
SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

Typical Applications

Prescaler for 10 to 26 GHz PLL Applications:

- Point-to-Point / Multi-Point Radios
- VSAT Radios
- Fiber Optic
- Test Equipment
- Military

Functional Diagram

Features

Very Wide Bandwidth

Ultra Low SSB Phase Noise: -150 dBc/Hz

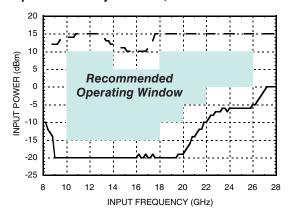
Output Power: -4 dBm Single DC Supply: +5V

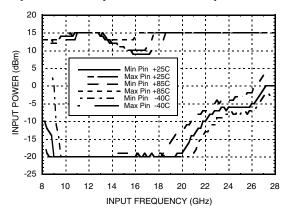
RoHS Compliant 3x3 mm SMT Package

General Description

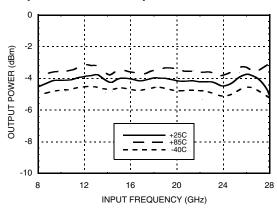
The HMC447LC3 is a low noise Divide-by-4 Regenerative Divider utilizing InGaP GaAs HBT technology. This wideband divider operates with input frequencies from 10 to 26 GHz, and accepts a very wide range of input power levels. THe HMC447LC3 exhibits a very low SSB Phase Noise of -150 dBc/Hz at 100 kHz offset, making it ideal for use in high frequency Phase Locked Loops (PLL), and in Local Oscillator (LO) distribution applications where fundamental and divided LO frequencies are required within a system. This versatile divider consumes only 96 mA from a single positive supply of +5V, and delivers very flat output power across the rated bandwidth. The HMC447LC3 is housed in a RoHS compliant, 3x3 mm leadless SMT package with an exposed ground paddle.

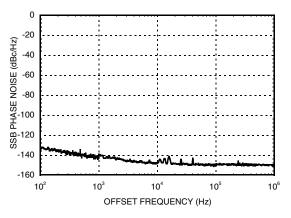
Electrical Specifications, T₄ = +25° C, 50 Ohm System, Vcc= +5V

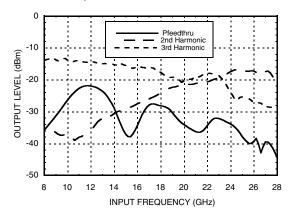

Parameter	Conditions	Min.	Тур.	Max.	Units
Maximum Input Frequency		26	27		GHz
Minimum Input Frequency			9	10	GHz
Input Power Range	Fin = 10 to 14 GHz	-15	-20	+10	dBm
	Fin = 14 to 18 GHz	-15	-20	+5	dBm
	Fin = 18 to 20 GHz	-10	-15	+10	dBm
	Fin = 20 to 22 GHz	-5	-10	+10	dBm
	Fin = 22 to 26 GHz	0	-5	+10	dBm
Output Power	Fin = 10 to 26 GHz	-7	-4		dBm
Reverse Leakage	RF Output Terminated		50		dB
SSB Phase Noise (100 kHz offset)	Pin = 0 dBm, Fin = 22 GHz		-150		dBc/Hz
Output Transition Time	Pin = 0 dBm, Fout = 4500 MHz		100		ps
Supply Current (Icc1 + Icc2)			96		mA

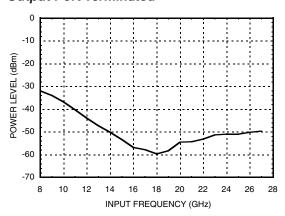


SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

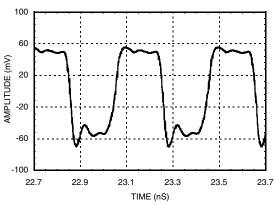

Input Sensitivity Window, T= 25 °C


Input Sensitivity Window vs. Temperature


Output Power vs. Temperature


SSB Phase Noise Performance, Pin= 0 dBm, Fin = 22 GHz, T= 25 °C

Output Harmonic Content, Pin= 0 dBm, T= 25 °C


Reverse Leakage, Pin= 0 dBm, T= 25 °C Output Port Terminated

Output Voltage Waveform, Pin= 0 dBm, Fout= 2.5 GHz, T= 25 °C

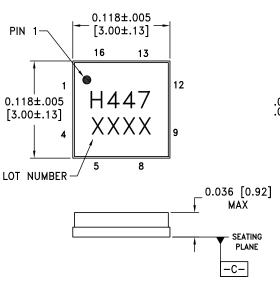
SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

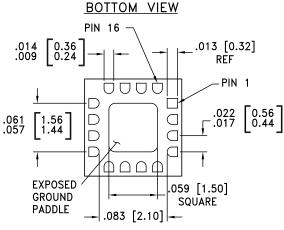
Absolute Maximum Ratings

RF Input (Vcc = +5V)	+13 dBm
Supply Voltage (Vcc1, Vcc2)	+5.5V
Junction Temperature (Tj)	135 °C
Continuous Pdiss (T = 85 °C) (derate 11.9 mW/° C above 85 °C)	595 mW
Thermal Resistance (R _{TH}) (junction to ground paddle)	84 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Typical Supply Current vs. Vcc

Vcc1, Vcc2 (V)	Icc (mA)	
4.75	84	
5.0	96	
5.25	108	


Note: Divider will operate over full voltage range shown above



SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

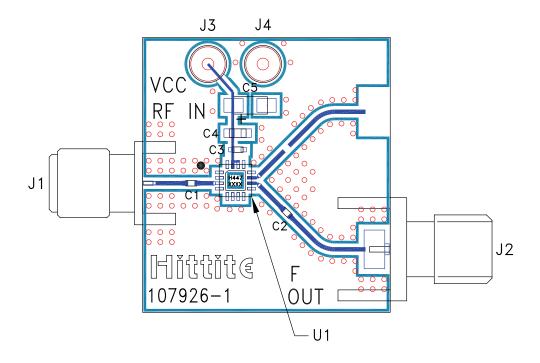
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC447LC3	Alumina, White	Gold over Nickel	MSL3 [1]	H447 XXXX

^[1] Max peak reflow temperature of 260 $^{\circ}\text{C}$

[2] 4-Digit lot number XXXX

SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

Pin Description


Pin Number	Function	Description	Interface Schematic
1,2, 4 - 9, 11 12, 13, 16	N/C	No connection. These pins may be connected to RF/DC ground. Performance will not be affected.	
3	Fin	RF Input must be DC blocked.	500 Fino
10	Fout	Divided Output must be DC blocked.	Vcc 0 5V
14, 15	Vcc1, Vcc2	Supply voltage 5V \pm 0.25V. Connect both pins to +5V supply.	
	GND	Backside of package has exposed metal ground paddle which must be connected to RF/DC ground.	GND =

SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

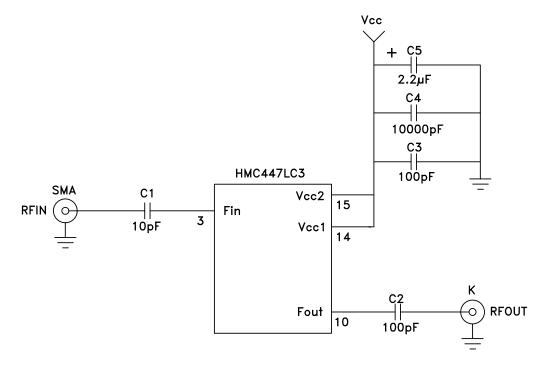
Evaluation PCB

List of Materials for Evaluation PCB 107928 [1]

Item	Description	
J1	PCB Mount SRI K-Connector	
J2	PCB Mount SMA RF Connector	
J3, J4	DC Pin	
C1	10pF Capacitor, 0402 Pkg.	
C2, C3	100 pF Capacitor, 0402 Pkg.	
C4	10000 pF Capacitor, 0603 Pkg.	
C5	2.2 uF Tantalum Capacitor	
U1	HMC447LC3 Divide-by-4	
PCB [2]	107926 Eval Board	

^[1] Reference this number when ordering complete evaluation PCB $\,$

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.


^[2] Circuit Board Material: Rogers 4350

SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

Application Circuit

ANALOGDEVICES

SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB SKY13373-460LF-EVB