
v08.1017

Typical Applications

The HMC441LC3B is ideal for use as a medium power amplifier for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- LO Driver for HMC Mixers
- Military EW & ECM

Functional Diagram

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 6 - 18 GHz

Features

Gain: 14 dB Saturated Output Power: +21.5 dBm @ 27% PAE Single Positive Supply: +5V @ 90 mA 50 Ohm Matched Input/Output 12 Lead Ceramic 3x3mm SMT Package: 9mm²

General Description

The HMC441LC3B is an efficient GaAs PHEMT MMIC Medium Power Amplifier housed in a leadless RoHS compliant SMT package. Operating between 6 and 18 GHz, the amplifier provides 14 dB of gain, +21.5 dBm of saturated power and 27% PAE from a +5V supply. This 50 Ohm matched amplifier does not require any external components and operates from a single positive supply, making it an ideal linear gain block or driver for HMC SMT mixers. The HMC441LC3B is compatible with high volume surface mount manufacturing techniques, and the I/Os are DC blocked for further ease of integration.

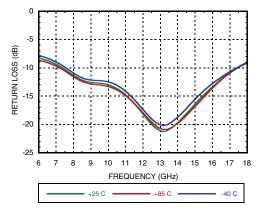
Electrical Specifications, $T_{a} = +25^{\circ} C$, Vdd = +5V

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		6.0 - 8.5			8.5 - 12.5	5	1	2.5 - 14.	0	1	4.0 - 18.	0	GHz
Gain	10	14	19	13	17	21	13	17	21	10	14	19	dB
Gain Variation Over Temperature		0.015	0.02		0.015	0.02		0.015	0.02		0.015	0.02	dB/ °C
Input Return Loss		10			13			20			13		dB
Output Return Loss		12			15			17			14		dB
Output Power for 1 dB Compression (P1dB)	16	19		17	20		17	20		17	20		dBm
Saturated Output Power (Psat)		20			21.5			22.5			21.5		dBm
Output Third Order Intercept (IP3)	28	30		29	32		29	32		29	32		dBm
Noise Figure		4.5	6		4.5	6		4.5	6		4.5	6	dB
Supply Current (Idd)		90	115		90	115		90	115		90	115	mA

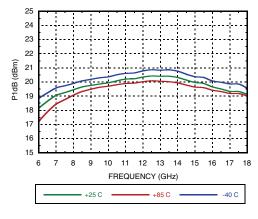
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 6 - 18 GHz

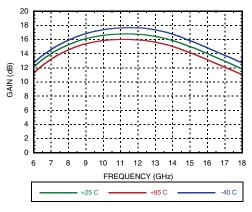
20 15 10 RESPONSE (dB) 5 0 -5 -10 -15 -20 -25 10 12 16 18 20 4 6 8 14 FREQUENCY (GHz)

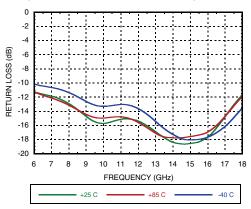

Broadband Gain & Return Loss

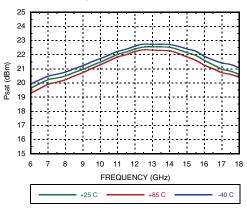
Input Return Loss vs. Temperature


S11

S22


S21

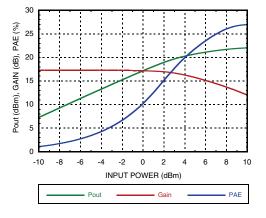

P1dB vs. Temperature

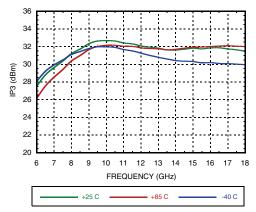


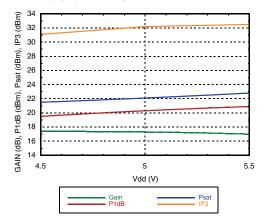
Output Return Loss vs. Temperature

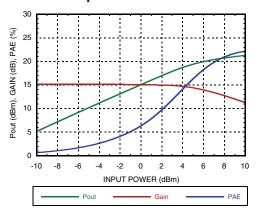
Psat vs. Temperature

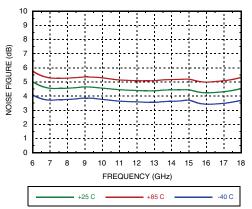
AMPLIFIERS - LINEAR & POWER - SMT

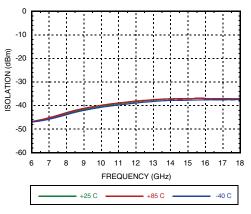

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D


GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 6 - 18 GHz


Power Compression @ 11 GHz

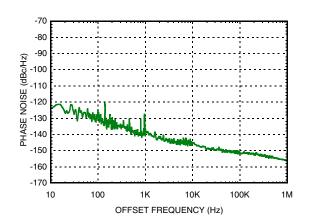

Output IP3 vs. Temperature


Gain, Power & Output IP3 vs. Supply Voltage @ 11 GHz


Power Compression @ 15 GHz

Noise Figure vs. Temperature

Reverse Isolation vs. Temperature



For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 6 - 18 GHz

Additive Phase Noise Vs Offset Frequency, RF Frequency = 8 GHz, RF Input Power = 5 dBm (P1dB)

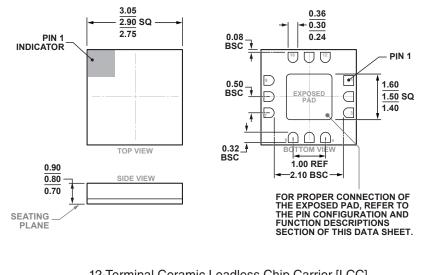
Notes:

03-02-2017-A

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 6 - 18 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+6 Vdc		
RF Input Power (RFIN)(Vdd = +5 Vdc)	+15 dBm		
Channel Temperature	175 °C		
Continuous Pdiss (T = 85 °C) (derate 8.2 mW/°C above 85 °C)	0.74 W		
Thermal Resistance (channel to ground paddle)	122 °C/W		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		
ESD Sensitivity (HBM)	Class 0, Passed 100V		


Typical Supply Current vs. Vdd

Vdd (V)	ldd (mA)
+5.5	92
+5.0	90
+4.5	88

Note: Amplifier will operate over full voltage range shown above

Outline Drawing

12-Terminal Ceramic Leadless Chip Carrier [LCC] (E-12-4) Dimensions shown in millimeters

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]	
HMC441LC3B	Alumina, White	Gold over Nickel	MSL3 ^[1]	H441 XXXX	

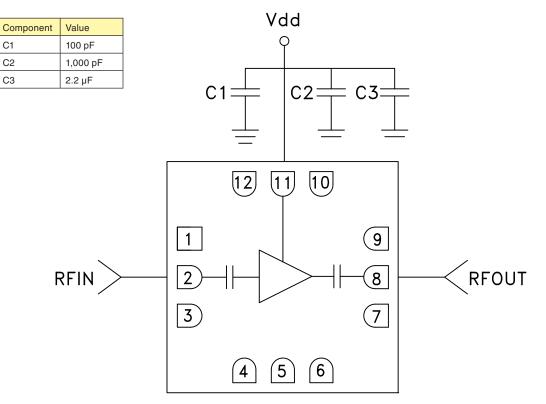
[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

HMC441LC3B v08.1017

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 6 - 18 GHz

Pin Descriptions

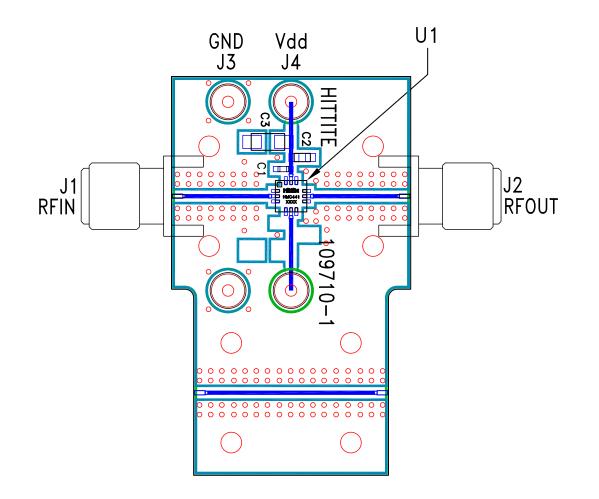

Pin Number	Function	Description	Interface Schematic		
1, 3, 7, 9	GND	Package bottom must also be connected to RF/DC ground			
2	RFIN	This pin is AC coupled and matched to 50 Ohms.			
4 - 6 10, 12	N/C	This pin may be connected to RF/DC ground. Performance will not be affected.			
8	RFOUT	This pin is AC coupled and matched to 50 Ohms.			
11	Vdd	Power Supply Voltage for the amplifier. External bypass capacitors are required.	OVdd ↓↓ ↓↓ ↓↓		

Application Circuit

C1

C2

СЗ



For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 6 - 18 GHz

Evaluation PCB

List of Materials for Evaluation PCB 109712 [1]

Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3 - J4	DC Pin	
C1	100 pF Capacitor, 0402 Pkg.	
C2	1000 pF Capacitor, 0603 Pkg.	
C3	2.2 µF Capacitor, Tantalum	
U1	HMC441LC3B Amplifier	
PCB [2]	109710 Evaluation PCB, 10 mils	

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1