

HMC533LP4 / 533LP4E

v00.0405

MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

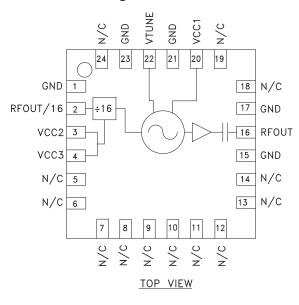
Typical Applications

Low noise MMIC VCO w/Divide-by-16 for:

- VSAT Radio
- Point to Point/Multipoint Radio
- Test Equipment & Industrial Controls
- Military End-Use
- Automotive Radar

Features

Pout: +12 dBm


Phase Noise: -95 dBc/Hz @100 KHz Typ.

No External Resonator Needed

Single Supply: +5V @ 220 mA

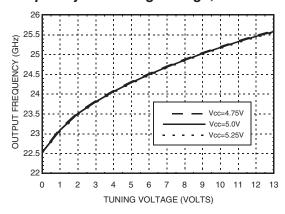
24 Lead 4x4mm QFN Package: 9 mm²

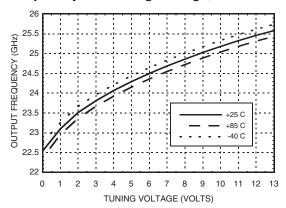
Functional Diagram

General Description

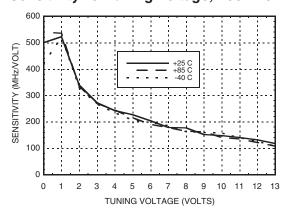
The HMC533LP4 & HMC533LP4E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC533LP4 & HMC533LP4E integrate resonators, negative resistance devices, varactor diodes and feature a divide-by-16 output. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +12 dBm typical from a +5V supply voltage. Prescaler function can be disabled to conserve current if not required. The voltage controlled oscillator is packaged in a leadless QFN 4 x 4 mm surface mount package.

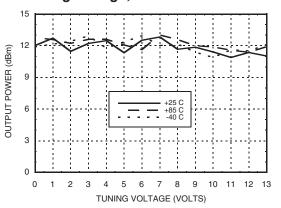
Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc1, Vcc2, Vcc3 = +5V


Parameter		Min.	Тур.	Max.	Units
Frequency Range			23.8 - 24.8		GHz
Power Output	RFOUT/16	+9 -7	+12 -4	+15 -1	dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RFOUT			-95		dBc/Hz
Tune Voltage	Vtune	2		13	V
Supply Current	Icc	180	220	260	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			3		dB
Harmonics/Subharmonics	1/2 3/2		26 37		dBc dBc
Pulling (into a 2.0:1 VSWR)			13		MHz pp
Pushing @ Vtune= 5V		·	80		MHz/V
Frequency Drift Rate			2.3		MHz/°C

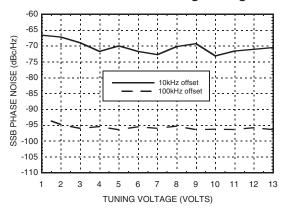


MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

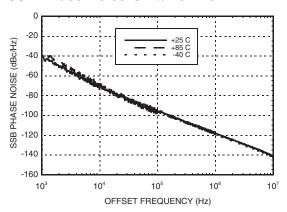

Frequency vs. Tuning Voltage, T= 25°C


Frequency vs. Tuning Voltage, Vcc= +5V

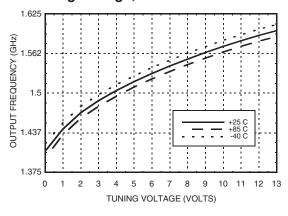
Sensitivity vs. Tuning Voltage, Vcc= +5V

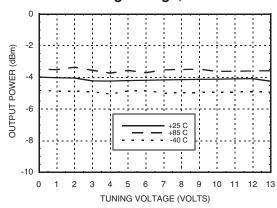


Output Power vs. Tuning Voltage, Vcc= +5V



MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz


SSB Phase Noise vs. Tuning Voltage


SSB Phase Noise @ Vtune= +5V

Divide-by-16 Frequency vs. Tuning Voltage, Vcc= +5V

Divide-by-16 Output Power vs. Tuning Voltage, Vcc= +5V

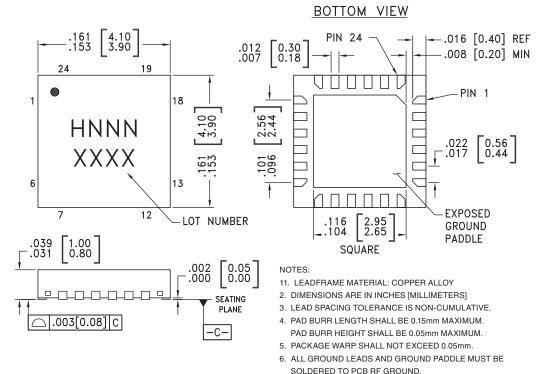
Absolute Maximum Ratings

Vcc1, Vcc2	5.5 V
Vtune	0 to 15V Max.
Junction Temperature	135 °C
Continuous Pdiss (T=85 °C) (derate 28 mW/C above 85 °C	1.4 W
Thermal Resistance	36 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	200
5.0	220
5.25	240

Note: VCO will operate over full voltage range shown above.


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

Outline Drawing

Package Information

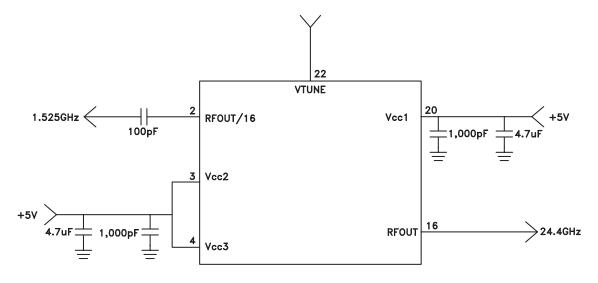
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC533LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H533 XXXX
HMC533LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H533 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 15, 17, 21, 23	GND	Package bottom has an exposed metal paddle that must also be connected to RF/DC ground.	= O GND
2	RFOUT/16	Divided-by-16 Output	ORFOUT/16

7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

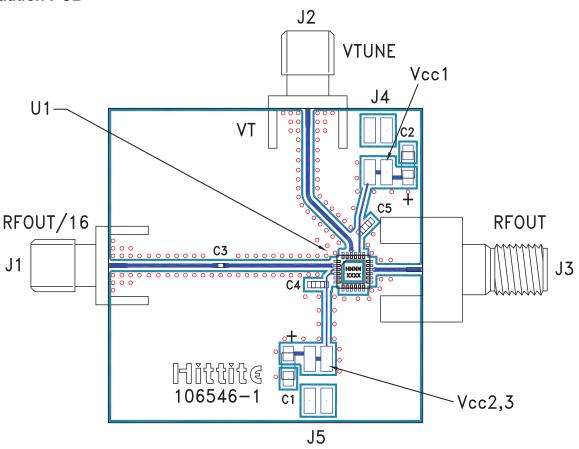


MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
3, 4	VCC2, VCC3	Supply voltage for prescaler. If prescaler is not required, these pins may be left open to conserve 100 mA of current	Vcc2,30
5-14, 18, 19, 24	N/C	No Connection. These pins may be connected to RF/DC ground. Performance will not be affected.	
16	RFOUT	RF output (AC coupled).	RFOUT
20	VCC1	Supply Voltage, +5V	Vcc10 16pF
22	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	VTUNE 0 1250 5.5pF 3.6pF

Typical Application Circuit



MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

Evaluation PCB

List of Materials for Evaluation PCB 106651 [1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3	2.92 mm PCB mount k-connector
J4 - J5	2 mm DC Header
C1 - C2	4.7 μF Tantalum Capacitor
C3	100 pF Capacitor, 0402 Pkg.
C4 -C5	1,000 pF Capacitor, 0603 Pkg.
U1	HMC533LP4 / HMC533LP4E VCO
PCB [2]	106546 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock & Timer Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

AD9517-0A/PCBZ AD9517-2A/PCBZ AD9522-4/PCBZ AD9520-5PCBZ AD9553/PCBZ ADCLK914PCBZ LMH2180SDEVAL DSC400-0333Q0032KE1-EVB TDGL013 MAX2880EVKIT# MAX2750EVKIT MAX2752EVKIT ADCLK946PCBZ ADCLK946/PCBZ MAX2622EVKIT EKIT01-HMC1032LP6G Si5332-8IX-EVB RV-2251-C3-EVALUATION-BOARD Si5332-12IX-EVB RV-3029-C2-EVALUATION-BOARD-OPTION-B Si5332-6IX-EVB SKY72310-11-EVB EV1HMC8364LP6G RV-8263-C7-EVALUATION-BOARD EVK9FGV1002 EVK9FGV1008 EV1HMC6832ALP5L EVAL01-HMC830LP6GE EVAL01-HMC911LC4B TS3002DB 125605-HMC702LP6CE LMX2487E-EVM MIKROE-2481 2045 EKIT01-HMC835LP6G EKIT01-HMC834LP6GE TS3006DB DSC-TIMEFLASH2-KIT1 110227-HMC510LP5 110227-HMC513LP5 AD9515/PCBZ ADCLK948/PCBZ ADCLK954/PCBZ 112261-HMC739LP4 ADCLK925/PCBZ AD9522-0/PCBZ AD9520-4/PCBZ AC164147 DFR0469 LMK04133EVAL/NOPB