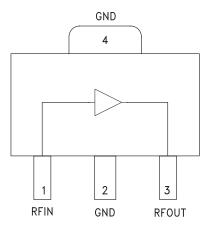


Designer's Kit

v02.0710


Typical Applications

Available

The HMC452ST89 / HMC452ST89E is ideal for applications requiring a high dynamic range amplifier:

- GSM, GPRS & EDGE
- CDMA & W-CDMA
- CATV/Cable Modem
- Fixed Wireless

Functional Diagram

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Features

Output IP3: +49 dBm 21 dB Gain @ 400 MHz 9 dB Gain @ 2100 MHz 50% PAE @ +31 dBm Pout +25 dBm CDMA2000 Channel Power @ -45 dBc ACP

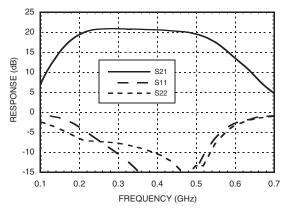
Included in the HMC-DK002 Designer's Kit

General Description

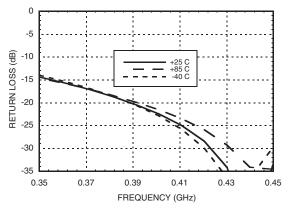
The HMC452ST89 & HMC452ST89E are high dynamic range GaAs InGaP HBT 1 Watt MMIC power amplifiers operating from 0.4 to 2.2 GHz and packaged in industry standard SOT89 packages. Utilizing a minimum number of external components and a single +5V supply, the amplifier output IP3 can be optimized to +45 dBm at 0.4 GHz or +49 dBm at 2.1 GHz. The high output IP3 and PAE make the HMC452ST89 & HMC452ST89E ideal power amplifiers for Cellular/ PCS/3G and Fixed Wireless applications.

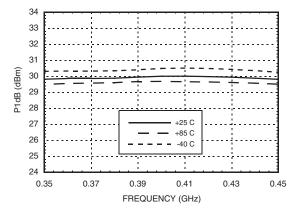
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		400 - 410)		450 - 49	6		810 - 960)	1	710 - 199	90	2	010 - 21	70	MHz
Gain	19	21		18	20		13.5	15.5		7	9.5		7	9		dB
Gain Variation Over Temperature		0.012	0.02		0.012	0.02		0.012	0.02		0.012	0.02		0.012	0.02	dB / °C
Input Return Loss		22			16			13			13			20		dB
Output Return Loss		11			11			14			15			15		dB
Output Power for 1dB Compression (P1dB)	27	30		27	30		27.5	30.5		28	31		28.5	31.5		dBm
Saturated Output Power (Psat)		30.5			30.5			31.5			31.5			32		dBm
Output Third Order Intercept (IP3) [2]	42	45		42	45		44	47		45	48		46	49		dBm
Noise Figure		6.5			7			6.5			6.5			6.5		dB
Supply Current (Icq)		510			510			510			510			510		mA

Electrical Specifications, $T_{A} = +25^{\circ}C$, $Vs = +5V^{[1]}$

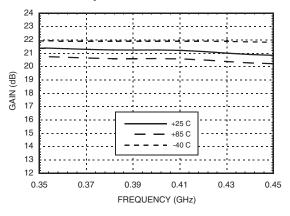

[1] Specifications and data reflect HMC452ST89 measured using the respective application circuits for each designated frequency band found herein. Contact the HMC Applications Group for assistance in optimizing performance for your application. [2] Two-tone input power of 0 dBm per tone, 1 MHz spacing.

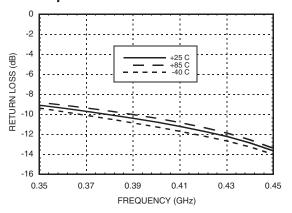
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



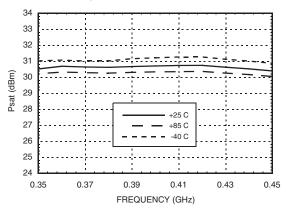

Broadband Gain & Return Loss @ 400 MHz

Input Return Loss vs. Temperature @ 400 MHz


P1dB vs. Temperature @ 400 MHz

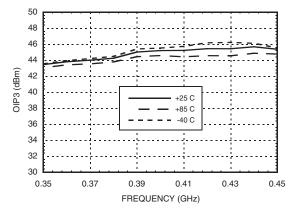

HMC452ST89 / 452ST89E

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

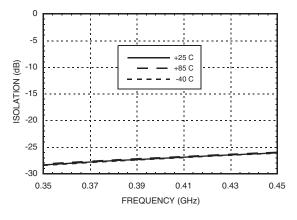

Gain vs. Temperature @ 400 MHz

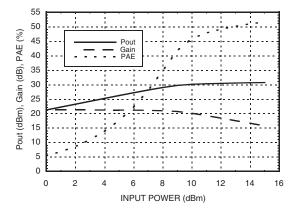
Output Return Loss vs. Temperature @ 400 MHz

Psat vs. Temperature @ 400 MHz

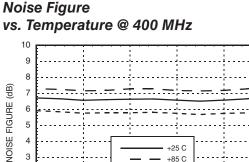


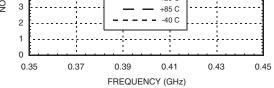
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

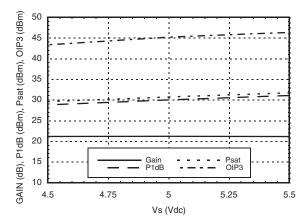



Output IP3 vs. Temperature @ 400 MHz

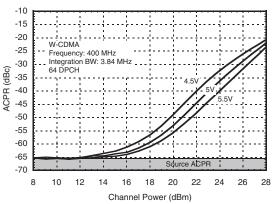
Reverse Isolation vs. Temperature @ 400 MHz




Power Compression @ 400 MHz

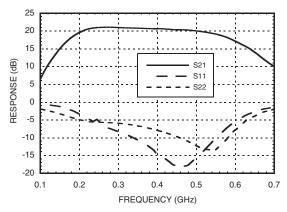

HMC452ST89 / 452ST89E

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

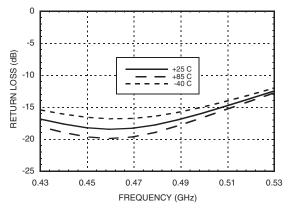


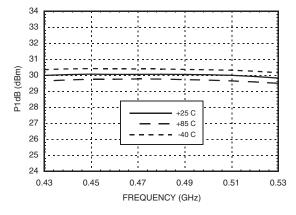
Gain, Power & IP3 vs. Supply Voltage @ 400 MHz

ACPR vs. Supply Voltage @ 400 MHz W-CDMA, 64 DPCH

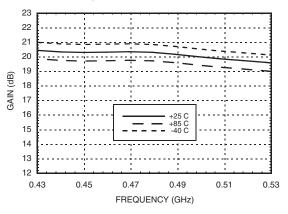


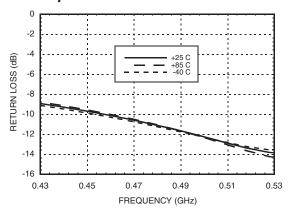
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



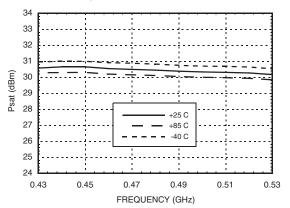

Broadband Gain & Return Loss @ 470 MHz

Input Return Loss vs. Temperature @ 470 MHz


P1dB vs. Temperature @ 470 MHz

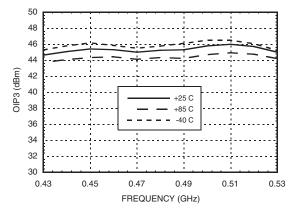

HMC452ST89 / 452ST89E

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

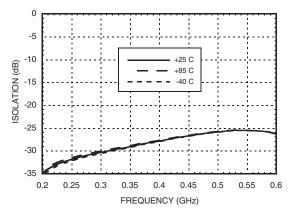

Gain vs. Temperature @ 470 MHz

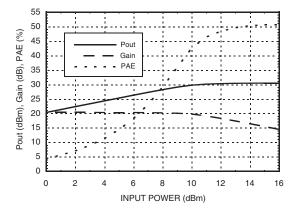
Output Return Loss vs. Temperature @ 470 MHz

Psat vs. Temperature @ 470 MHz

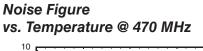


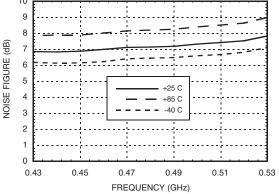
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

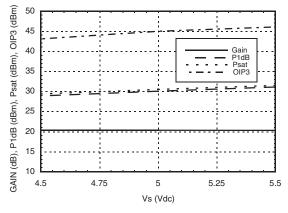



Output IP3 vs. Temperature @ 470 MHz

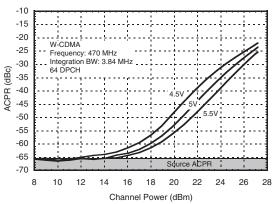
Reverse Isolation vs. Temperature @ 470 MHz




Power Compression @ 470 MHz


HMC452ST89 / 452ST89E

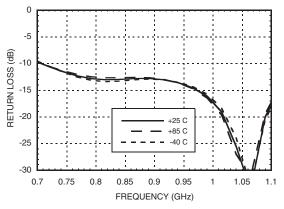
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

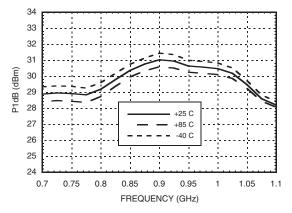


Gain, Power & IP3 vs. Supply Voltage @ 470 MHz

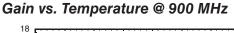
ACPR vs. Supply Voltage @ 470 MHz W-CDMA, 64 DPCH

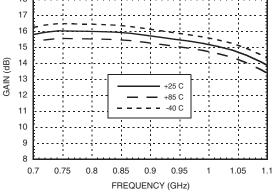
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

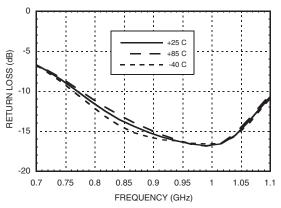



Broadband Gain & Return Loss @ 900 MHz

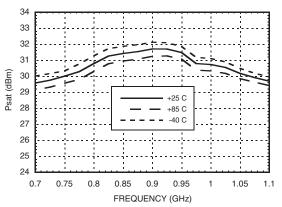
Input Return Loss vs. Temperature @ 900 MHz




P1dB vs. Temperature @ 900 MHz


HMC452ST89 / 452ST89E

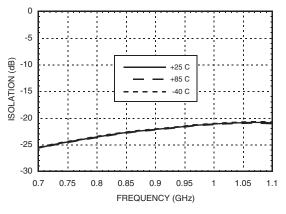
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

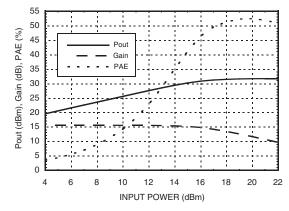


Output Return Loss vs. Temperature @ 900 MHz

Psat vs. Temperature @ 900 MHz

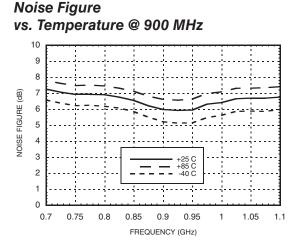
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



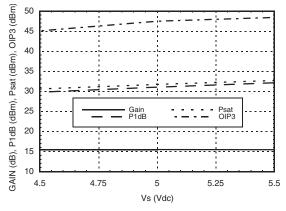

50 48 46 44 OIP3 (dBm) 42 40 38 +25 C +85 C -40 C 36 34 32 30 0.75 0.8 0.85 0.9 0.95 1.05 1.1 FREQUENCY (GHz)

Output IP3 vs. Temperature @ 900 MHz

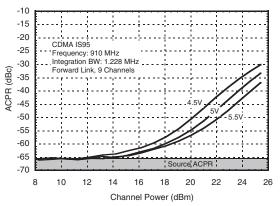
Reverse Isolation vs. Temperature @ 900 MHz



Power Compression @ 900 MHz

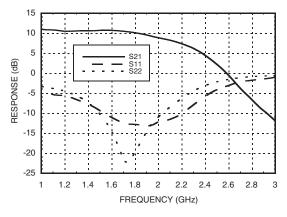


HMC452ST89 / 452ST89E

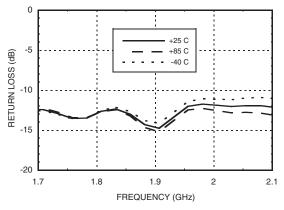

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

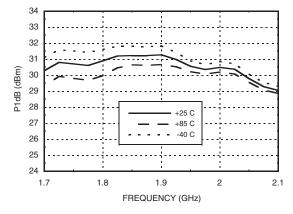
Gain, Power & IP3 vs. Supply Voltage @ 900 MHz

ACPR vs. Supply Voltage @ 910 MHz CDMA IS95, 9 Channels Forward

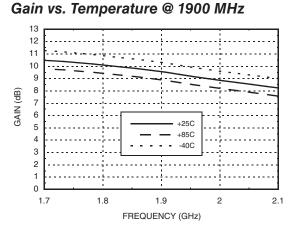


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

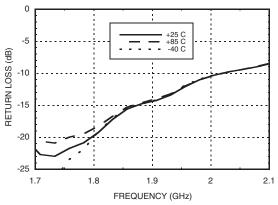



Broadband Gain & Return Loss @ 1900 MHz

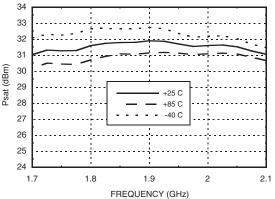
Input Return Loss vs. Temperature @ 1900 MHz



P1dB vs. Temperature @ 1900 MHz

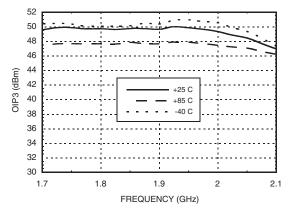


HMC452ST89 / 452ST89E

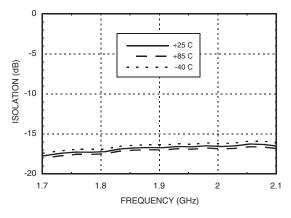

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

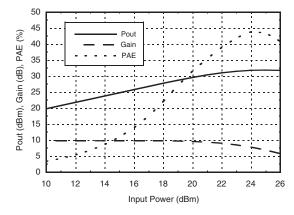
Output Return Loss vs. Temperature @ 1900 MHz

Psat vs. Temperature @ 1900 MHz

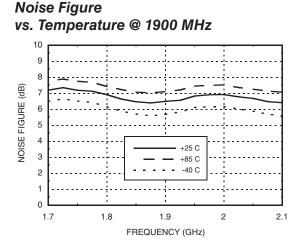


2.1

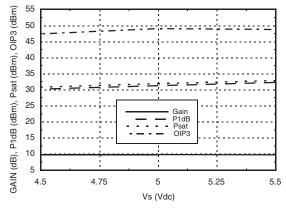



Output IP3 vs. Temperature @ 1900 MHz

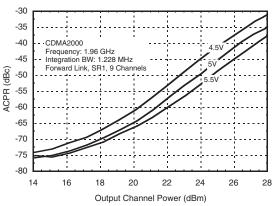
Reverse Isolation vs. Temperature @ 1900 MHz



Power Compression @ 1900 MHz

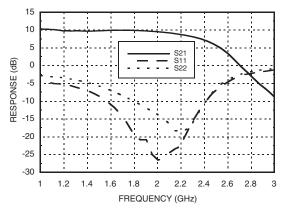


HMC452ST89 / 452ST89E

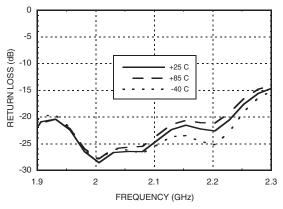

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

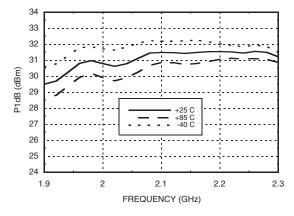
Gain, Power & IP3 vs. Supply Voltage @ 1900 MHz

ACPR vs. Supply Voltage @ 1960 MHz CDMA 2000, 9 Channels Forward

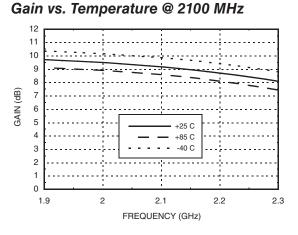


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

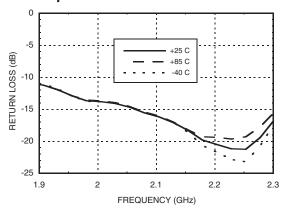



Broadband Gain & Return Loss @ 2100 MHz

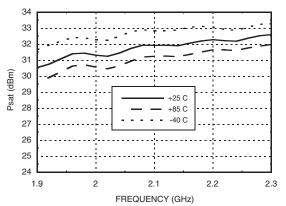
Input Return Loss vs. Temperature @ 2100 MHz



P1dB vs. Temperature @ 2100 MHz

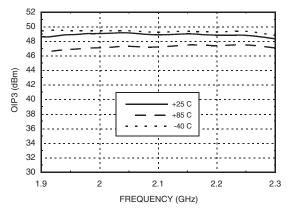


HMC452ST89 / 452ST89E

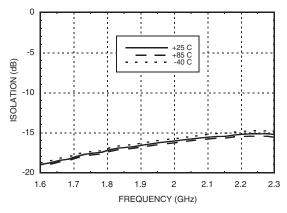

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

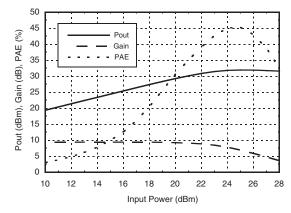
Output Return Loss vs. Temperature @ 2100 MHz

Psat vs. Temperature @ 2100 MHz

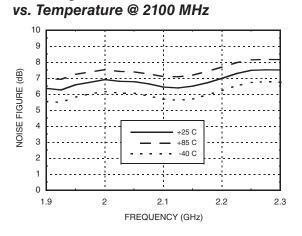


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

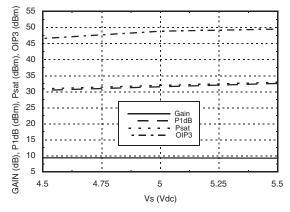



Output IP3 vs. Temperature @ 2100 MHz

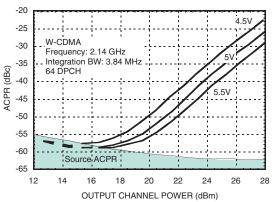
Reverse Isolation vs. Temperature @ 2100 MHz



Power Compression @ 2100 MHz


HMC452ST89 / 452ST89E

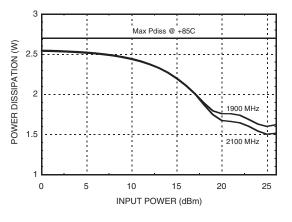
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz



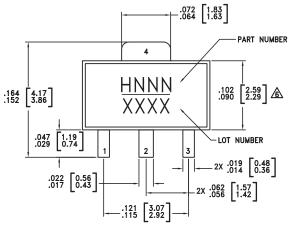
Gain, Power & IP3 vs. Supply Voltage @ 2100 MHz

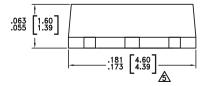
Noise Figure

ACPR vs. Supply Voltage @ 2140 MHz W-CDMA, 64 DPCH



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.





Power Dissipation

Outline Drawing

HMC452ST89 / 452ST89E

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Absolute Maximum Ratings

Collector Bias Voltage (Vcc)	+6.0 Vdc	
RF Input Power (RFIN)(Vs +5Vdc)	+31 dBm	
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 41.5 mW/°C above 85 °C)	2.7 W	
Thermal Resistance (junction to ground paddle)	24.1 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

EXPOSED GROUND PADDLE

NOTES:

1. PACKAGE BODY MATERIAL:

MOLDING COMPOUND MP-180S OR EQUIVALENT.

2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.

3. LEAD PLATING: 100% MATTE TIN.

4. DIMENSIONS ARE IN INCHES [MILLIMETERS]

ADIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC452ST89	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H452 XXXX
HMC452ST89E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	H452 XXXX

[1] Max peak reflow temperature of 235 °C

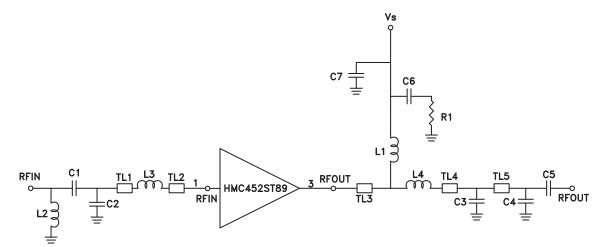
[2] Max peak reflow temperature of 260 $^\circ\text{C}$

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC452ST89 / 452ST89E

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz



Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	RFIN	This pin is DC coupled. Off chip matching components are required. See Application Circuit herein.	RFINO
3	RFOUT	RF output and DC Bias input for the output amplifier stage. Off chip matching components are required. See Application Circuit herein.	=
2, 4	GND	These pins & package bottom must be connected to RF/DC ground.	GND =

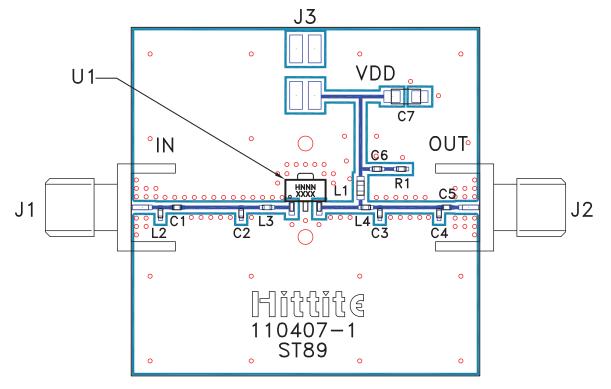
400 MHz Application Circuit

This circuit was used to specify the performance for 400-410 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

Note: C2 should be placed as close to pins as possible.

	TL1	TL2	TL3	TL4	TL5
Impedance	50 Ohm				
Physical Length	0.09"	0.08"	0.17"	0.04"	0.25"
Electrical Length 2° 2° 4° 1° 6°					
PCB Material: 10 mil Rogers 4350, Er = 3.48					

Recommended C	Recommended Component Values			
C1	12 pF			
C2	15 pF			
C3, C4	6.8 pF			
C5	39 pF			
C6	100 pF			
C7	2.2 µF			
L1	47 nH			
L2	40 nH			
L3	4.3 nH			
L4	5.1 nH			
R1	5.1 Ohm			


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

400 MHz Evaluation PCB

List of Materials for Evaluation PCB 110409-400 [1]

v02.0710

Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3	2 mm DC Header	
C1	12 pF Capacitor, 0402 Pkg.	
C2	15 pF Capacitor, 0402 Pkg.	
C3, C4	6.8 pF Capacitor, 0402 Pkg.	
C5	39 pF Capacitor, 0402 Pkg.	
C6	100 pF Capacitor, 0402 Pkg.	
C7	2.2 µF Capacitor, Tantalum	
L1	47 nH Inductor, 0603 Pkg.	
L2	40 nH Inductor, 0402 Pkg.	
L3	4.3 nH Inductor, 0402 Pkg.	
L4	5.1 nH Inductor, 0402 Pkg.	
R1	5.1 Ohm Resistor, 0402 Pkg.	
U1	HMC452ST89 / HMC452ST89E Linear Amp	
PCB [2]	110407 Evaluation PCB, 10 mils	

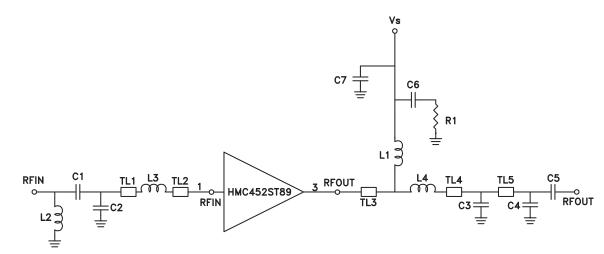
[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

amplifiers - Linear & Power - SMT 😡


HMC452ST89 / 452ST89E

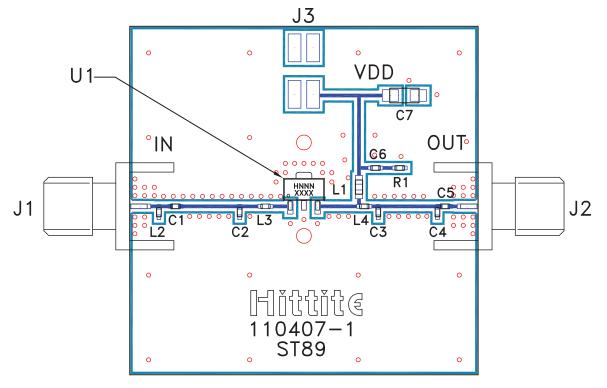
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

470 MHz Application Circuit

This circuit was used to specify the performance for 450-496 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

Note: C2 should be placed as close to pins as possible.

	TL1	TL2	TL3	TL4	TL5
Impedance	50 Ohm				
Physical Length	0.09"	0.08"	0.17"	0.04"	0.25"
Electrical Length 2.5° 2° 5° 1° 7°					
PCB Material: 10 mil Rogers 4350, Er = 3.48					


Recommended C	omponent Values
C1, C2	12 pF
C3	6.8 pF
C4	5.6 pF
C5	39 pF
C6	100 pF
C7	2.2 μF
L1	47 nH
L2	40 nH
L3	4.7 nH
L4	3.9 nH
R1	5.1 Ohm

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

470 MHz Evaluation PCB

v02.0710

List of Materials for Evaluation PCB 110416-470 [1]

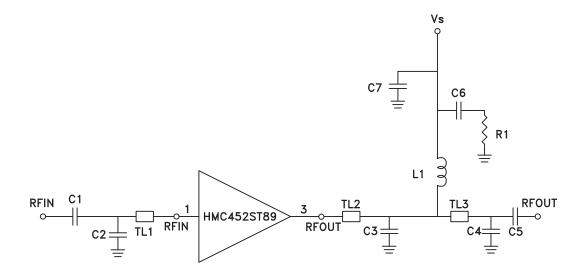
Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3	2 mm DC Header	
C1, C2	12 pF Capacitor, 0402 Pkg.	
C3	6.8 pF Capacitor, 0402 Pkg.	
C4	5.6 pF Capacitor, 0402 Pkg.	
C5	39 pF Capacitor, 0402 Pkg.	
C6	100 pF Capacitor, 0402 Pkg.	
C7	2.2 µF Capacitor, Tantalum	
L1	47 nH Inductor, 0603 Pkg.	
L2	40 nH Inductor, 0402 Pkg.	
L3	4.7 nH Inductor, 0402 Pkg.	
L4	3.9 nH Inductor, 0402 Pkg.	
R1	5.1 Ohm Resistor, 0402 Pkg.	
U1	HMC452ST89 / HMC452ST89E Linear Amp	
PCB [2]	110407 Evaluation PCB, 10 mils	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.


InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

900 MHz Application Circuit

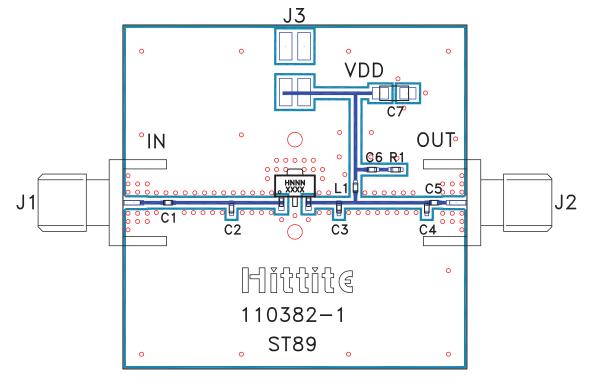
This circuit was used to specify the performance for 810-960 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

v02.0710

Note: C2 should be placed as close to pins as possible.

	TL1	TL2	TL3	
Impedance	50 Ohm			
Physical Length	0.21"	0.13"	0.38"	
Electrical Length 11° 7° 20°				
PCB Material: 10 mil Rogers 4350, Er = 3.48				

Recommended C	Recommended Component Values				
C1	27 pF				
C2	6.8 pF				
C3	2.2 pF				
C4	4.7 pF				
C5	5.6 pF				
C6	100 pF				
C7	2.2 µF				
L1	20 nH				
R1	5.1 Ohm				


9 - 140

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

900 MHz Evaluation PCB

v02.0710

List of Materials for Evaluation PCB 110384-900 [1]

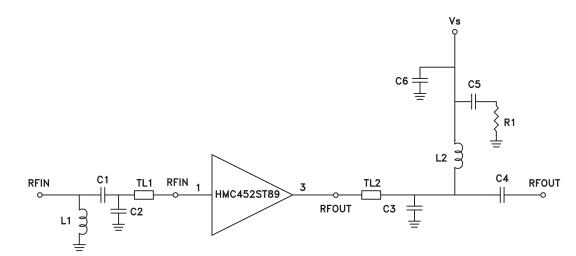
Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	27 pF Capacitor, 0402 Pkg.
C2	6.8 pF Capacitor, 0402 Pkg.
C3	2.2 pF Capacitor, 0402 Pkg.
C4	4.7 pF Capacitor, 0402 Pkg.
C5	5.6 pF Capacitor, 0402 Pkg.
C6	100 pF Capacitor, 0402 Pkg.
C7	2.2 µF Capacitor, Tantalum
L1	20 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC452ST89 / HMC452ST89E Linear Amp
PCB [2]	110382 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.


InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

1900 MHz Application Circuit

This circuit was used to specify the performance for 1710-1990 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

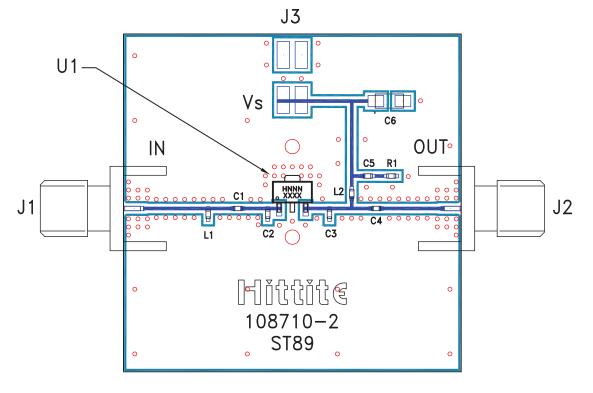
v02.0710

Note: C2 should be placed as close to pins as possible.

	TL1	TL2
Impedance	50 Ohm	50 Ohm
Physical Length	0.04"	0.10"
Electrical Length	4°	11°
PCB Material: 10 mil Rogers 4350, Er = 3.48		

Recommended Component Values	
C1	3 pF
C2	2 pF
C3	3.3 pF
C4	15 pF
C5	100 pF
C6	2.2 μF
L1	10 nH
L2	12 nH
R1	5.1 Ohm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

1900 MHz Evaluation PCB

v02.0710

List of Materials for Evaluation PCB 108712-1900 [1]

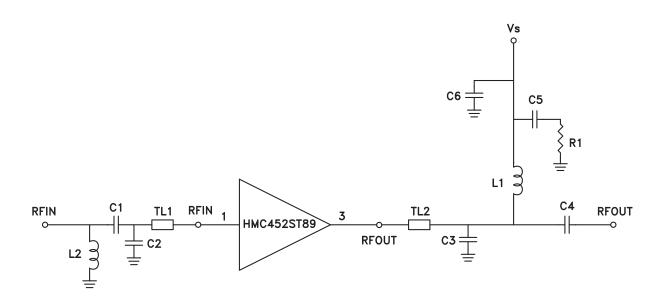
Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	3 pF Capacitor, 0402 Pkg.
C2	2 pF Capacitor, 0402 Pkg.
C3	3.3 pF Capacitor, 0402 Pkg.
C4	15 pF Capacitor, 0402 Pkg.
C5	100 pF Capacitor, 0402 Pkg.
C6	2.2 µF Capacitor, Tantalum
L1	10 nH Inductor, 0402 Pkg.
L2	12 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC452ST89 / HMC452ST89E Linear Amp
PCB [2]	108710 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.


HMC452ST89 / 452ST89E

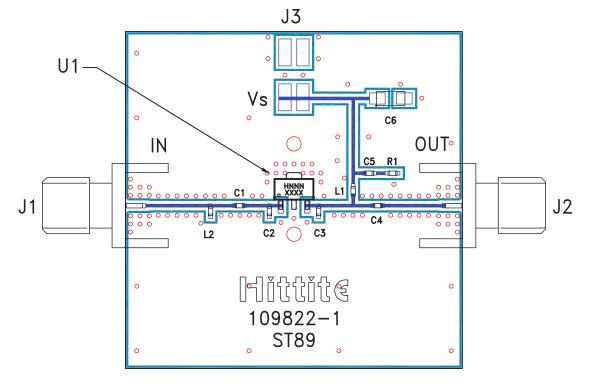
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

2100 MHz Application Circuit

This circuit was used to specify the performance for 2010-2170 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2
Impedance	50 Ohm	50 Ohm
Physical Length	0.04"	0.04"
Electrical Length	5°	5°
PCB Material: 10 mil Rogers 4350. Er = 3.48		

Recommended Component Values	
C1	3 pF
C2	2 pF
C3	3.3 pF
C4	15 pF
C5	100 pF
C6	2.2 μF
L1	12 nH
L2	10 nH
R1	5.1 Ohm



InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

2100 MHz Evaluation PCB

v02.0710

List of Materials for Evaluation PCB 109824-2100^[1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	3 pF Capacitor, 0402 Pkg.
C2	2 pF Capacitor, 0402 Pkg.
C3	3.3 pF Capacitor, 0402 Pkg.
C4	15 pF Capacitor, 0402 Pkg.
C5	100 pF Capacitor, 0402 Pkg.
C6	2.2 µF Capacitor, Tantalum
L1	12 nH Inductor, 0402 Pkg.
L2	10 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC452ST89 / HMC452ST89E Linear Amp
PCB [2]	109822 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY668020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB