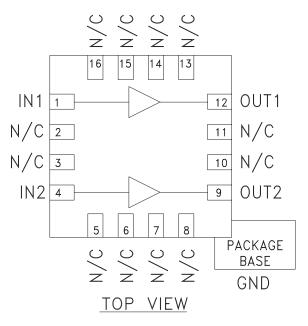


HMC461LP3 / 461LP3E

v02.0705


InGaP HBT 1 Watt High IP3 AMPLIFIER, 1.7 - 2.2 GHz

Typical Applications

A high linearity 1 watt amplifier for:

- Multi-Carrier Systems
- GSM, GPRS & EDGE
- CDMA & W-CDMA
- PHS
- Balanced or Push-Pull Configurable

Functional Diagram

Features

+45 dBm Output IP3 (Balanced Configuration)

12 dB Gain

48% PAE @ +30.5 dBm Pout

+20 dBm W-CDMA Channel Power @ -45 dBc ACP

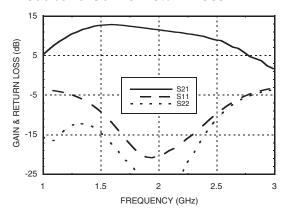
3x3 mm QFN SMT Package

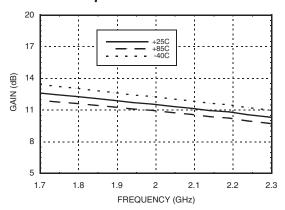
General Description

The HMC461LP3 & HMC461LP3E are 1.7 - 2.2 GHz high output IP3 GaAs InGaP Heterojunction Bipolar Transistor (HBT) dual-channel MMIC amplifiers. The linear performance of two HMC455LP3 high IP3 drivers is offered in this single IC which can be configured in a balanced or push-pull amplifier circuit. The amplifier provides 12 dB of gain and +30.5 dBm of saturated power at 48% PAE from a single +5 Vdc supply while utilizing external baluns in a balanced configuration. The high output IP3 of +45 dBm coupled with the low VSWR of 1.2:1 make the HMC461LP3 & HMC461LP3E ideal driver amplifiers for PCS/3G wireless infrastructures. A low cost, leadless 3x3 mm QFN surface mount package (LP3) houses the dual MMIC amplifier IC. The LP3 provides an exposed base for excellent RF and thermal performance.

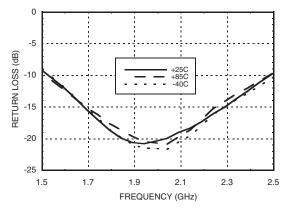
Electrical Specifications*, $T_A = +25^{\circ}$ C, Vs = +5V

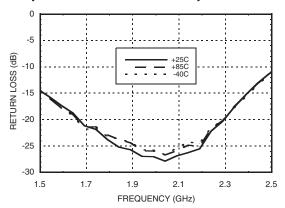
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		1.7 - 1.9			1.9 - 2.2		GHz
Gain	10	12.5		9	12		dB
Gain Variation Over Temperature		0.012	0.02		0.012	0.02	dB/°C
Input Return Loss		17			18		dB
Output Return Loss		20			25		dB
Output Power for 1dB Compression (P1dB)	26	29		26.5	29.5		dBm
Saturated Output Power (Psat)		29.5			30.5		dBm
Output Third Order Intercept (IP3)	41	44		42	45		dBm
Noise Figure		6.5			6		dB
Supply Current (Icq)		300			300		mA

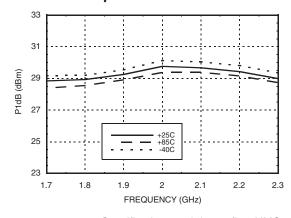

^{*} Specifications and data reflect HMC461LP3 measured with external baluns in a balanced amplifier configuration optimized for 1.85 - 2.2 GHz per application circuit herein. Contact HMC Applications for 1.7 - 1.85 GHz performance optimization.

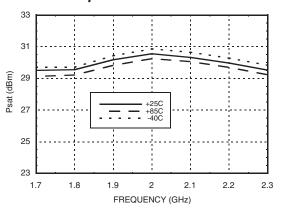


InGaP HBT 1 Watt High IP3 AMPLIFIER, 1.7 - 2.2 GHz


Broadband Gain & Return Loss


Gain vs. Temperature

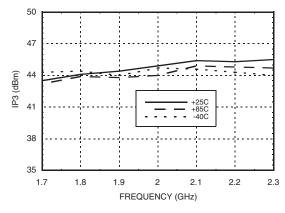

Input Return Loss vs. Temperature

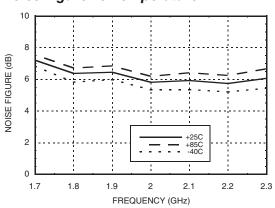

Output Return Loss vs. Temperature

P1dB vs. Temperature

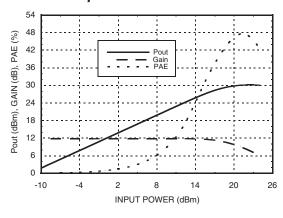
Psat vs. Temperature

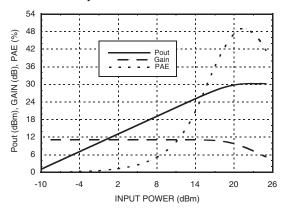
Specifications and data reflect HMC461LP3 measured with external baluns in a balanced amplifier configuration optimized for 1.85 - 2.2 GHz per application circuit herein.

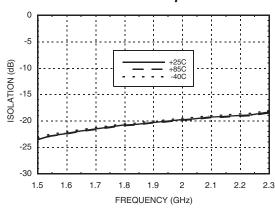

Contact HMC Applications for 1.7 - 1.85 GHz performance optimization.

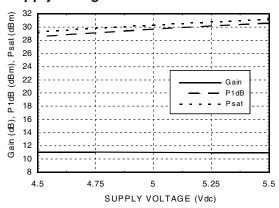


InGaP HBT 1 Watt High IP3 AMPLIFIER, 1.7 - 2.2 GHz


Output IP3 vs. Temperature

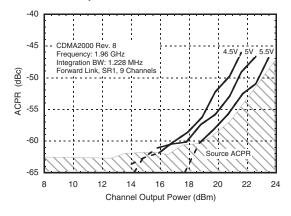

Noise Figure vs. Temperature

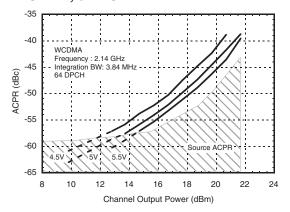

Power Compression @ 1.95 GHz


Power Compression @ 2.15 GHz

Reverse Isolation vs. Temperature

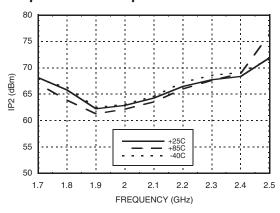
Gain & Power vs. Supply Voltage @ 2.15 GHz





InGaP HBT 1 Watt High IP3 AMPLIFIER, 1.7 - 2.2 GHz

ACPR vs. Supply Voltage @ 1.96 GHz CDMA2000, 9 Channels Forward



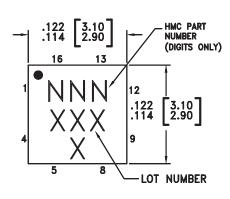
ACPR vs. Supply Voltage @ 2.14 GHz W-CDMA, 64 DCPH

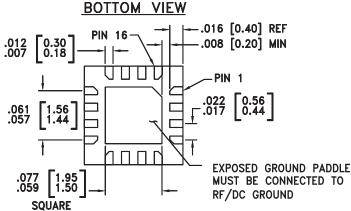
^{*} Source ACPR: All data is RSS corrected for source ACPR. Dashed lines are shown where corrected data is below source ACPR.

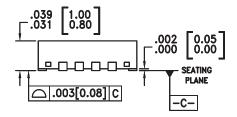
Output IP2 vs. Temperature

Absolute Maximum Ratings

Collector Bias Voltage (Vcc1, Vcc2)	+6 Vdc	
RF Input Power (RFIN)(Vs = +5Vdc)	+30 dBm	
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 32 mW/°C above 85 °C)	2.08 W	
Thermal Resistance (junction to ground paddle)	31 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	







InGaP HBT 1 Watt High IP3 AMPLIFIER, 1.7 - 2.2 GHz

Outline Drawing

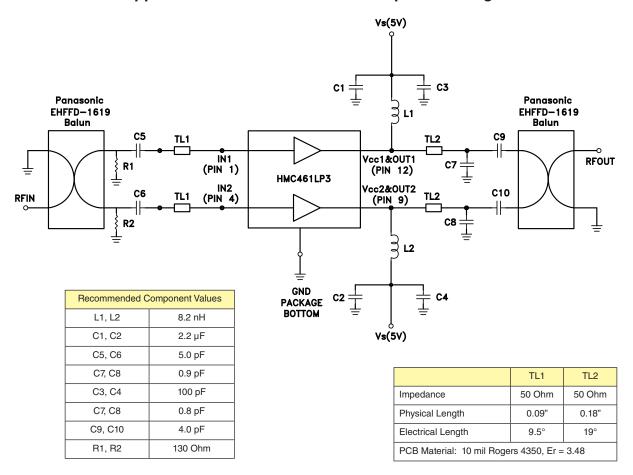
NOTES

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC461LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	461 XXXX
HMC461LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	461 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

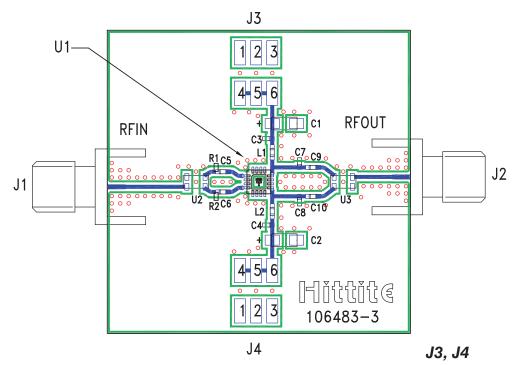


InGaP HBT 1 Watt High IP3 AMPLIFIER, 1.7 - 2.2 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
2, 3, 5 - 8, 10, 11, 13 - 16	N/C	This pin may be connected to RF ground.		
1, 4	IN1, IN2	RF Input. This pin is AC coupled. An off chip series matching capacitor is required.	OUT1, OUT2,	
9, 12	OUT1, OUT2	RF output and DC Bias for the output stage.	IN1, O	
	GND	Package bottom must be connected to RF/DC ground.	ĢGND =	

Recommended Application Circuit for Balanced Amplifier Configuration



InGaP HBT 1 Watt High IP3 AMPLIFIER, 1.7 - 2.2 GHz

Evaluation PCB

Pin Number	Description
1, 2, 3	GND
4, 5, 6	Vs

List of Materials for Evaluation PCB 106485 [1]

Item	Description	
J1, J2	PCB Mount SMA Connector	
J3, J4	2 mm DC Header	
C1, C2	2.2 μF Capacitor, Tantalum	
C3, C4	100 pF Capacitor, 0402 Pkg.	
C5, C6	5 pF Capacitor, 0402 Pkg.	
C7, C8	0.8 pF Capacitor, 0402 Pkg.	
C9, C10	4 pF Capacitor, 0402 Pkg.	
L1, L2	8.2 nH Inductor, 0402 Pkg.	
U1	HMC461LP3 / HMC461LP3E Power Amplifier	
U2, U3	Panasonic Balun, P/N EHFFD - 1619	
PCB [2]	106483 Evaluation PCB, 10 mils	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

11

INEAR & POWER AMPLIFIERS - SMT

ANALOGDEVICES

Notes:

InGaP HBT 1 Watt High IP3 AMPLIFIER, 1.7 - 2.2 GHz

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4
EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT#
MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E
119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT
EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1
SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB