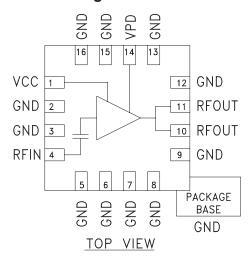


HMC415LP3 / 415LP3E

v03.0605


GaAs InGaP HBT MMIC POWER AMPLIFIER, 4.9 - 5.9 GHz

Typical Applications

This amplifier is ideal for use as a power amplifier for 4.9 - 5.9 GHz applications:

- 802.11a WLAN
- HiperLAN WLAN
- Access Points
- UNII & ISM Radios

Functional Diagram

Features

Gain: 20 dB

34% PAE @ Psat = +26 dBm

3.7% EVM @ Pout = +15 dBm with 54 Mbps OFDM Signal

Supply Voltage: +3V

Power Down Capability

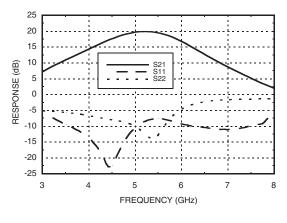
Low External Part Count

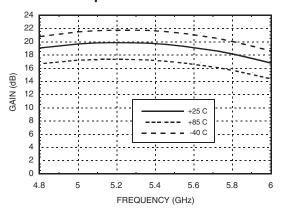
General Description

The HMC415LP3 & HMC415LP3E are high efficiency GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC Power amplifiers which operate between 4.9 and 5.9 GHz. The amplifier is packaged in a low cost, leadless surface mount package with an exposed base for improved RF and thermal performance. With a minimum of external components, the amplifier provides 20 dB of gain, +26 dBm of saturated power, and 34% PAE from a +3V supply voltage. Vpd can be used for full power down or RF output power/current control. For +15 dBm OFDM output power (64 QAM, 54 Mbps), the HMC415LP3 & HMC415LP3E achieve an error vector magnitude (EVM) of 3.7% meeting 802.11a linearity requirements.

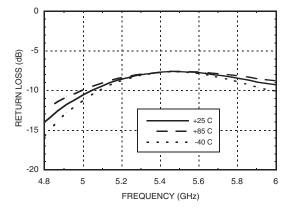
Electrical Specifications, $T_A = +25^{\circ}$ C, Vs = 3V, Vpd = 3V

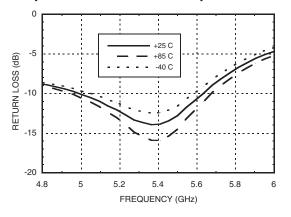
Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		4.9 - 5.1		5.1 - 5.4		5.4 - 5.9		GHz			
Gain		18	20		18.5	20.5		16	19		dB
Gain Variation Over Temperature			0.04	0.05		0.04	0.05		0.04	0.05	dB/°C
Input Return Loss			10			9			8		dB
Output Return Loss			10			12			8		dB
Output Power for 1dB Compression (P1dB)	Icq = 285 mA Icq = 200 mA	20	22.5 22.0		20.5	23.0 22.5		18	21.5 21.0		dBm
Saturated Output Power (Psat)			25.5			26			24		dBm
Output Third Order Intercept (IP3)		28	31		29	32		27	30		dBm
Error Vector Magnitude (54 Mbps OFDM Signal @ +15 dBm Pout)	Icq = 200 mA					3.7					%
Noise Figure			6			6			6		dB
Supply Current (Icq)	Vpd = 0V/3V		0.002 / 285			0.002 / 285			0.002 / 285		mA
Control Current (Ipd)	Vpd = 3V		7			7			7		mA
Switching Speed	tOn, tOff		45			45			45		ns

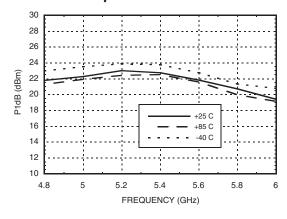

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

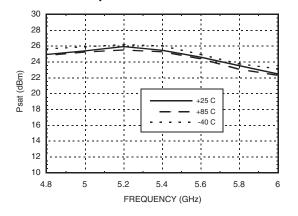


GaAs InGaP HBT MMIC POWER AMPLIFIER, 4.9 - 5.9 GHz


Broadband Gain & Return Loss

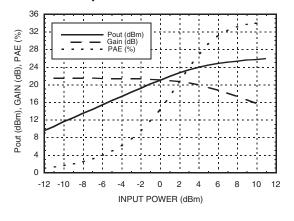

Gain vs. Temperature

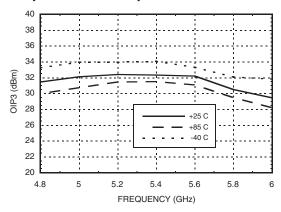

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

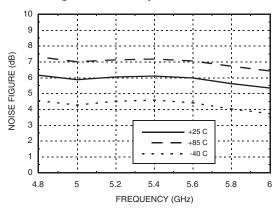
P1dB vs. Temperature

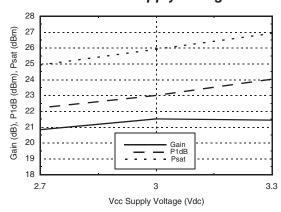
Psat vs. Temperature

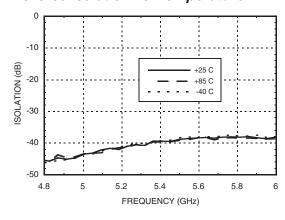


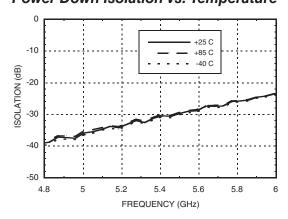


GaAs InGaP HBT MMIC POWER AMPLIFIER, 4.9 - 5.9 GHz


Power Compression @ 5.2 GHz


Output IP3 vs. Temperature

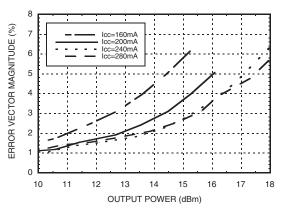

Noise Figure vs. Temperature

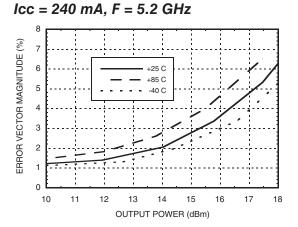

Gain & Power vs. Supply Voltage

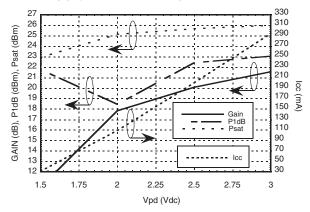
Reverse Isolation vs. Temperature

Power Down Isolation vs. Temperature

POWER AMPLIFIER, 4.9 - 5.9 GHz

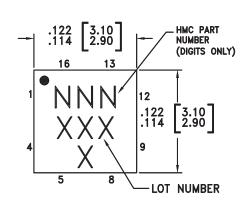

GaAs InGaP HBT MMIC

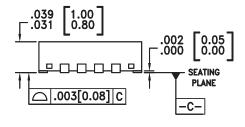

v03.0605


EVM vs. Supply Current, F = 5.2 GHz

EVM vs. Temperature,

Gain, Power & Quiescent Supply Current vs. Vpd @ 5.2 GHz


GaAs InGaP HBT MMIC POWER AMPLIFIER, 4.9 - 5.9 GHz


Absolute Maximum Ratings

Collector Bias Voltage (Vcc)	+5Vdc		
Control Voltage (Vpd)	+3.5 Vdc		
RF Input Power (RFIN)(Vs = Vpd = +3.0 Vdc)	+13 dBm		
Junction Temperature	150 °C		
Continuous Pdiss (T = 85 °C) (derate 17 mW/°C above 85 °C)	1.105 W		
Thermal Resistance (junction to ground paddle)	59 °C/W		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

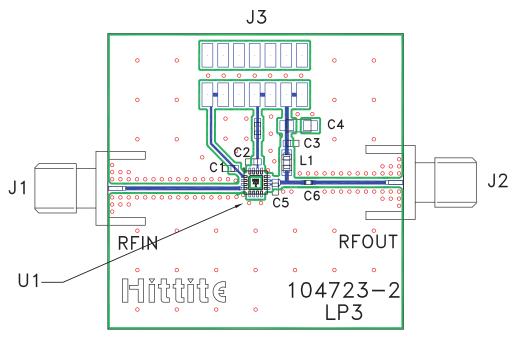
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC415LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	415 XXXX	
HMC415LP3E RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 [2]	<u>415</u> XXXX	

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

GaAs InGaP HBT MMIC POWER AMPLIFIER, 4.9 - 5.9 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic	
1	Vcc	Power supply voltage for the first amplifier stage. An external bypass capacitor of 330 pF is required as shown in the application schematic.	ovcc	
2, 3, 5, 6, 7, 8, 9, 12, 13, 15, 16	GND	Ground: Backside of package has exposed metal ground slug that must be connected to ground thru a short path. Vias under the device are required.	⊖ GND =	
4	RFIN	This pin is AC coupled and matched to 50 Ohms from 5.0 to 6.0 GHz.	RFIN O——	
10, 11	RFOUT	RF output and DC bias for the output stage.	ORFOUT	
14	Vpd	Power control pin. For maximum power, this pin should be connected to 3.0V. A higher voltage is not recommended. For lower idle current, this voltage can be reduced.	VPD1 VPD2	

GaAs InGaP HBT MMIC POWER AMPLIFIER, 4.9 - 5.9 GHz

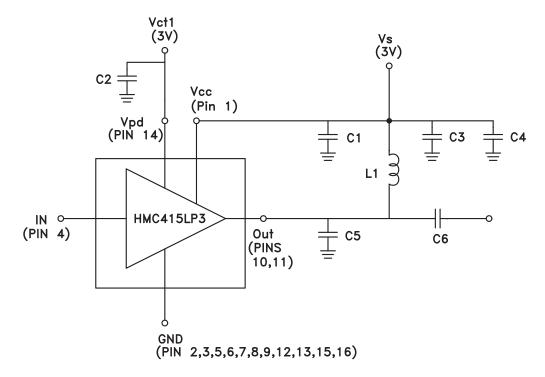
Evaluation PCB

List of Materials for Evaluation PCB 105173 [1]

Item	Description	
J1 - J2	PCB Mount SMA RF Connector	
J3	2 mm DC Header	
C1 - C3	330 pF Capacitor, 0603 Pkg.	
C4	2.2 µF Capacitor, Tantalum	
C5	0.5 pF Capacitor, 0603 Pkg.	
C6	7.0 pF Capacitor, 0402 Pkg.	
L1	3.0 nH Inductor, 0805 Pkg.	
U1	HMC415LP3 / HMC415LP3E Amplifier	
PCB [2]	104723 Eval Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350


The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

GaAs InGaP HBT MMIC POWER AMPLIFIER, 4.9 - 5.9 GHz

Application Circuit

Recommended Component Values				
L1	3.0 nH			
C1, C2, C3	330 pF			
C4	2.2 μF			
C5	0.5 pF			
C6	7.0 pF			

Note 1: C1 should be located < 0.1" (2.54mm) from Pin 1 (Vcc) Note 2: C3 should be located < 0.1" (2.54mm) from L1.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3
EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+
MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT
EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1
SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB