBm
Input Third Order Intercept (Two-Tone Input Power $=0 \mathrm{dBm}$ Each Tone)	0.5-3.5 GHz	43	50		dBm
Switching Speed tRISE, tFALL (10/90\% RF) tON, tOFF (50% CTL to 10/90\% RF)	DC - 3.5 GHz		$\begin{gathered} 5 \\ 20 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Insertion Loss

Isolation

SPDT NON-REFLECTIVE SWITCH
DC-3.5 GHz

Compression vs Frequency

	Carrier at 900 MHz		Carrier at 1900 MHz	
CTL Input	Input Power for 0.1 dB Compression	Input Power for 1.0 dB Compression	Input Power for 0.1 dB Compression	Input Power for 1.0 dB Compression
(Vdc)	(dBm)	(dBm)	(dBm)	(dBm)
+5	27	30	27	29

Caution:
Do not operate continuously at RF power input
greater than 1 dB compression. (Vctl $=0 /+5 \mathrm{Vdc})$.

Distortion vs Frequency

Control Input	Third Order Intercept (dBm) 0 dBm Each Tone	
(Vdc)	900 MHz	1900 MHz
+5	50	50

Truth Table

*Control Input Tolerances are $\pm 0.2 \mathrm{Vdc}$

${\text { Control } \text { Input }^{*}}^{c \mid}$		Control Current		Signal Path State	
A (Vdc)	B (Vdc)	la (uA)	lb (uA)	RFC to RF1	RFC to RF2
0	+5	-0.2	0.2	ON	OFF
+5	0	0.2	-0.2	OFF	ON

DC blocks are required at ports RFC, RF1, RF2.

HMC284AMS8G / HMC284AMS8GE

v01.0818

SPDT NON-REFLECTIVE SWITCH
DC - 3.5 GHz

Absolute Maximum Ratings

RF Input Power $(\mathrm{Vctl}=0 /+5 \mathrm{~V})$	+26 dBm
Control Voltage Range	-0.5 to +7.5 Vdc
Hot Switch Power Level $($ Vctl $=0 /+5 \mathrm{~V})$	+18 dBm
Channel Temperature	$150^{\circ} \mathrm{C}$
Thermal Resistance (Insertion Loss Path)	$130{ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (Terminated Path)	$252{ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 1 A

A
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY
2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
3. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15 mm PER SIDE.
4. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25 mm PER SIDE.
5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[3]}$
HMC284AMS8G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL3 $^{[1]}$	H284A XXXX
HMC284AMS8GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 $^{[2]}$	$\frac{\text { H284A }}{\text { XXXX }}$

[1] Max peak reflow temperature of $235^{\circ} \mathrm{C}$
[2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[3] 4-Digit lot number XXXX

HMC284AMS8G / HMC284AMS8GE
v01.0818
SPDT NON-REFLECTIVE SWITCH
DC-3.5 GHz

Typical Application Circuit

Notes:

1. Set A / B control to $0 /+5 \mathrm{~V}, \mathrm{Vdd}=+5 \mathrm{~V}$ and use HCT series logic to provide a TTL driver interface.
2. Control inputs A / B can be driven directly with CMOS logic (HC) with Vdd $=+5$ Volts applied to the CMOS logic gates.
3. DC blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
4. Highest RF signal power capability is achieved with $\mathrm{Vdd}=+7 \mathrm{~V}$ and A / B set to $0 /+7 \mathrm{~V}$.
5. Back side paddle must be connected to RF ground.
6. A grounded coplanar waveguide PCB layout technique is recommended to achieve high isolation. The component side ground plane between RFC/grounded paddle and RF1/RF2 should be continuous, see below. There should be a continuous ground plane under component side layout.

Evaluation PCB

List of Materials for Evaluation PCB $105143{ }^{[1]}$

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J6	DC Pin
C1 - C3	100 pF capacitor, 0402 Pkg.
R1, R2	100 Ohm resistor, 0402 Pkg.
U1	HMC284AMS8G / HMC284AMS8GE SPDT Switch
PCB [2]	107821 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Analog Devices, upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

