
GaAs MMIC I/Q DOWNCONVERTER 12 - 16 GHz

Typical Applications

The HMC869LC5 is ideal for:

- Point-to-Point and Point-to-Multi-Point Radio
- · Military Radar, EW & ELINT
- Satellite Communications

Functional Diagram

Features

Conversion Gain: 14 dB Image Rejection: 32 dB LO to RF Isolation: 45 dB Noise Figure: 2.8 dB

Input IP3: -1 dBm

32 Lead 5x5mm SMT Ceramic Package: 25mm²

General Description

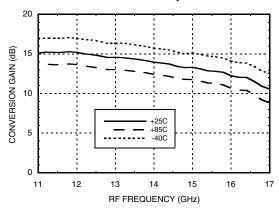
The HMC869LC5 is a GaAs MCM I/Q downconverter in a leadless RoHS compliant SMT package. This device provides a small signal conversion gain of 14 dB with a noise figure of 2.8 dB and 32 dB of image rejection. The HMC869LC5 utilizes an LNA followed by an image reject mixer which is driven by an LO buffer amplifier. The image reject mixer eliminates the need for a filter following the LNA, and removes thermal noise at the image frequency. I and Q mixer outputs are provided and an external 90° hybrid is needed to select the required sideband. The HMC869LC5 is a much smaller alternative to hybrid style image reject mixer downconverter assemblies, and it eliminates the need for wire bonding by allowing the use of surface mount manufacturing techniques.

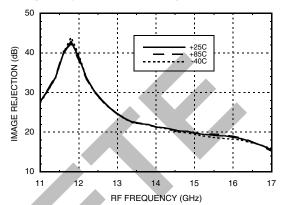
Electrical Specifications, $T_A = +25$ °C,

IF = 100 MHz, LO = +2 dBm, VD3 = 5V, VD1, VD2 = 3V*

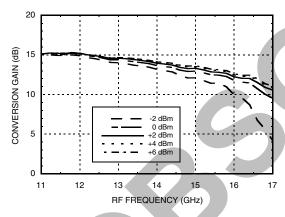
Parameter	Min.	Тур.	Max.	Units
Frequency Range, RF		12 - 16		GHz
Frequency Range, LO		8.5 - 19.5		
Frequency Range, IF		DC - 3.5		
Conversion Gain (As IRM)	10	14		dB
Noise Figure		2.8		dB
Image Rejection	15	32		dB
1 dB Compression (Input)		-10		dBm
LO to RF Isolation	30	45		dB
LO to IF Isolation	20	32		dB
IP3 (Input)		-1		dBm
Amplitude Balance		0		dB
Phase Balance		±10		Deg
Supply Current (ID1 + ID2)		60	88	mA
Supply Current (ID3)		100	120	mA

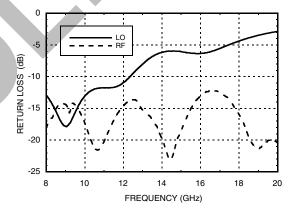
^{*}Data taken as IRM with external 90° IF Hybrid

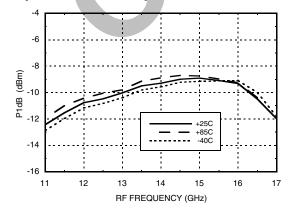

ANALOG

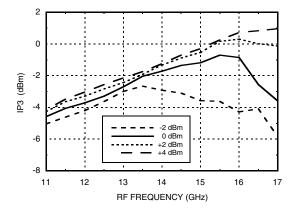

GaAs MMIC I/Q DOWNCONVERTER 12 - 16 GHz

Data Taken As IRM With External 90° IF Hybrid


Conversion Gain vs. Temperature

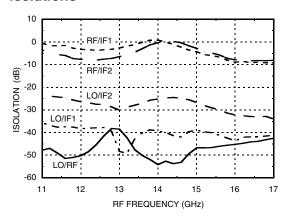

Image Rejection vs. Temperature

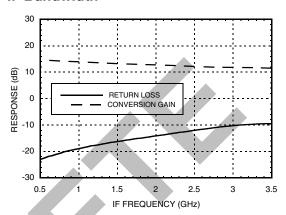

Conversion Gain vs. LO Drive


Return Loss

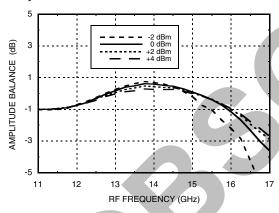
Input P1dB vs. Temperature

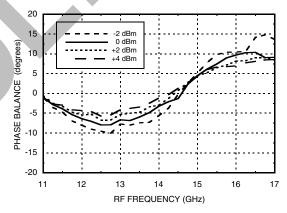
Input IP3 vs. LO Drive

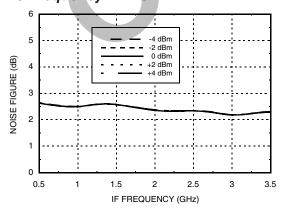


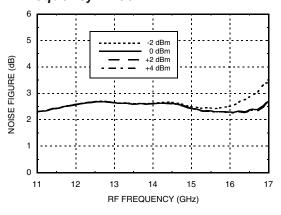

GaAs MMIC I/Q DOWNCONVERTER 12 - 16 GHz

Quadrature Channel Data Taken Without IF Hybrid


Isolations


IF Bandwidth*


Amplitude Balance vs. LO Drive


Phase Balance vs. LO Drive

Noise Figure vs. LO Drive, LO Frequency = 12 GHz

Noise Figure vs. LO Drive, IF Frequency = 100 MHz

^{*} Conversion gain data taken with external IF hybrid, LO frequency fixed at 12 GHz and RF varied

GaAs MMIC I/Q DOWNCONVERTER 12 - 16 GHz

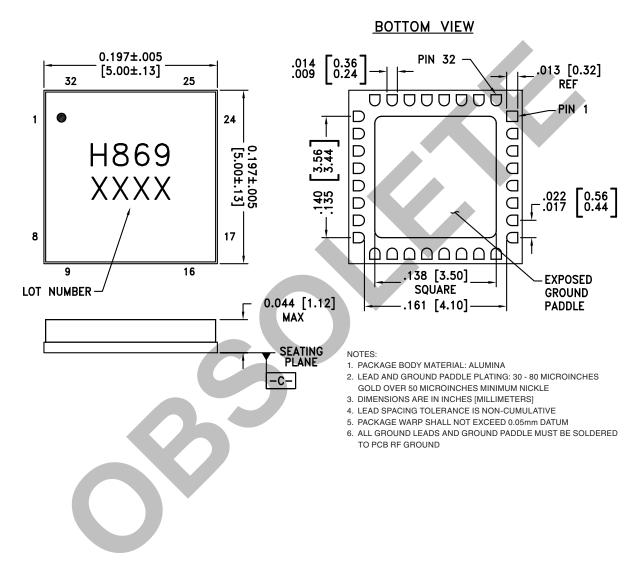
MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	xx	43	40	54	xx
1	22	xx	42	56	77
2	74	67	xx	74	98
3	99	97	73	xx	90
4	xx	104	120	102	xx

RF = 13.6 GHz @ -20 dBm LO = 13.5 GHz @ +2 dBm Data taken without IF hybrid All values in dBc below IF power level.

Absolute Maximum Ratings

RF	+5 dBm
LO Drive	+20 dBm
VD1, VD2	4.0V
VD3	5.5V
Channel Temperature	150 °C
Continuous Pdiss (T=85°C) (derate 9.56 mW/°C above 85°C)	0.65 W
Thermal Resistance (R _{TH}) (channel to package bottom)	71 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

GaAs MMIC I/Q DOWNCONVERTER 12 - 16 GHz

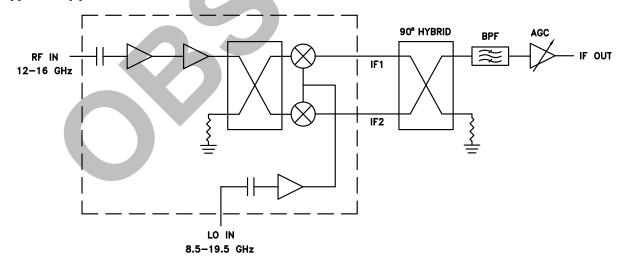
Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC869LC5	Alumina, White	Gold over Nickel	MSL3 [1]	H869 XXXX

^[1] Max peak reflow temperature of 260 $^{\circ}\text{C}$

^{[2] 4-}Digit lot number XXXX

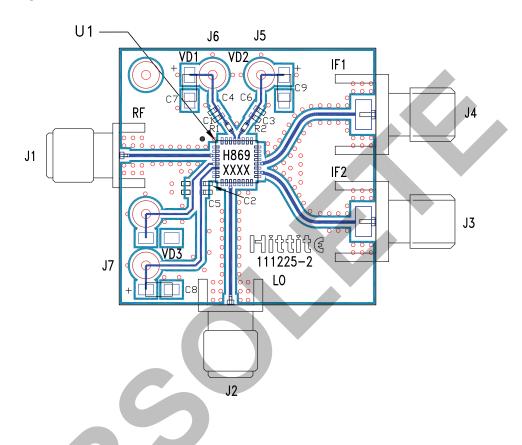


GaAs MMIC I/Q DOWNCONVERTER 12 - 16 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 5, 7 - 9, 13 - 16, 22 - 27, 30 - 32	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
2, 4, 10, 12, 17, 19, 21	GND	These pins and ground paddle must be connected to RF/DC ground.	O GND
3	RF	This pin is AC coupled and matched to 50 Ohms.	RF O—
6	VD3	Power supply for LO amplifier.	VD3 O
28, 29	VD2, VD1	Power supply for RF LNA.	VD1,VD2 O
18	IF2	This pin is DC coupled for applications not requiring operation to DC. This port should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary frequency range.	IF1,IF2 O
20	IF1	For operation to DC, this pin must not sink / source more than 3 mA of current or part non-function and possible failure will result.	
11	LO	This pin is AC coupled and matched to 50 Ohms.	10 0— —

Typical Application


Note: LSB and USB is determined by GND on Hybrid

GaAs MMIC I/Q DOWNCONVERTER 12 - 16 GHz

Evaluation PCB

List of Materials for Evaluation PCB 111227 [1]

Item	Description
J1, J2	PCB Mount SMA RF Connector, SRI
J3, J4	PCB Mount SMA Connector, Johnson
J5, J6, J7	DC Pin
C1, C2, C3	Capacitor 0402, Pkg. 100pF
C4, C5, C6	Capacitor 0402, Pkg. 1000pF
C7, C8,C9	Capacitor, Case A, 2.2uF
R1, R2	Resistor, 0402 Pkg. 0 Ohm
U1	HMC869LC5
PCB [2]	111225 Evaluation Board

^[1] Reference this number when ordering complete evaluation PCB


[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

GaAs MMIC I/Q DOWNCONVERTER 12 - 16 GHz

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3
EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+
MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4
EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4
UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL
SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1