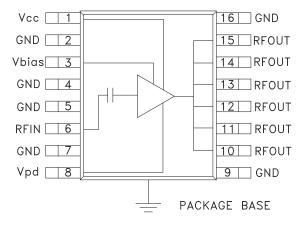


Typical Applications

The HMC457QS16G / HMC457QS16GE is ideal for applications requiring a high dynamic range amplifier:


- CDMA & W-CDMA
- GSM, GPRS & Edge
- Base Stations & Repeaters

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

Features

Output IP3: +46 dBm Gain: 27 dB @ 1900 MHz 48% PAE @ +32 dBm Pout +25 dBm W-CDMA Channel Power @ -50 dBc ACPR Integrated Power Control (Vpd) QSOP16G SMT Package: 29.4 mm² Included in the HMC-DK002 Designer's Kit

Functional Diagram

General Description

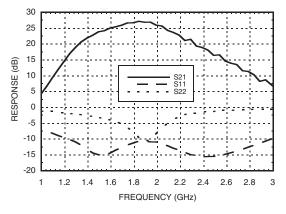
The HMC457QS16G & HMC457QS16GE are high dynamic range GaAs InGaP Heterojunction Bipolar Transistor (HBT) 1 watt MMIC power amplifiers operating between 1.7 and 2.2 GHz. Packaged in a miniature 16 lead QSOP plastic package, the amplifier gain is typically 27 dB from 1.7 to 2.0 GHz and 25 dB from 2.0 to 2.2 GHz. Utilizing a minimum number of external components, the amplifier output IP3 can be optimized to +45 dBm. The power control (Vpd) can be used for full power down or RF output power/ current control. The high output IP3 and PAE make the HMC457QS16G & HMC457QS16GE ideal power amplifiers for Cellular/3G base station & repeater applications.

Electrical Specifications, $T_{A} = +25^{\circ}C$, Vs = +5V, Vpd = +5V, Vbias = +5V^[1]

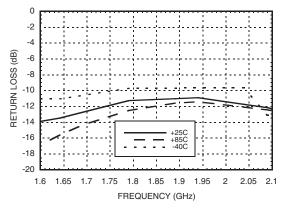
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		1710 - 1990			2010 - 2170		MHz
Gain	24	27		22	25		dB
Gain Variation Over Temperature		0.025	0.035		0.025	0.035	dB / °C
Input Return Loss		11			11		dB
Output Return Loss		8			5		dB
Output Power for 1dB Compression (P1dB)	26	29		27.5	30.5		dBm
Saturated Output Power (Psat)		32.5			32		dBm
Output Third Order Intercept (IP3) [2]	42	45		42	45		dBm
Noise Figure		6			5		dB
Supply Current (Icq)		500			500		mA
Control Current (Ipd)		4			4		mA
Bias Current (Vbias)		10			10		mA

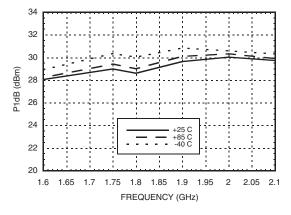
[1] Specifications and data reflect HMC457QS16G measured using the respective application circuits for each designated frequency band found herein. Contact the HMC Applications Group for assistance in optimizing performance for your application. [2] Two-tone output power of +15 dBm per tone, 1 MHz spacing

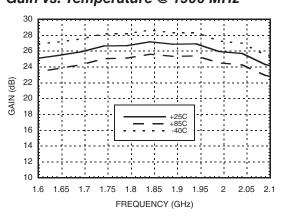
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

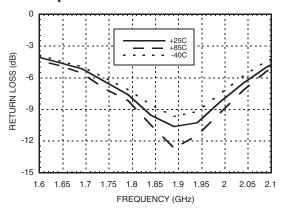

InGaP HBT 1 WATT POWER

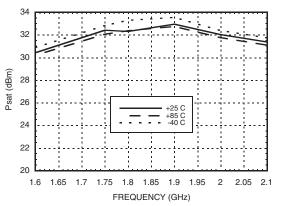
AMPLIFIER, 1.7 - 2.2 GHz


v03.0907


Broadband Gain & Return Loss @ 1900 MHz


Input Return Loss vs. Temperature @ 1900 MHz

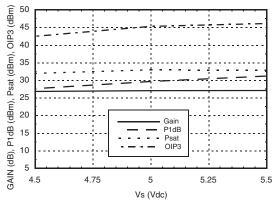

PldB vs. Temperature @ 1900 MHz

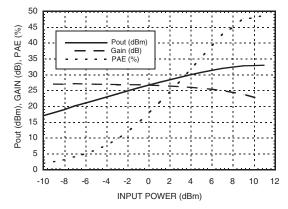

Gain vs. Temperature @ 1900 MHz

Output Return Loss vs. Temperature @ 1900 MHz

Psat vs. Temperature @ 1900 MHz

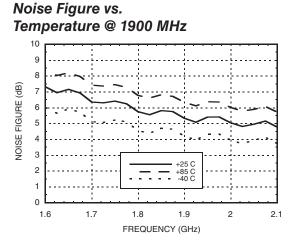
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

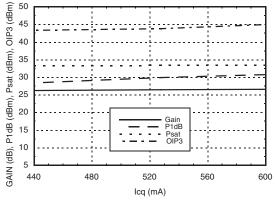

v03.0907


Output IP3 vs. Temperature @ 1900 MHz

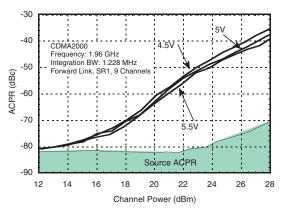
40 +25 C +85 C -40 C Ξ. 38 36 34 1.65 1.7 2.05 21 1.6 1.75 1.8 1.85 1.9 1.95 2 FREQUENCY (GHz)

Gain, Power & IP3 vs. Supply Voltage @ 1900 MHz


Power Compression @ 1900 MHz


* Icq is controlled by varying Vpd.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

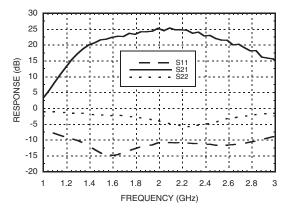

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

Gain, Power & IP3 vs. Supply Current @ 1900 MHz*

ACPR vs. Supply Voltage @ 1960 MHz CDMA 2000, 9 Channels Forward

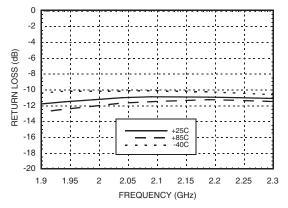
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

11 - 242

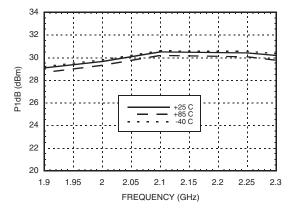


InGaP HBT 1 WATT POWER

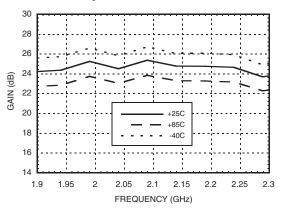
AMPLIFIER, 1.7 - 2.2 GHz

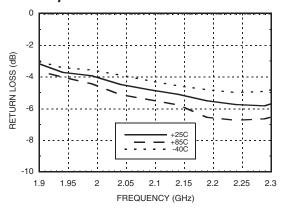

ROHS EARTH FRIENDLY

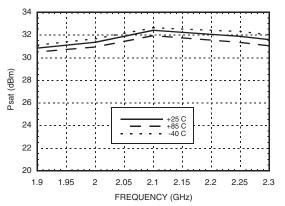
Broadband Gain and Return Loss @ 2100 MHz



v03.0907


Input Return Loss vs. Temperature @ 2100 MHz

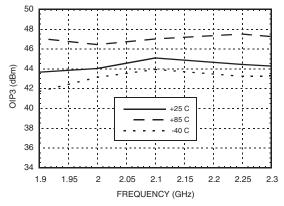

PldB vs. Temperature @ 2100 MHz


Gain vs. Temperature @ 2100 MHz

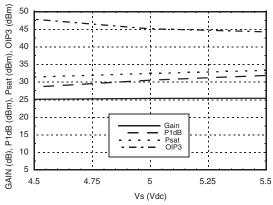
Output Return Loss vs. Temperature @ 2100 MHz

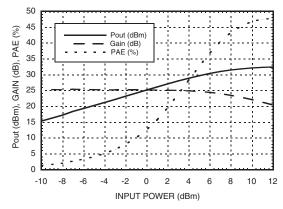
Psat vs. Temperature @ 2100 MHz

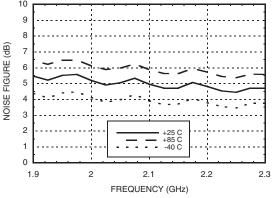
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

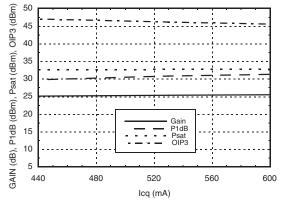

InGaP HBT 1 WATT POWER

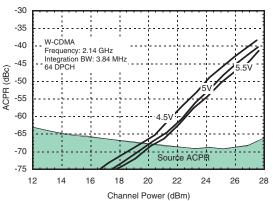
AMPLIFIER, 1.7 - 2.2 GHz


v03.0907


Output IP3 vs. Temperature @ 2100 MHz


Gain, Power & IP3 vs. Supply Voltage @ 2100 MHz

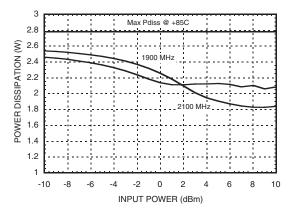

Power Compression @ 2100 MHz


Noise Figure vs. Temperature @ 2100 MHz

Gain, Power & IP3 vs. Supply Current @ 2100 MHz*

ACPR vs. Supply Voltage @ 2140 MHz W-CDMA, 64 DPCH (Uplink)

*Icq is controlled by varying Vpd


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0907

Power Dissipation

Typical Supply Current vs. Supply Voltage

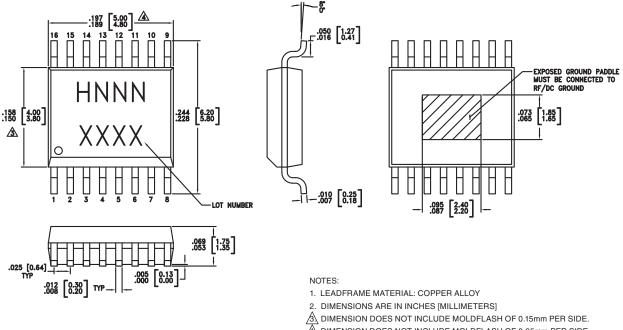
Vs (V)	lcq (mA)
4.5	400
5.0	510
5.5	620

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

Absolute Maximum Ratings

Collector Bias Voltage (Vcc)	+6 Vdc
Control Voltage (Vpd)	+5.4 Vdc
RF Input Power (RFIN)(Vs = Vpd = +5 Vdc)	+15 dBm
Junction Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 42.9 mW/°C above 85 °C)	2.78 W
Thermal Resistance (junction to ground paddle)	23.3 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS



v03.0907

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

Outline Drawing

 A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC457QS16G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H457 XXXX
HMC457QS16GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H457</u> XXXX

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

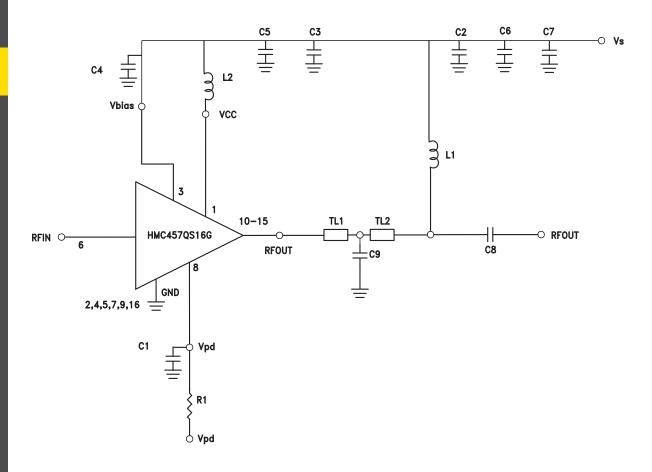
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0907

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vcc	Power supply voltage for the first amplifier stage. External bypass capacitors are required as shown in the application schematic.	⊖Vcc
2, 4, 5, 7, 9, 16	GND	Ground: Backside of package has exposed metal ground slug that must also be connected to RF/DC ground. Vias under the device are required.	
3	Vbias	Power Supply for Bias Circuit	Vbias
6	RFIN	This pin is AC coupled and matched to 50 Ohms	
8	Vpd	Power control pin. For maximum power, this pin should be connected to +5V. A higher voltage is not recommended. For lower idle current, this voltage can be reduced.	OVPD
10 - 15	RFOUT	RF output and DC bias for the output stage.	ORFOUT ORFOUT ORFOUT ORFOUT ORFOUT ORFOUT


ROHS V EARTH FRIENDLY

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

1900 & 2100 MHz Application Circuit

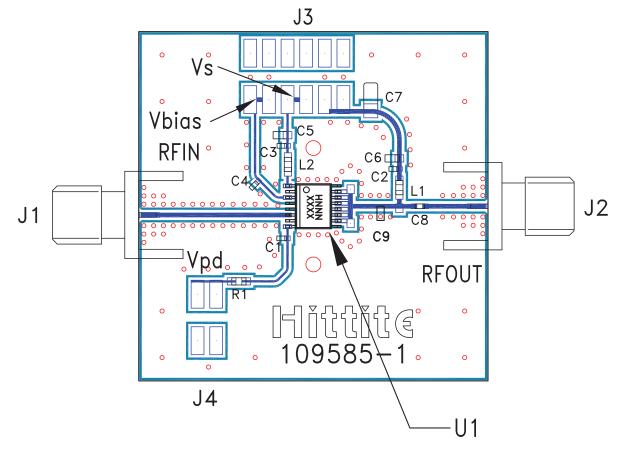
v03.0907

This circuit was used to specify the performance for 1900 & 2100 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2	
Impedance	50 Ohm	50 Ohm	
Physical Length	0.170"	0.080"	
Electrical Length	20°	9°	
PCB Material: 10 mil Rogers 4350, Er = 3.48			

Recommended		
Component Values	1900 MHz	2100 MHz
C1 - C4	100 pF	100 pF
C5, C6	1000 pF	1000 pF
C7	2.2 µF	2.2 µF
C8	33 pF	33 pF
C9	3.9 pF	2.7 pF
L1, L2	3.9 nH	3.9 nH
R1	160 Ohm	160 Ohm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v03.0907

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

Evaluation PCB

List of Materials for Evaluation PCB 106043-1900, 110171-2100 [1]

Item	Description	
J1, J2	PCB Mount SMA Connector	
J3, J4	2 mm DC Header	
C1 - C4	100 pF Capacitor, 0402 Pkg.	
C5, C6	1000 pF Capacitor, 0603 Pkg.	
C7	2.2 µF Capacitor, Tantalum	
C8	33 pF Capacitor, 0402 Pkg.	
C9	3.9 pF Capacitor, 0603 Pkg 1900 MHz	
C9	2.7 pF Capacitor, 0603 Pkg 2100 MHz	
L1, L2	3.9 nH Inductor, 0603 Pkg.	
R1	160 Ohm Resistor, 0603 Pkg.	
U1	HMC457QS16G / HMC457QS16GE	
PCB [2]	109585 Evaluation PCB, 10 mils	

[1] Reference one of these numbers when ordering complete evaluation PCB depending on frequency of operation.

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB SKY13373-460LF-EVB