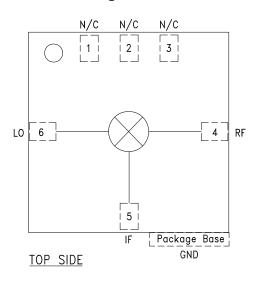


GaAs MMIC DOUBLE-BALANCED SMT MIXER, 26 - 40 GHz

Typical Applications

The HMC329LM3 is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios
- SATCOM
- RADAR


Features

Passive: No DC Bias Required

Input IP3: +19 dBm LO/RF Isolation: 35 dB

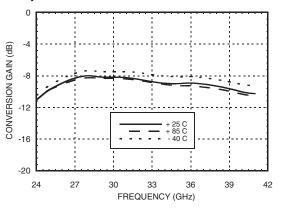
Leadless SMT Package, 25 mm²

Functional Diagram

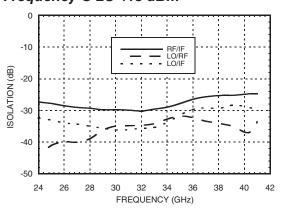
General Description

The HMC329LM3 is a 26 - 40 GHz surface mount, passive, double-balanced MMIC mixer in a SMT leadless chip carrier package. The mixer can be used as a downconverter or upconverter. Excellent isolations are provided by on-chip baluns. The chip requires no external components and no DC bias. All data is with the non-hermetic, epoxy sealed LM3 package mounted in a 50 Ohm test fixture. Utilizing the HMC329LM3 eliminates the need for wirebonding, thereby providing a consistent connection interface for the customer.

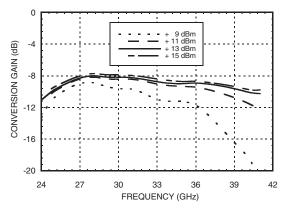
Electrical Specifications, $T_A = +25^{\circ}$ C

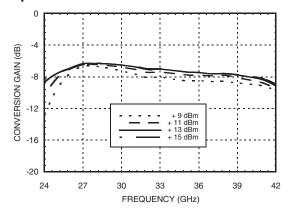

Doromotor	LO = +13 dBm, IF = 1 GHz			LO = +13 dBm, IF = 1 GHz			I I a ika
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF & LO		26 - 32			32 - 40		GHz
Frequency Range, IF		DC - 8			DC - 8		GHz
Conversion Loss		8	10		9	11	dB
Noise Figure (SSB)		8	10		9	11	dB
LO to RF Isolation	30	37		27	32		dB
LO to IF Isolation	29	35		24	30		dB
RF to IF Isolation	23	28		21	26		dB
IP3 (Input)	16	19		16	20		dBm
IP2 (Input)	45	55		46	56		dBm
1 dB Compression (Input)	9	11		7	10		dBm

^{*} Unless otherwise noted, all measurements performed as downconverter, IF= 1 GHz.

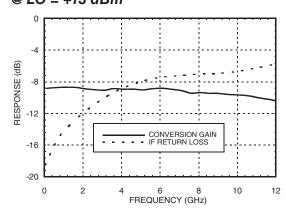


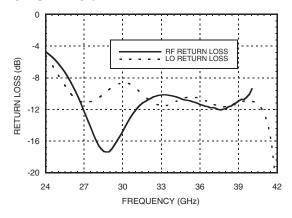
Conversion Gain vs. Temperature @ LO = +13 dBm


Isolation vs. Frequency @ LO +13 dBm

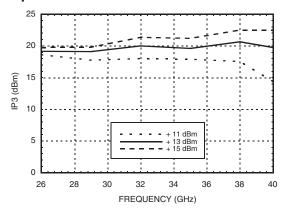

GaAs MMIC DOUBLE-BALANCED

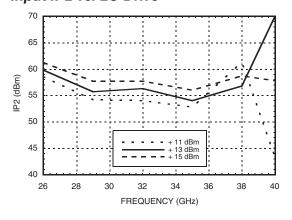
SMT MIXER, 26 - 40 GHz

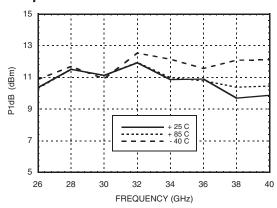

Conversion Gain vs. LO Drive


Upconverter Performance vs. LO Drive

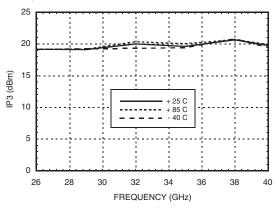
IF Bandwidth and IF Return Loss @ LO = +13 dBm


LO and RF Return Loss @ LO = +13 dBm

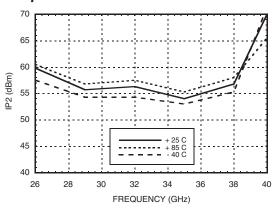



Input IP3 vs. LO Drive*

Input IP2 vs. LO Drive*



Input P1dB vs. Temperature @ LO = +13 dBm



GaAs MMIC DOUBLE-BALANCED SMT MIXER, 26 - 40 GHz

Input IP3 vs. Temperature @ LO = +13 dBm

Input IP2 vs. Temperature @ LO = +13 dBm

MxN Spurious Outputs as a Down Converter

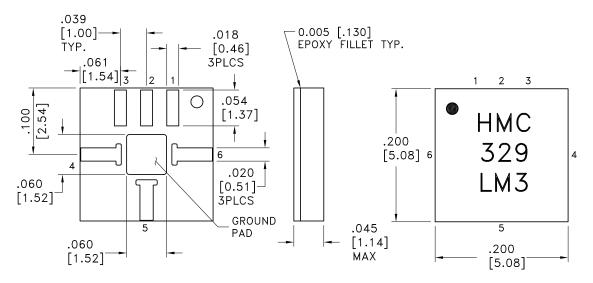
-					
	nLO				
mRF	0	1	2	3	4
0	xx	7			
1	19	0	41		
2		69	57	67	
3			74	69	71
4				74	74

RF = 31 GHz @ -10 dBm

LO = 32 GHz @ +13 dBm

All values in dBc below IF output power level.

^{*} Two-tone input power = -5 dBm each tone, 1 MHz spacing.


GaAs MMIC DOUBLE-BALANCED SMT MIXER. 26 - 40 GHz

Absolute Maximum Ratings

RF / IF Input	+13 dBm
LO Drive	+27 dBm
IF DC Current	±2 mA
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1B

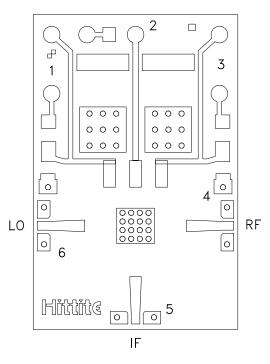
Outline Drawing

NOTES:

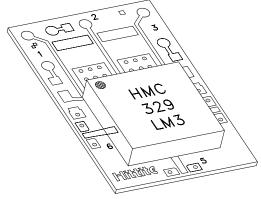
- 1. MATERIAL: PLASTIC
- 2. PLATING: GOLD OVER NICKEL
- 3. ALL DIMENSIONS IN INCHES (MILLIMETERS)
- 4. ALL TOLERANCES ARE ±0.005 (±0.13)
- 5. ALL GROUNDS MUST BE SOLDERED TO PCB RF GROUND
- 6. INDICATES PIN 1

GaAs MMIC DOUBLE-BALANCED SMT MIXER, 26 - 40 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 2, 3	N/C	This pin may be connected to the PCB ground or left unconnected.	
4	RF	This pin is DC coupled and matched to 50 Ohm from 25 to 40 GHz.	RF O
5	IF	This pin is DC coupled. For applications not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source or sink more than 2 mA of current or part non-function and possible part failure will result.	IFO—M———————————————————————————————————
6	LO	This pin is DC coupled and matched to 50 Ohm from 25 to 40 GHz.	LO 0————————————————————————————————————
	GND	Package base must be soldered to PCB RF ground.	⊖ GND <u>=</u>

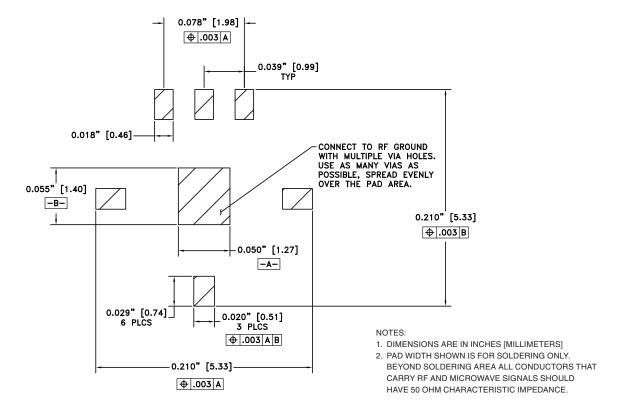
Evaluation PCB



The grounded Co-Planar Wave Guide (CPWG) PCB input/output transitions allow use of Ground-Signal-Ground (GSG) probes for testing. Suggested probe pitch is 400 mm (16 mils). Alternatively, the board can be mounted in a metal housing with 2.4 mm coaxial connectors.

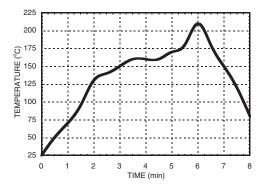
Evaluation Circuit Board Layout Design Details

Layout Technique	Micro Strip to CPWG
Material	Rogers 4003 with 1/2 oz. Cu
Dielectric Thickness	0.008" (0.20 mm)
Microstrip Line Width	0.018" (0.46 mm)
CPWG Line Width	0.016" (0.41 mm)
CPWG Line to GND Gap	0.005" (0.13 mm)
Ground Via Hole Diameter	0.008" (0.20 mm)


LM3 package mounted to evaluation PCB

GaAs MMIC DOUBLE-BALANCED SMT MIXER, 26 - 40 GHz

Suggested LM3 PCB Land Pattern



GaAs MMIC DOUBLE-BALANCED SMT MIXER, 26 - 40 GHz

Recommended SMT Attachment Technique

Preparation & Handling of the LM3 Millimeterwave Package for Surface Mounting

The HMC LM3 package was designed to be compatible with high volume surface mount PCB assembly processes. The LM3 package requires a specific mounting pattern to allow proper mechanical attachment and to optimize electrical performance at millimeterwave frequencies. This PCB layout pattern can be found on each LM3 product data sheet. It can also be provided as an electronic drawing upon request from Hittite Sales & Application Engineering.

Follow these precautions to avoid permanent damage:

Cleanliness: Observe proper handling procedures to ensure clean devices and PCBs. LM3 devices should remain in their original

packaging until component placement to ensure no contamination or damage to RF, DC & ground contact areas.

Static Sensitivity: Follow ESD precautions to protect against ESD strikes.

General Handling: Handle the LM3 package on the top with a vacuum collet or along the edges with a sharp pair of bent tweezers. Avoiding damaging the RF, DC, & ground contacts on the package bottom. Do not apply excess pressure to the top of the lid.

Solder Materials & Temperature Profile: Follow the information contained in the application note. Hand soldering is not recommended. Conductive epoxy attachment is not recommended.

Solder Paste: Solder paste should be selected based on the user's experience and be compatible with the metallization systems used. See the LM3 data sheet Outline drawing for pin & ground contact metallization schemes.

Solder Paste Application: Solder paste is generally applied to the PCB using either a stencil printer or dot placement. The volume of solder paste will be dependent on PCB and component layout and should be controlled to ensure consistent mechanical & electrical performance. Excess solder may create unwanted electrical parasitics at high frequencies.

Solder Reflow: The soldering process is usually accomplished in a reflow oven but may also use a vapor phase process. A solder reflow profile is suggested above.

Prior to reflowing product, temperature profiles should be measured using the same mass as the actual assemblies. The thermocouple should be moved to various positions on the board to account for edge and corner effects and varying component masses. The final profile should be determined by mounting the thermocouple to the PCB at the location of the device.

Follow solder paste and oven vendor's recommendations when developing a solder reflow profile. A standard profile will have a steady ramp up from room temperature to the pre-heat temperature to avoid damage due to thermal shock. Allow enough time between reaching pre-heat temperature and reflow for the solvent in the paste to evaporate and the flux to completely activate. Reflow must then occur prior to the flux being completely driven off. The duration of peak reflow temperature should not exceed 15 seconds. Packages have been qualified to withstand a peak temperature of 235°C for 15 seconds. Verify that the profile will not expose device to temperatures in excess of 235°C.

Cleaning: A water-based flux wash may be used.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC252AQS24 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL01-HMC1048LC3B

EVAL01-HMC661LC4B EVAL-ADF7020-1DBZ4 EVAL-ADF7020-1DBZ5 EVAL-ADF7020-1DBZ6 EVAL-ADF7021DB9Z EVAL
ADF7021DBJZ EVAL-ADF7021DBZ2 EVAL-ADF7021DBZ6 EVAL-ADF7021-NDBZ2 EVAL-ADF7021-VDB3Z EVAL-ADF7023DB3Z

EVAL-ADF7023-JDB3Z EVAL-ADF70XXEKZ1 EVAL-ADF7241DB1Z EVAL-ADG919EBZ F0440EVBI F1423EVB-DI F1423EVB-SI

F1701EVBI F1751EVBI F2250EVBI MICRF219A-433 EV MICRF220-433 EV 122410-HMC686LP4E AD6679-500EBZ 126223
HMC789ST89E ADL5363-EVALZ ADL5369-EVALZ 130437-HMC1010LP4E 131352-HMC1021LP4E 131372-HMC951LP4E 130436
HMC1010LP4E EKIT01-HMC1197LP7F Si4705-D60-EVB SI4825-DEMO Si4835-Demo LMV228SDEVAL SKYA21001-EVB SMP1331
08-EVB EV1HMC618ALP3 EV1HMC641ALC4 EV1HMC8410LP2F EVAL_PAN4555ETU EVAL01-HMC1041LC4