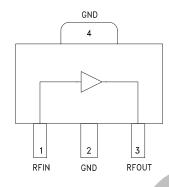


# HMC482ST89 / 482ST89E

v04.0710






# SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

### **Typical Applications**

The HMC482ST89 / HMC482ST89E is an ideal RF/IF gain block & LO or PA driver for:

- Cellular / PCS / 3G
- Fixed Wireless, WLAN & WiMAX
- CATV, Cable Modem & DBS
- Microwave Radio & Test Equipment

### **Functional Diagram**



### **Features**

P1dB Output Power: +22 dBm

Gain: 20 dB

Output IP3: +36 dBm

Cascadable 50 Ohm I/Os

Single Supply: +6V to +12V

Industry Standard SOT89 Package

Included in the HMC-DK001 Designer's Kit

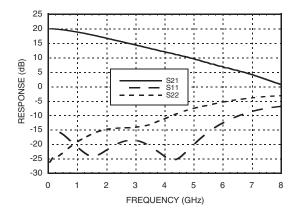
### **General Description**

The HMC482ST89 & HMC482ST89E are SiGe Heterojunction Bipolar Transistor (HBT) Gain Block MMIC SMT amplifiers covering DC to 5 GHz. Packaged in an industry standard SOT89, the amplifier can be used as a cascadable 50 Ohm RF/IF gain stage as well as a LO or PA driver with up to +24 dBm output power. The Darlington feedback pair results in reduced sensitivity to normal process variations and excellent gain stability over temperature while requiring a minimal number of external bias components.

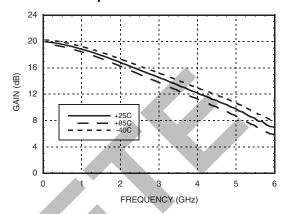
## Electrical Specifications, Vs=8.0 V, Rbias=27 Ohm, $T_A=+25^{\circ} C$

| Parameter                                                                   |                                                                                   | Min.                               | Тур.                               | Max.  | Units                           |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------|------------------------------------|-------|---------------------------------|
| Gain                                                                        | DC - 1.0 GHz<br>1.0 - 2.0 GHz<br>2.0 - 3.0 GHz<br>3.0 - 4.0 GHz<br>4.0 - 5.0 GHz  | 17<br>15<br>12.5<br>10<br>8        | 19<br>17<br>14.5<br>12<br>10       |       | ав<br>ав<br>ав<br>ав            |
| Gain Variation Over Temperature                                             | DC - 5 GHz                                                                        |                                    | 0.008                              | 0.016 | dB/ °C                          |
| Input Return Loss                                                           | DC - 1.0 GHz<br>1.0 - 5.0 GHz                                                     |                                    | 15<br>18                           |       | dB<br>dB                        |
| Output Return Loss                                                          | DC - 1.0 GHz<br>1.0 - 3.0 GHz<br>3.0 - 4.0 GHz<br>4.0 - 5.0 GHz                   |                                    | 20<br>14<br>12<br>8                |       | дВ<br>дВ<br>дВ                  |
| Reverse Isolation                                                           | DC - 5 GHz                                                                        |                                    | 16                                 |       | dB                              |
| Output Power for 1 dB Compression (P1dB)                                    | 0.5 - 1.0 GHz<br>1.0 - 2.0 GHz<br>2.0 - 3.0 GHz<br>3.0 - 4.0 GHz<br>4.0 - 5.0 GHz | 19.5<br>17<br>14.5<br>12.5<br>10.5 | 22.5<br>20<br>17.5<br>15.5<br>13.5 |       | dBm<br>dBm<br>dBm<br>dBm<br>dBm |
| Output Third Order Intercept (IP3)<br>(Pout= 0 dBm per tone, 1 MHz spacing) | 0.5 - 1.0 GHz<br>1.0 - 2.0 GHz<br>2.0 - 3.0 GHz<br>3.0 - 4.0 GHz<br>4.0 - 5.0 GHz |                                    | 36<br>35<br>32<br>30<br>28         |       | dBm<br>dBm<br>dBm<br>dBm<br>dBm |
| Noise Figure                                                                | DC - 2.0 GHz<br>2.0 - 4.0 GHz<br>4.0 - 5.0 GHz                                    |                                    | 4<br>5<br>5.5                      |       | dB<br>dB<br>dB                  |
| Supply Current (Icq)                                                        |                                                                                   |                                    | 110                                |       | mA                              |

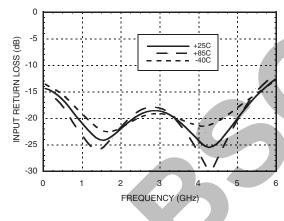
Note: Data taken with broadband bias tee on device output.



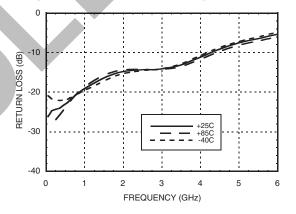

v04.0710



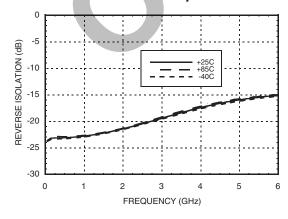

# SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


### **Broadband Gain & Return Loss**

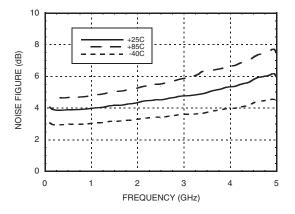



### Gain vs. Temperature




## Input Return Loss vs. Temperature




## **Output Return Loss vs. Temperature**

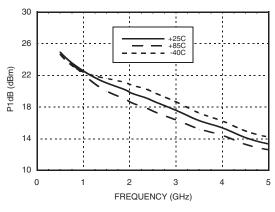


### Reverse Isolation vs. Temperature

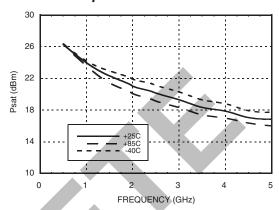


## Noise Figure vs. Temperature

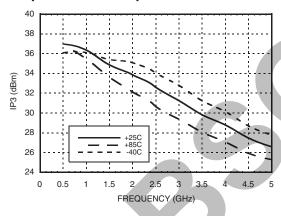




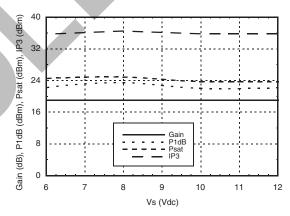

v04.0710



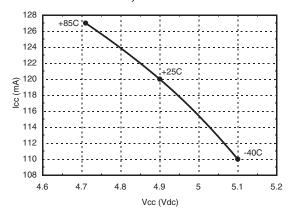

# SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


## P1dB vs. Temperature




### Psat vs. Temperature




### Output IP3 vs. Temperature



# Gain, Power & OIP3 vs. Supply Voltage for Constant Icc= 110 mA @ 850 MHz



## Vcc vs. Icc Over Temperature for Fixed Vs= 8V, RBIAS= 27 Ohms

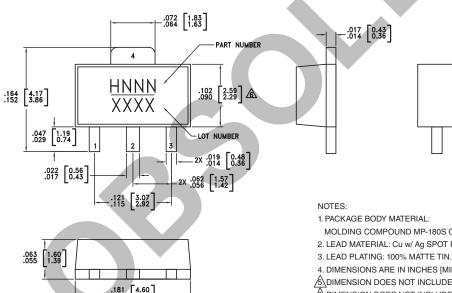


EXPOSED GROUND PADDLE



v04.0710




# SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

## **Absolute Maximum Ratings**

| Collector Bias Voltage (Vcc)                                    | +6.0 Vdc       |
|-----------------------------------------------------------------|----------------|
| RF Input Power (RFIN)(Vcc = +5 Vdc)                             | +14 dBm        |
| Junction Temperature                                            | 150 °C         |
| Continuous Pdiss (T = 85 °C)<br>(derate 14.5 mW/°C above 85 °C) | 0.94 W         |
| Thermal Resistance (junction to lead)                           | 69 °C/W        |
| Storage Temperature                                             | -65 to +150 °C |
| Operating Temperature                                           | -40 to +85 °C  |
| ESD Sensitivity (HBM)                                           | Class 1A       |



## **Outline Drawing**



- MOLDING COMPOUND MP-180S OR EQUIVALENT.
- 2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

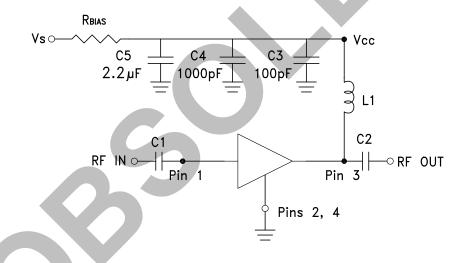
## Package Information

| Part Number | Package Body Material                              | Lead Finish   | MSL Rating | Package Marking [3] |
|-------------|----------------------------------------------------|---------------|------------|---------------------|
| HMC482ST89  | Low Stress Injection Molded Plastic                | Sn/Pb Solder  | MSL1 [1]   | H482<br>XXXX        |
| HMC482ST89E | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2]   | H482<br>XXXX        |

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX



v04.0710




# SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

## **Pin Descriptions**

| Pin Number | Function | Description                                                            | Interface Schematic |
|------------|----------|------------------------------------------------------------------------|---------------------|
| 1          | RFIN     | This pin is DC coupled. An off chip DC blocking capacitor is required. | RFOUT               |
| 3          | RFOUT    | RF output and DC Bias (Vcc) for the output stage.                      |                     |
| 2, 4       | GND      | These pins and package bottom must be connected to RF/DC ground.       | ♥ GND<br>=          |

## **Application Circuit**



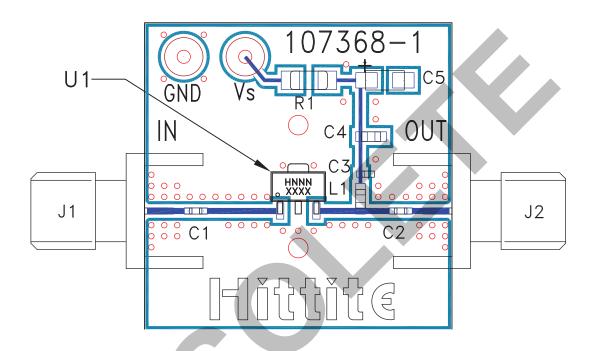
# Recommended Bias Resistor Values for Icc= 110 mA, Rbias= (Vs - Vcc) / Icc

| Supply Voltage (Vs) | 6V    | 8V    | 10V  | 12V   |
|---------------------|-------|-------|------|-------|
| RBIAS VALUE         | 9.1 Ω | 27 Ω  | 47 Ω | 62 Ω  |
| RBIAS POWER RATING  | 1/4 W | 1/2 W | 1 W  | 1.5 W |

#### Note:

- External blocking capacitors are required on RFIN and RFOUT.
- 2. RBIAS provides DC bias stability over temperature.

## Recommended Component Values for Key Application Frequencies


| Component | Frequency (MHz) |        |        |        |        |        |        |
|-----------|-----------------|--------|--------|--------|--------|--------|--------|
| Component | 50              | 900    | 1900   | 2200   | 2400   | 3500   | 5000   |
| L1        | 270 nH          | 56 nH  | 18 nH  | 18 nH  | 15 nH  | 8.2 nH | 6.8 nH |
| C1, C2    | 0.01 μF         | 100 pF |





# SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

### **Evaluation PCB**



v04.0710

## List of Materials for Evaluation PCB 109026 [1]

| Item    | Description                  |
|---------|------------------------------|
| J1 - J2 | PCB Mount SMA Connector      |
| J3 - J4 | DC Pin                       |
| C1, C2  | Capacitor, 0402 Pkg.         |
| C3      | 100 pF Capacitor, 0402 Pkg.  |
| C4      | 1000 pF Capacitor, 0603 Pkg. |
| C5      | 2.2 µF Capacitor, Tantalum   |
| R1      | Resistor, 1210 Pkg.          |
| L1      | Inductor, 0603 Pkg.          |
| U1      | HMC482ST89 / HMC482ST89E     |
| PCB [2] | 107368 Evaluation PCB        |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3
EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+
MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4
EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4
UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL
SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1