

HMC452ST89 / 452ST89E

v02.0710

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Typical Applications

The HMC452ST89 / HMC452ST89E is ideal for applications requiring a high dynamic range amplifier:

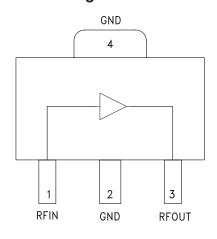
- GSM, GPRS & EDGE
- CDMA & W-CDMA
- CATV/Cable Modem
- Fixed Wireless

Features

Output IP3: +49 dBm

21 dB Gain @ 400 MHz

9 dB Gain @ 2100 MHz


50% PAE @ +31 dBm Pout

+25 dBm CDMA2000 Channel Power

@ -45 dBc ACP

Included in the HMC-DK002 Designer's Kit

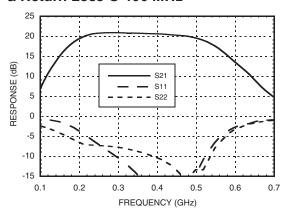
Functional Diagram

General Description

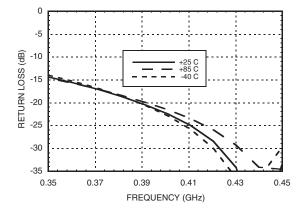
The HMC452ST89 & HMC452ST89E are high dynamic range GaAs InGaP HBT 1 Watt MMIC power amplifiers operating from 0.4 to 2.2 GHz and packaged in industry standard SOT89 packages. Utilizing a minimum number of external components and a single +5V supply, the amplifier output IP3 can be optimized to +45 dBm at 0.4 GHz or +49 dBm at 2.1 GHz. The high output IP3 and PAE make the HMC452ST89 & HMC452ST89E ideal power amplifiers for Cellular/ PCS/3G and Fixed Wireless applications.

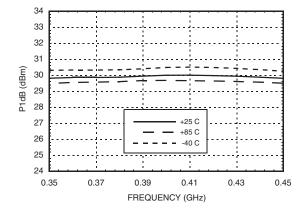
Electrical Specifications, $T_A = +25$ °C, Vs = +5V^[1]

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		400 - 410)		450 - 49	6		810 - 960)	1	710 - 199	90	2	010 - 21	70	MHz
Gain	19	21		18	20		13.5	15.5		7	9.5		7	9		dB
Gain Variation Over Temperature		0.012	0.02		0.012	0.02		0.012	0.02		0.012	0.02		0.012	0.02	dB / °C
Input Return Loss		22			16			13			13			20		dB
Output Return Loss		11			11			14			15			15		dB
Output Power for 1dB Compression (P1dB)	27	30		27	30		27.5	30.5		28	31		28.5	31.5		dBm
Saturated Output Power (Psat)		30.5			30.5			31.5			31.5			32		dBm
Output Third Order Intercept (IP3) [2]	42	45		42	45		44	47		45	48		46	49		dBm
Noise Figure		6.5			7			6.5			6.5			6.5		dB
Supply Current (Icq)		510			510			510			510			510		mA

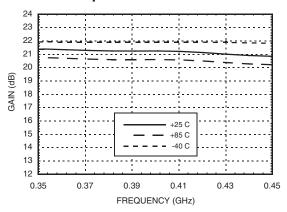

^[1] Specifications and data reflect HMC452ST89 measured using the respective application circuits for each designated frequency band found herein. Contact the HMC Applications Group for assistance in optimizing performance for your application.

^[2] Two-tone input power of 0 dBm per tone, 1 MHz spacing.

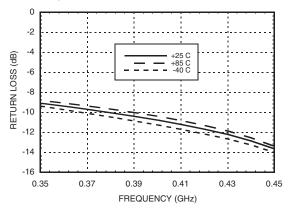



Broadband Gain & Return Loss @ 400 MHz

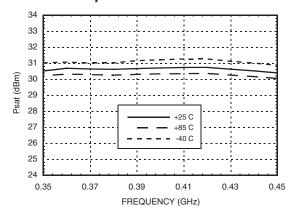
Input Return Loss vs. Temperature @ 400 MHz



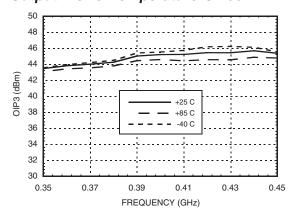
P1dB vs. Temperature @ 400 MHz

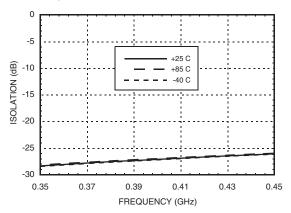


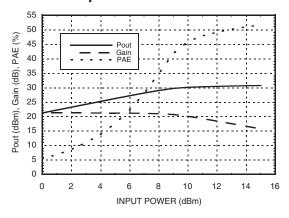
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz


Gain vs. Temperature @ 400 MHz

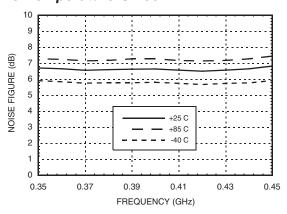
Output Return Loss vs. Temperature @ 400 MHz


Psat vs. Temperature @ 400 MHz

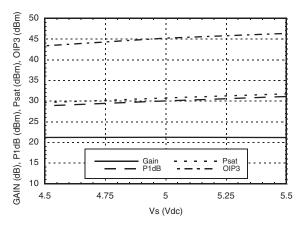



Output IP3 vs. Temperature @ 400 MHz

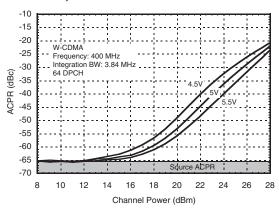
Reverse Isolation vs. Temperature @ 400 MHz



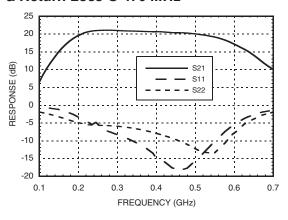
Power Compression @ 400 MHz

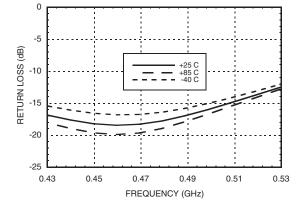


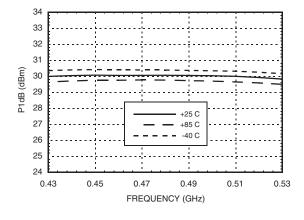
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz


Noise Figure vs. Temperature @ 400 MHz

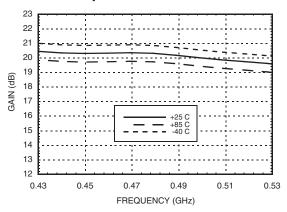
Gain, Power & IP3 vs. Supply Voltage @ 400 MHz


ACPR vs. Supply Voltage @ 400 MHz W-CDMA, 64 DPCH

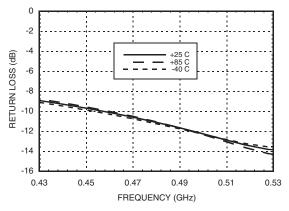



Broadband Gain & Return Loss @ 470 MHz

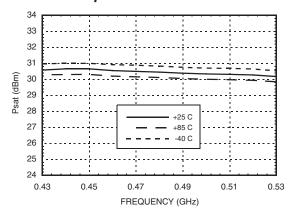
Input Return Loss vs. Temperature @ 470 MHz



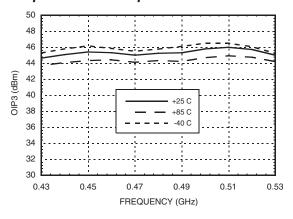
P1dB vs. Temperature @ 470 MHz

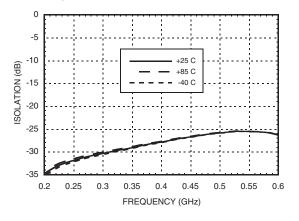


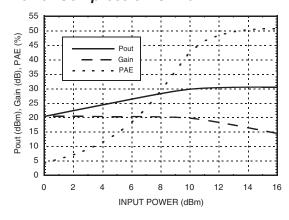
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz


Gain vs. Temperature @ 470 MHz

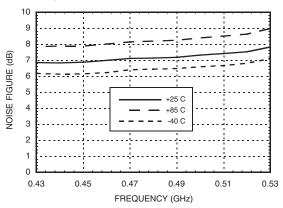
Output Return Loss vs. Temperature @ 470 MHz

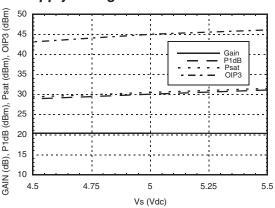

Psat vs. Temperature @ 470 MHz



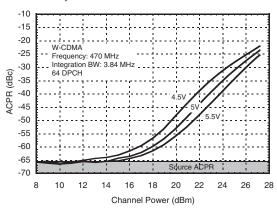

Output IP3 vs. Temperature @ 470 MHz

Reverse Isolation vs. Temperature @ 470 MHz

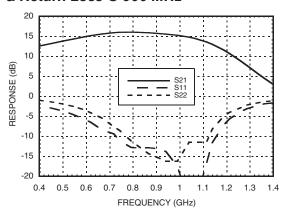

Power Compression @ 470 MHz

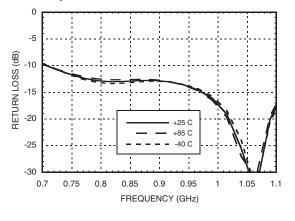

InGaP HBT 1 WATT POWER

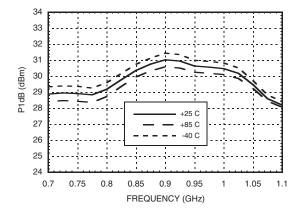
AMPLIFIER, 0.4 - 2.2 GHz


Noise Figure vs. Temperature @ 470 MHz

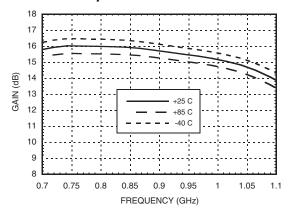
Gain, Power & IP3 vs. Supply Voltage @ 470 MHz

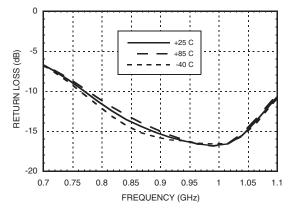

ACPR vs. Supply Voltage @ 470 MHz W-CDMA, 64 DPCH



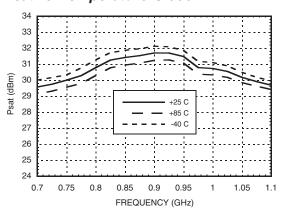

Broadband Gain & Return Loss @ 900 MHz

Input Return Loss vs. Temperature @ 900 MHz

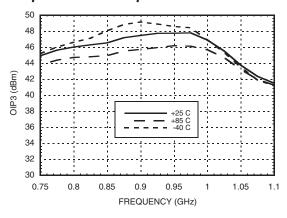

P1dB vs. Temperature @ 900 MHz

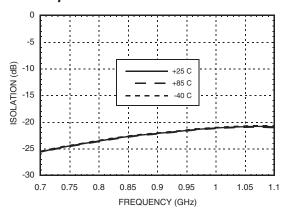

InGaP HBT 1 WATT POWER

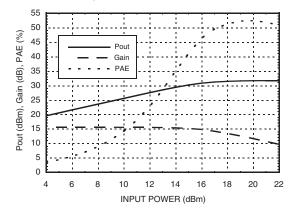
INGAP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz


Gain vs. Temperature @ 900 MHz

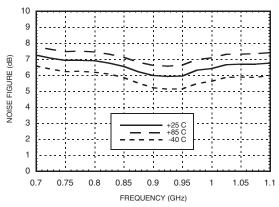
Output Return Loss vs. Temperature @ 900 MHz

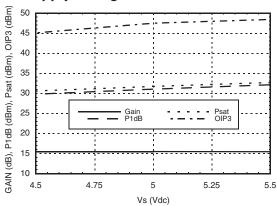

Psat vs. Temperature @ 900 MHz



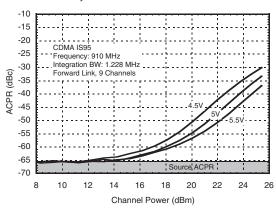

Output IP3 vs. Temperature @ 900 MHz

Reverse Isolation vs. Temperature @ 900 MHz

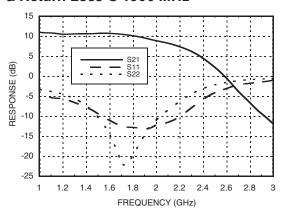

Power Compression @ 900 MHz

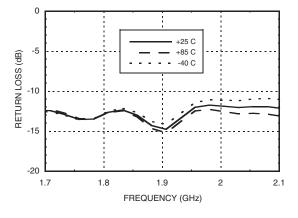

InGaP HBT 1 WATT POWER

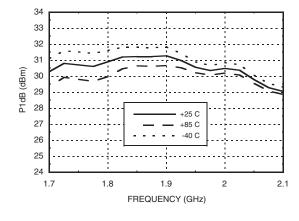
AMPLIFIER, 0.4 - 2.2 GHz


Noise Figure vs. Temperature @ 900 MHz

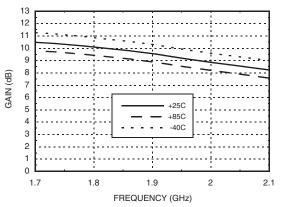
Gain, Power & IP3 vs. Supply Voltage @ 900 MHz

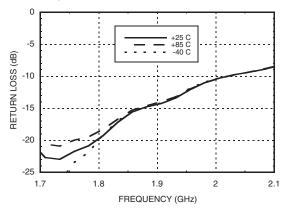

ACPR vs. Supply Voltage @ 910 MHz CDMA IS95, 9 Channels Forward



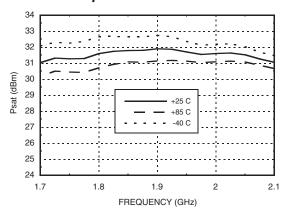

Broadband Gain & Return Loss @ 1900 MHz

Input Return Loss vs. Temperature @ 1900 MHz

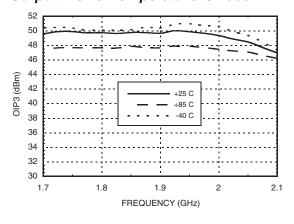

P1dB vs. Temperature @ 1900 MHz

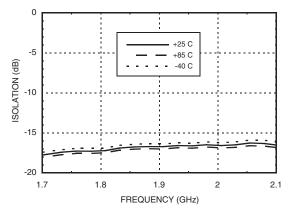

InGaP HBT 1 WATT POWER

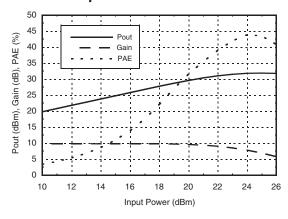
AMPLIFIER, 0.4 - 2.2 GHz


Gain vs. Temperature @ 1900 MHz

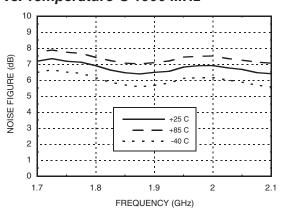
Output Return Loss vs. Temperature @ 1900 MHz


Psat vs. Temperature @ 1900 MHz

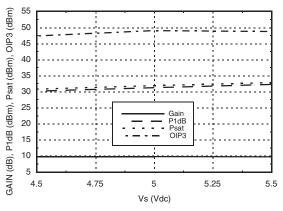



Output IP3 vs. Temperature @ 1900 MHz

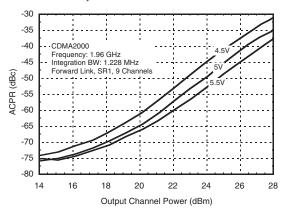
Reverse Isolation vs. Temperature @ 1900 MHz



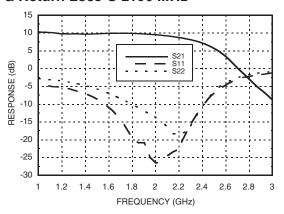
Power Compression @ 1900 MHz

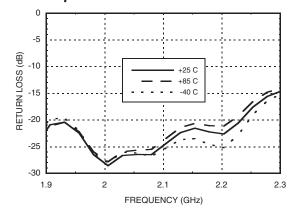


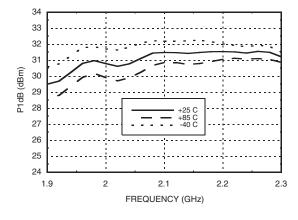
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz


Noise Figure vs. Temperature @ 1900 MHz

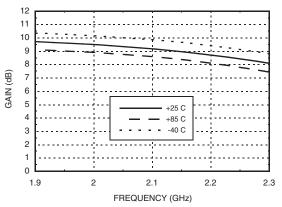
Gain, Power & IP3 vs. Supply Voltage @ 1900 MHz

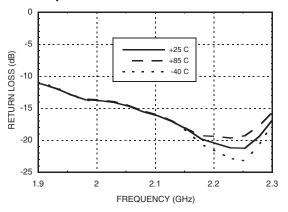

ACPR vs. Supply Voltage @ 1960 MHz CDMA 2000, 9 Channels Forward



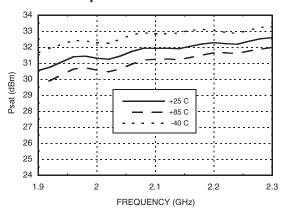

Broadband Gain & Return Loss @ 2100 MHz

Input Return Loss vs. Temperature @ 2100 MHz


P1dB vs. Temperature @ 2100 MHz

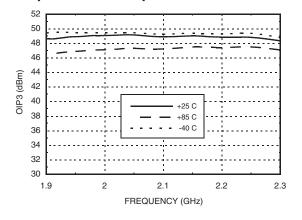

InGaP HBT 1 WATT POWER

AMPLIFIER, 0.4 - 2.2 GHz

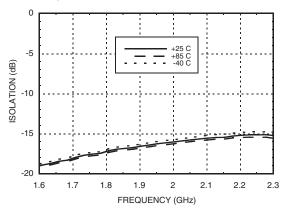

Gain vs. Temperature @ 2100 MHz

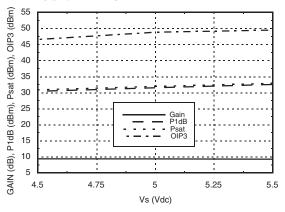
Output Return Loss vs. Temperature @ 2100 MHz

Psat vs. Temperature @ 2100 MHz

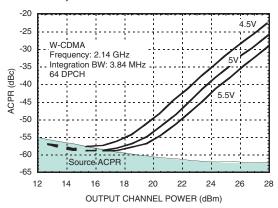

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

v02.0710



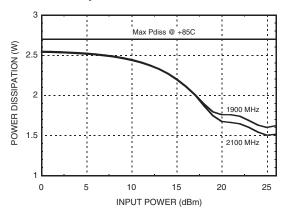



Reverse Isolation vs. Temperature @ 2100 MHz


Gain, Power & IP3 vs. Supply Voltage @ 2100 MHz

Power Compression @ 2100 MHz

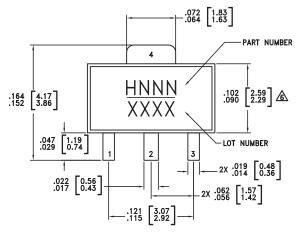
ACPR vs. Supply Voltage @ 2140 MHz W-CDMA, 64 DPCH

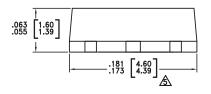

HMC452ST89 / 452ST89E

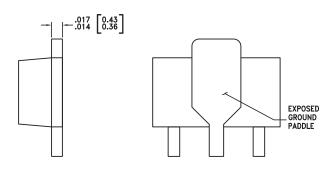
v02.0710

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Power Dissipation




Absolute Maximum Ratings


+6.0 Vdc	
+31 dBm	
150 °C	
2.7 W	
24.1 °C/W	
-65 to +150 °C	
-40 to +85 °C	
Class 1A	

Outline Drawing

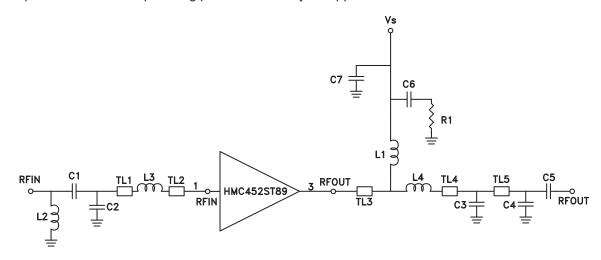
NOTES:

- 1. PACKAGE BODY MATERIAL:
- MOLDING COMPOUND MP-180S OR EQUIVALENT.
- 2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.
- 3. LEAD PLATING: 100% MATTE TIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC452ST89	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H452 XXXX
HMC452ST89E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H452 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX


InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

Pin Descriptions

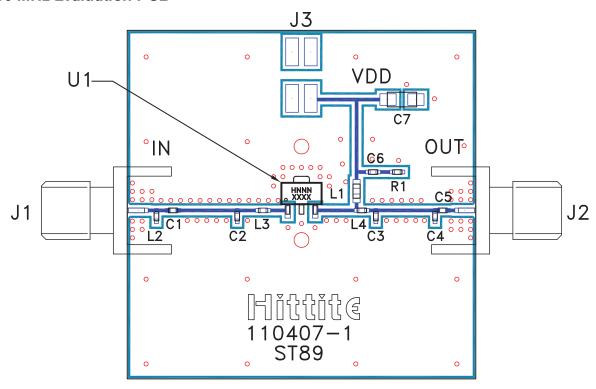
Pin Number	Function	Description	Interface Schematic
1	RFIN	This pin is DC coupled. Off chip matching components are required. See Application Circuit herein.	RFIN O——— O RFOUT
3	RFOUT	RF output and DC Bias input for the output amplifier stage. Off chip matching components are required. See Application Circuit herein.	=
2, 4	GND	These pins & package bottom must be connected to RF/DC ground.	GND =

400 MHz Application Circuit

This circuit was used to specify the performance for 400-410 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

Note: C2 should be placed as close to pins as possible.

	TL1	TL2	TL3	TL4	TL5
Impedance	50 Ohm				
Physical Length	0.09"	0.08"	0.17"	0.04"	0.25"
Electrical Length 2° 2° 4° 1° 6°			6°		
PCB Material: 10 mil Rogers 4350, Er = 3.48					


Recommended Component Values				
C1	12 pF			
C2	15 pF			
C3, C4	6.8 pF			
C5	39 pF			
C6	100 pF			
C7	2.2 µF			
L1	47 nH			
L2	40 nH			
L3	4.3 nH			
L4	5.1 nH			
R1	5.1 Ohm			

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

400 MHz Evaluation PCB

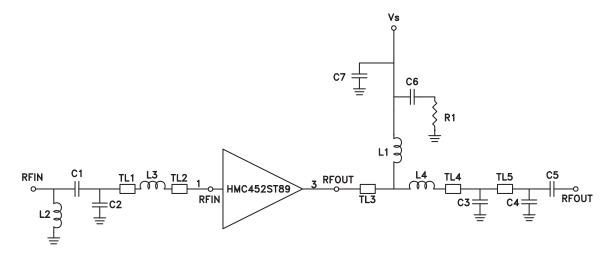
List of Materials for Evaluation PCB 110409-400 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	12 pF Capacitor, 0402 Pkg.
C2	15 pF Capacitor, 0402 Pkg.
C3, C4	6.8 pF Capacitor, 0402 Pkg.
C5	39 pF Capacitor, 0402 Pkg.
C6	100 pF Capacitor, 0402 Pkg.
C7	2.2 µF Capacitor, Tantalum
L1	47 nH Inductor, 0603 Pkg.
L2	40 nH Inductor, 0402 Pkg.
L3	4.3 nH Inductor, 0402 Pkg.
L4	5.1 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC452ST89 / HMC452ST89E Linear Amp
PCB [2]	110407 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.



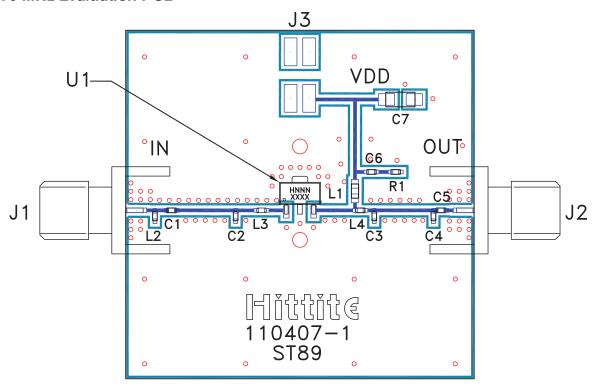
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

470 MHz Application Circuit

This circuit was used to specify the performance for 450-496 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

Note: C2 should be placed as close to pins as possible.

	TL1	TL2	TL3	TL4	TL5
Impedance	50 Ohm				
Physical Length	0.09"	0.08"	0.17"	0.04"	0.25"
Electrical Length 2.5° 2° 5° 1° 7°					
PCB Material: 10 mil Rogers 4350, Er = 3.48					


Recommended Component Values				
C1, C2	12 pF			
C3	6.8 pF			
C4	5.6 pF			
C5	39 pF			
C6	100 pF			
C7	2.2 μF			
L1	47 nH			
L2	40 nH			
L3	4.7 nH			
L4	3.9 nH			
R1	5.1 Ohm			

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

470 MHz Evaluation PCB

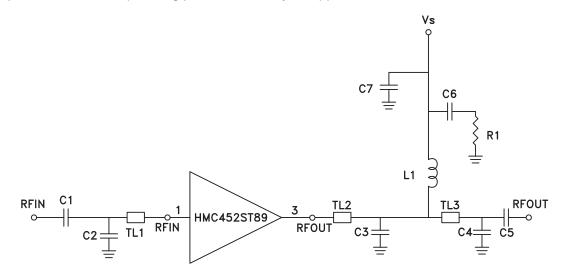
List of Materials for Evaluation PCB 110416-470 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1, C2	12 pF Capacitor, 0402 Pkg.
C3	6.8 pF Capacitor, 0402 Pkg.
C4	5.6 pF Capacitor, 0402 Pkg.
C5	39 pF Capacitor, 0402 Pkg.
C6	100 pF Capacitor, 0402 Pkg.
C7	2.2 µF Capacitor, Tantalum
L1	47 nH Inductor, 0603 Pkg.
L2	40 nH Inductor, 0402 Pkg.
L3	4.7 nH Inductor, 0402 Pkg.
L4	3.9 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC452ST89 / HMC452ST89E Linear Amp
PCB [2]	110407 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB $\,$

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.



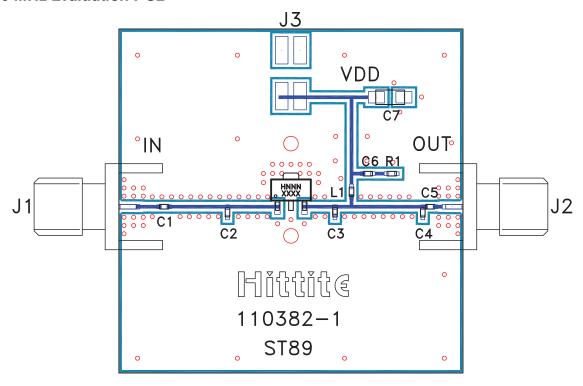
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

900 MHz Application Circuit

This circuit was used to specify the performance for 810-960 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

Note: C2 should be placed as close to pins as possible.

	TL1	TL2	TL3		
Impedance	50 Ohm	50 Ohm	50 Ohm		
Physical Length	0.21"	0.13"	0.38"		
Electrical Length 11° 7° 20°					
PCB Material: 10 mil Rogers 4350, Er = 3.48					


Recommended Component Values				
C1	27 pF			
C2	6.8 pF			
C3	2.2 pF			
C4	4.7 pF			
C5	5.6 pF			
C6	100 pF			
C7	2.2 μF			
L1	20 nH			
R1	5.1 Ohm			

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

900 MHz Evaluation PCB

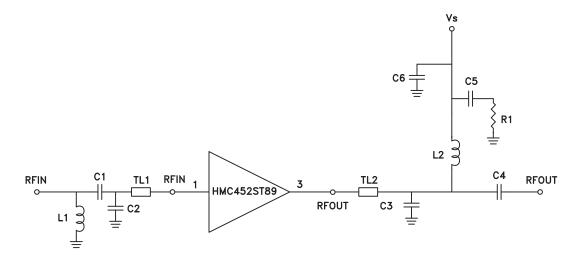
List of Materials for Evaluation PCB 110384-900 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	27 pF Capacitor, 0402 Pkg.
C2	6.8 pF Capacitor, 0402 Pkg.
C3	2.2 pF Capacitor, 0402 Pkg.
C4	4.7 pF Capacitor, 0402 Pkg.
C5	5.6 pF Capacitor, 0402 Pkg.
C6	100 pF Capacitor, 0402 Pkg.
C7	2.2 µF Capacitor, Tantalum
L1	20 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC452ST89 / HMC452ST89E Linear Amp
PCB [2]	110382 Evaluation PCB, 10 mils

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

[2] Circuit Board Material: Rogers 4350, Er = 3.48

^[1] Reference this number when ordering complete evaluation PCB



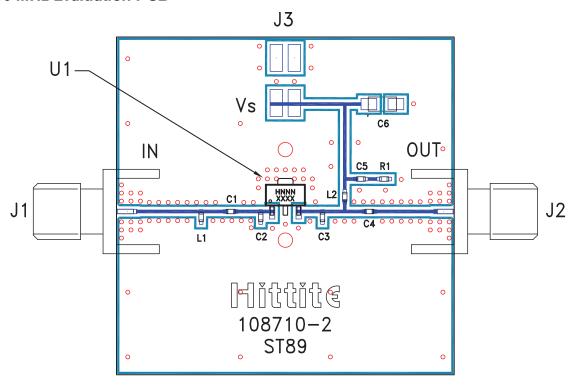
InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

1900 MHz Application Circuit

This circuit was used to specify the performance for 1710-1990 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

Note: C2 should be placed as close to pins as possible.

	TL1	TL2
Impedance	50 Ohm	50 Ohm
Physical Length	0.04"	0.10"
Electrical Length	4°	11°
PCB Material: 10 mil Rogers 4350, Er = 3.48		


Recommended Component Values		
C1	3 pF	
C2	2 pF	
C3	3.3 pF	
C4	15 pF	
C5	100 pF	
C6	2.2 μF	
L1	10 nH	
L2	12 nH	
R1	5.1 Ohm	

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

1900 MHz Evaluation PCB

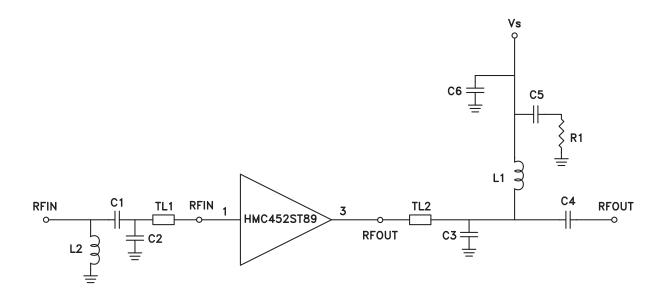
List of Materials for Evaluation PCB 108712-1900 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	3 pF Capacitor, 0402 Pkg.
C2	2 pF Capacitor, 0402 Pkg.
C3	3.3 pF Capacitor, 0402 Pkg.
C4	15 pF Capacitor, 0402 Pkg.
C5	100 pF Capacitor, 0402 Pkg.
C6	2.2 µF Capacitor, Tantalum
L1	10 nH Inductor, 0402 Pkg.
L2	12 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC452ST89 / HMC452ST89E Linear Amp
PCB [2]	108710 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

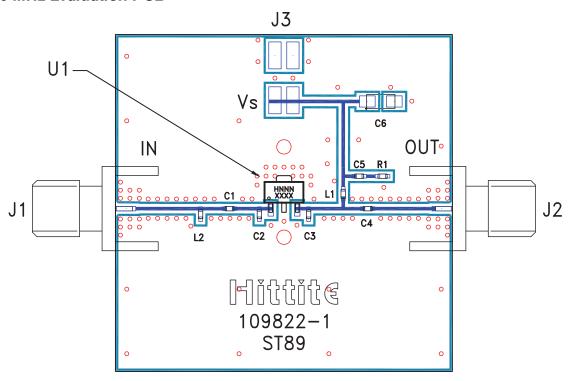


InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

2100 MHz Application Circuit

This circuit was used to specify the performance for 2010-2170 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2
Impedance	50 Ohm	50 Ohm
Physical Length	0.04"	0.04"
Electrical Length	5°	5°
PCB Material: 10 mil Rogers 4350, Er = 3.48		


3 pF
2 pF
3.3 pF
15 pF
100 pF
2.2 μF
12 nH
10 nH
5.1 Ohm

InGaP HBT 1 WATT POWER AMPLIFIER, 0.4 - 2.2 GHz

2100 MHz Evaluation PCB

List of Materials for Evaluation PCB 109824-2100 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	2 mm DC Header
C1	3 pF Capacitor, 0402 Pkg.
C2	2 pF Capacitor, 0402 Pkg.
C3	3.3 pF Capacitor, 0402 Pkg.
C4	15 pF Capacitor, 0402 Pkg.
C5	100 pF Capacitor, 0402 Pkg.
C6	2.2 µF Capacitor, Tantalum
L1	12 nH Inductor, 0402 Pkg.
L2	10 nH Inductor, 0402 Pkg.
R1	5.1 Ohm Resistor, 0402 Pkg.
U1	HMC452ST89 / HMC452ST89E Linear Amp
PCB [2]	109822 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Sub-GHz Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

EVAL-ADF7021DBJZ EVAL-ADF7021-NDBZ2 EVAL-ADF7021-VDB3Z EVAL-ADF7023DB3Z MICRF219A-433 EV MICRF220-433

EV AD6679-500EBZ EVAL-ADF7901EBZ EVAL-ADF790XEBZ 110976-HMC453QS16G STEVAL-IKR002V7D MAX2602EVKIT+

MAX1472EVKIT-315 MAX1479EVKIT-315 STEVAL-IKR002V3D MAX7042EVKIT-315+ MAX2902EVKIT# MAX9947EVKIT+

MAX1470EVKIT-315 SKY66188-11-EK1 SKY66013-11-EVB EVAL-ADF7023DB5Z DRF1200/CLASS-E 1096 1097 1098 MDEV-900
PRO DVK-SFUS-1-GEVK DVK-SFUS-API-1-GEVK US-SIGFOX-GEVB STEVAL-IKR002V2D 107755-HMC454ST89 DM182017-2

110961-HMC453ST89 DM182017-1 3179 DC689A DC1513B-AB 3229 3230 3231 3232 DC1250A-AA DC1513B-AC DC1513B-AD

DC1513B-AA TEL0075 RFX1010-EK1 131903-HMC921LP4E EU-SIGFOX-GEVB