GaAs MMIC SPST FAILSAFE SWITCH, DC - 6 GHz

Typical Applications

The HMC550A / HMC550AE is ideal for:

- RFID \& Electronic Toll Collection (ETC)
- Tags, Handsets \& Portables
- ISM, WLAN, WiMAX \& WiBro
- Automotive Telematics
- Test Equipment

Functional Diagram

Features
Failsafe Operation - "On" When Unpowered
Wide Vdd Range: 1.2 V to 5 V
Very Low On State Current: 200 nA
Low Insertion Loss: 0.7 dB
High IP3: +52 dBm
Compact SOT26 SMT Package

General Description

The HMC550A and HMC550AE are low-cost SPST Failsafe switches in 6-lead SOT26 plastic packages for use in switching applications which require low insertion loss and very low current consumption. With 0.7 dB typical loss, these devices can control signals from DC to 6 GHz and are especially suited for IF and RF applications including RFID, ISM, automotive and battery powered tags and portables. RF1 and RF2 are reflective opens when "Off". The switch requires a minimal amount of DC current in the "On" state, and offers compatibility with CMOS and some TTL logic families. The failsafe topology results in the switch being normally "On", i.e. low insertion loss from RF1 to RF2, when no DC bias is applied.
Electrical Specifications
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vdd}=+3.3 \mathrm{Vdc}, \mathrm{Vctl}=0 /+3.3 \mathrm{Vdc}$ (Unless Otherwise Stated), 50 Ohm System

Parameter	Frequency	Min.	Typ.	Max.	Units
Insertion Loss	DC - 6.0 GHz		0.7	0.9	dB
Isolation	$\begin{aligned} & \mathrm{DC}-2.0 \mathrm{GHz} \\ & \mathrm{DC}-6.0 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 15 \\ 8 \end{gathered}$	$\begin{aligned} & 25 \\ & 12 \end{aligned}$		dB dB
Return Loss	DC - 6.0 GHz		20		dB
Input Power for 0.1 dB Compression $\quad \mathrm{Vctl}=0 /+3.3 \mathrm{~V}$	$0.5-6.0 \mathrm{GHz}$	28	32		dBm
Input Third Order Intercept (Two-tone Input Power $=+17 \mathrm{dBm}$ Each Tone) Vctl = 0/+3.3V	0.5-6.0 GHz		52		dBm
Switching Characteristics tRISE, tFALL (10/90\% RF) tON, tOFF (50% CTL to $10 / 90 \%$ RF)	DC - 6.0 GHz		$\begin{aligned} & 20 \\ & 30 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vctl} \&$ Vdd Unpowered

Insertion Loss	DC -6.0 GHz		0.7	0.9
Return Loss	$\mathrm{DC}-6.0 \mathrm{GHz}$		20	
Input Power for 0.1 dB Compression	$0.5-6.0 \mathrm{GHz}$	28	33	dB
Input Third Order Intercept (Two-tone Input Power $=+17 \mathrm{dBm}$ Each Tone)	$0.5-0.6 \mathrm{GHz}$		dBm	

[^0]HMC550A / 550AE
v00.1212

Insertion Loss

Isolation

GaAs MMIC SPST FAILSAFE SWITCH, DC - 6 GHz

Return Loss

Input IP3 vs. Temperature

Input P0.1dB vs. Temperature

v00.1212

Insertion Loss, Power Off

Return Loss, Power Off

Input P0.1dB, Power Off

GaAs MMIC SPST FAILSAFE SWITCH, DC - 6 GHz

Input IP3, Power Off

Operating Conditions
Vdd \& Vctl = 0 Vdc to +5 Vdc; VctI_max = Vdd + 0.2 Vdc; Idd \& Ictl = $0.1 \mu A$, Typical

Conditions	$\mathrm{Vdd}-\mathrm{Vctl} \geq+1.2 \mathrm{Vdc}$	$-0.2 \mathrm{Vdc}<\mathrm{Vdd}-\mathrm{Vctl}<+0.4 \mathrm{Vdc}$
RF1 - RF2	OFF	ON

Examples of Typical Operating Conditions - Idd \& Ictl = $0.1 \mu A$, Typical

$\operatorname{Vdd}(V)$	0 (Unpowered)	1.6		2.2		3.3		>1.8	<2.1
Vctl (V)	0 (Unpowered)	0	>1.2	<1.0	>1.8	>2.9	<3.8	>4.6	
RF1 - RF2	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON

GaAs MMIC SPST
 FAILSAFE SWITCH, DC - 6 GHz

Absolute Maximum Ratings

RF Input Power $(\mathrm{Vctl}=0 /+3.3 \mathrm{~V})$	+34 dBm
Supply Voltage (Vdd)	+12 Vdc
Control Voltage Range (VctI)	-0.2 to $+(\mathrm{Vdd}+0.2) \mathrm{Vdc}$
Channel Temperature	$150^{\circ} \mathrm{C}$
Continuous Pdiss $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right)$ (derate $5.54 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.85^{\circ} \mathrm{C}\right)$	0.360 W
Thermal Resistance	$180.5^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 1 A

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[3]}$
HMC550A	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ${ }^{[1]}$	$550 A$ XXXX
HMC550AE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 $^{[2]}$	$550 A E$ XXXX

[1] Max peak reflow temperature of $235^{\circ} \mathrm{C}$
[2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[3] 4-Digit lot number XXXX

GaAs MMIC SPST FAILSAFE SWITCH, DC - 6 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1,3	RF1, RF2	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
2,5	GND	These pins must be connected to RF ground.	
4	Vdd	Supply Voltage	
6	Vctl		

Typical Application Circuit

Note:

1. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.

GaAs MMIC SPST
 FAILSAFE SWITCH, DC - 6 GHz

Evaluation PCB

List of Materials for Evaluation PCB 109266 - HMC550A ${ }^{[1]}$

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3- J5	DC Pin
C1	1,000 pF Capacitor, 0402 Pkg.
C2 - C3	100 pF capacitor, 0402 Pkg.
R1, R2	100 Ohm Resistor, 0402 Pkg.
U1	HMC550A / HMC550AE SPST Switch
PCB [2]	108436 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1

[^0]: For price, delivery, and to place orders: Analog Devices, Inc.,
 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

