

HMC425LP3 / 425LP3E

v03.0409

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz

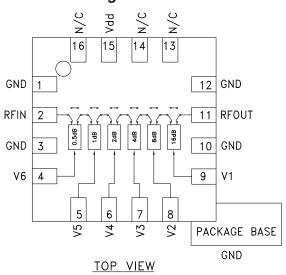
Typical Applications

The HMC425LP3 / HMC425LP3E is ideal for:

- WLAN & Point-to-Multi-Point
- Fiber Optics & Broadband Telecom
- Microwave Radio & VSAT
- Military

Features

0.5 dB LSB Steps to 31.5 dB


Single Control Line Per Bit

± 0.5 dB Typical Bit Error

Single +5V Supply

3x3 mm SMT Package

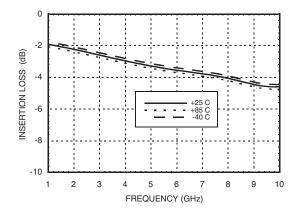
Functional Diagram

General Description

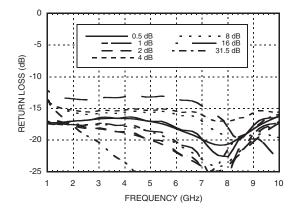
The HMC425LP3 & HMC425LP3E are broadband 6-bit GaAs IC digital attenuators in low cost leadless surface mount packages. Covering 2.2 to 8.0 GHz, the insertion loss is less then 3.8 dB typical. The attenuator bit values are 0.5 (LSB), 1, 2, 4, 8, and 16 dB for a total attenuation of 31.5 dB. Attenuation accuracy is excellent at \pm 0.5 dB typical step error with an IIP3 of +40 dBm. Six control voltage inputs, toggled between 0 and +3 to +5V, are used to select each attenuation state. A single Vdd bias of +3 to +5V is required.

Electrical Specifications,

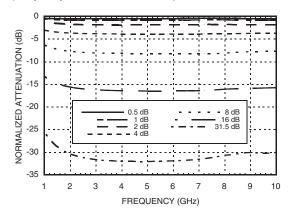
 $T_A = +25^{\circ}$ C, With Vdd = +5V & Vctl = 0/+5V (Unless Otherwise Noted)


Parameter		Frequency (GHz)	Min.	Тур.	Max.	Units
Insertion Loss		2.2 - 6.0 GHz 6.0 - 8.0 GHz		3.5 3.8	3.8 4.3	dB dB
Attenuation Range		2.2 - 8.0 GHz		31.5		dB
Return Loss (RF1 & RF2, All Atten. States)		2.2 - 8.0 GHz		15		dB
Attenuation Accuracy: (Referenced to Insertion Loss)	All States	2.2 - 8.0 GHz	± 0.5 + 5% of Atten. Setting Max.		dB	
Input Power for 0.1 dB Compression	Vdd = 5V Vdd = 3V	2.2 - 8.0 GHz		22 19		dBm dBm
Input Third Order Intercept Point (Two-Tone Input Power= 0 dBm Each Tone)	REF - 16.0 dB States 16.5 - 31.5 dB States	2.2 - 8.0 GHz		45 35		dBm dBm
Switching Characteristics		2.2 - 8.0 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)				160 180		ns ns

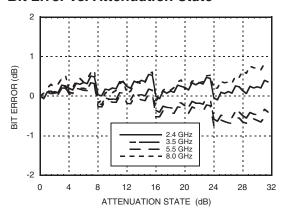
RoHS V


0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz

Insertion Loss

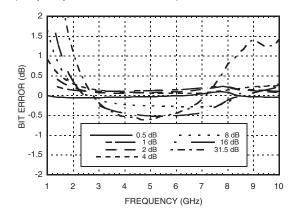

Return Loss RF1, RF2

(Only Major States are Shown)

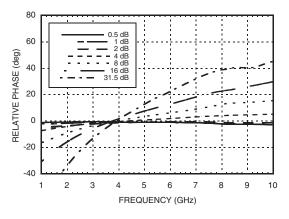


Normalized Attenuation

(Only Major States are Shown)



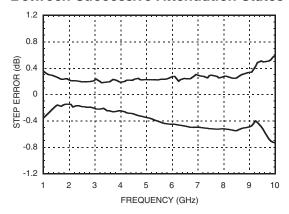
Bit Error vs. Attenuation State


Bit Error vs. Frequency

(Only Major States are Shown)

Relative Phase vs. Frequency

(Only Major States are Shown)



0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz

Worst Case Step Error Between Successive Attenuation States

Truth Table

Control Voltage Input					Attenua-		
V1 16 dB	V2 8 dB	V3 4 dB	V4 2 dB	V5 1 dB	V6 0.5 dB	tion State RF1 - RF2	
High	High	High	High	High	High	Reference I.L.	
High	High	High	High	High	Low	0.5 dB	
High	High	High	High	Low	High	1 dB	
High	High	High	Low	High	High	2 dB	
High	High	Low	High	High	High	4 dB	
High	Low	High	High	High	High	8 dB	
Low	High	High	High	High	High	16 dB	
Low	Low	Low	Low	Low	Low	31.5 dB	

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

Bias Voltage & Current

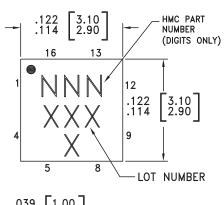
Vdd Range = 3.0 to +5.0 Vdc		
Vdd Idd (Typ.) (VDC) (μA)		
+3.0	10	
+5.0	30	

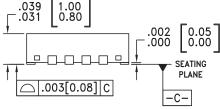
Control Voltage

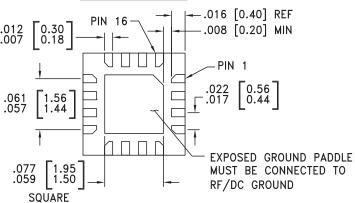
State	Bias Condition
Low	0 to 0.2V @ 10 uA Typ.
High	Vdd ± 0.2V @ 5 uA Typ.
Note: Vdd = +3V to +5V	

RoHS (E)

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz


Absolute Maximum Ratings


Control Voltage (V1 to V6)	Vdd +0.5 Vdc
Bias Voltage (Vdd)	+7.0 Vdc
Staorage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power (2.4 - 8.0 GHz)	+30 dBm
ESD Sensitivity (HBM)	Class 1A


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

BOTTOM VIEW

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC425LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	425 XXXX
HMC425LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	425 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

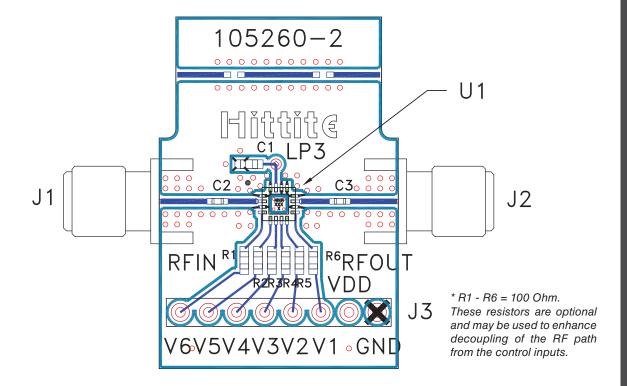
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC425LP3 / 425LP3E

v03.0409

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 3, 10, 12	GND	Package bottom has an exposed metal paddle that must also be connected to RF ground.	○ GND =
2, 11	RFIN, RFOUT	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required.	
4, 5, 6, 7, 8, 9	V1 - V6	See truth table and control voltage table.	→ Vdd → 500 → → — — — — — — — — — — — — — — — — — —
13, 14, 16	N/C	This pin should be connected to PCB RF ground to maximize performance.	
15	Vdd	Supply Voltage.	

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz

Evaluation PCB

List of Materials for Evaluation PCB 105408 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	8 Pin DC Connector
C1	0.01 μF Capacitor, 0603 Pkg.
C2, C3	100 pF Capacitor, 0402 Pkg.
R1 - R6	100 Ohm Resistor, 0603 Pkg.
U1	HMC425LP3 / HMC425LP3E Digital Attenuator
PCB [2]	105260 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4
EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT#
MAX2692EVKIT# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2
EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4
MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1
SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB