


### Typical Applications

The HMC463LH250 is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military EW, ECM & C3I
- Test Instrumentation
- Fiber Optics

## **Functional Diagram**



#### **Features**

50 Ohm Matched Input/Output

Hermetic SMT Package

Gain: 14 dB

Noise Figure: 2.5 dB @ Mid-Band

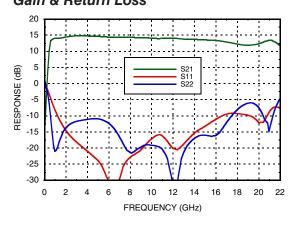
P1dB Output Power: +18 dBm @ Mid-Band

Supply Voltage: +5V @ 60mA

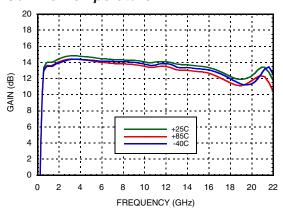
Screening to MIL-PRF-38535 (Class B or S) Available

## **General Description**

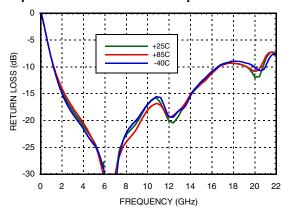
The HMC463LH250 is a GaAs MMIC pHEMT Low Noise AGC Distributed Amplifier packaged in a hermetic surface mount package which operates between 2 and 20 GHz. The amplifier provides 13 dB of gain, 3 dB noise figure and 18 dBm of output power at 1 dB gain compression while requiring only 60 mA from a +5V supply. An optional gate bias (Vgg2) is provided to allow Adjustable Gain Control (AGC) of 8 dB typical. Gain flatness is excellent at ±0.5 dB from 2 - 14 GHz making the HMC463LH250 ideal for EW, ECM RADAR, test equipment and High-Reliability applications. The HMC463LH250 LNA I/Os are internally matched to 50 Ohms and are internally DC blocked.


## Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd=5V, Vgg2= Open, Idd=60 $mA^*$

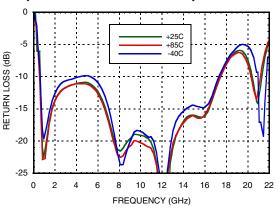
| Parameter                                        | Min.      | Тур.  | Max.       | Min. | Тур.        | Max. | Min. | Тур.  | Max. | Units  |
|--------------------------------------------------|-----------|-------|------------|------|-------------|------|------|-------|------|--------|
| Frequency Range                                  | 2.0 - 6.0 |       | 6.0 - 16.0 |      | 16.0 - 20.0 |      |      | GHz   |      |        |
| Gain                                             | 11.5      | 14.5  |            | 9    | 12          |      | 8    | 11    |      | dB     |
| Gain Flatness                                    |           | ±0.25 |            |      | ±0.5        |      |      | ±0.9  |      | dB     |
| Gain Variation Over Temperature                  |           | 0.010 |            |      | 0.010       |      |      | 0.010 |      | dB/ °C |
| Noise Figure                                     |           | 3.5   | 5.5        |      | 2.5         | 4.5  |      | 4     | 5.5  | dB     |
| Input Return Loss                                |           | 15    |            |      | 15          |      |      | 9     |      | dB     |
| Output Return Loss                               |           | 11    |            |      | 15          |      |      | 7     |      | dB     |
| Output Power for 1 dB Compression (P1dB)         | 16        | 19    |            | 13   | 18          |      | 10   | 13    |      | dBm    |
| Saturated Output Power (Psat)                    |           | 21.5  |            |      | 20.5        |      |      | 19    |      | dBm    |
| Output Third Order Intercept (IP3)               |           | 29    |            |      | 27          |      |      | 24    |      | dBm    |
| Supply Current (Idd) (Vdd= 5V, Vgg1= -0.9V Typ.) |           | 60    | 80         |      | 60          | 80   |      | 60    | 80   | mA     |


<sup>\*</sup> Adjust Vgg1 between -2 to -0V to achieve Idd= 60 mA typical.

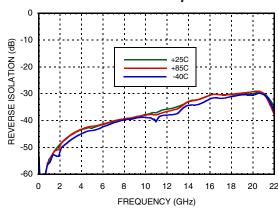



# Gain & Return Loss

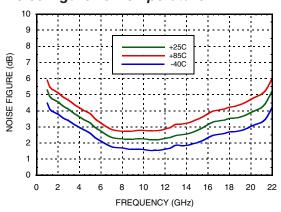



### Gain vs. Temperature



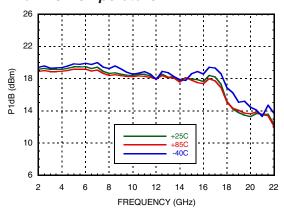

### Input Return Loss vs. Temperature



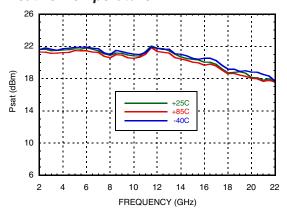

### **Output Return Loss vs. Temperature**



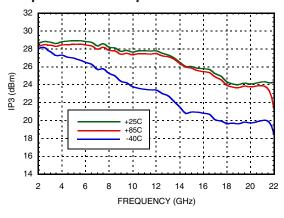
### Reverse Isolation vs. Temperature



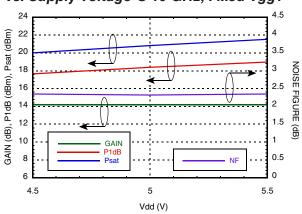

### Noise Figure vs. Temperature



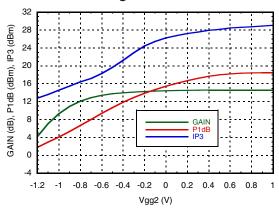




### P1dB vs. Temperature

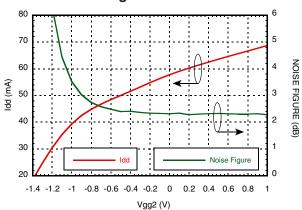



### Psat vs. Temperature




### Output IP3 vs. Temperature



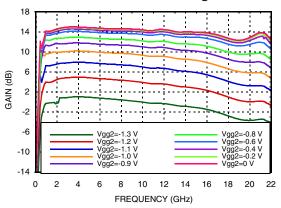

Gain, Power & Noise Figure vs. Supply Voltage @ 10 GHz, Fixed Vgg1



# Gain, P1dB & Output IP3 vs. Control Voltage @ 10 GHz



# Noise Figure & Supply Current vs. Control Voltage @ 10 GHz





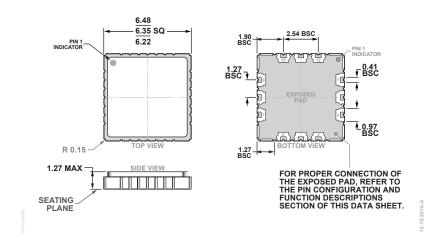

/06.1217

## GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

### Gain @ Several Control Voltages






### **Absolute Maximum Ratings**

| Drain Bias Voltage (Vdd)          | +9 V                      |
|-----------------------------------|---------------------------|
| Gate Bias Voltage (Vgg1)          | -2 to 0 Vdc               |
| Gate Bias Current (Igg1)          | 2.5 mA                    |
| Gate Bias Voltage (Vgg2)(AGC)     | (Vdd -9)<br>Vdc to +2 Vdc |
| RF Input Power (RFIN)(Vdd = +5 V) | +18 dBm                   |
| Channel Temperature               | 175 °C                    |
| Storage Temperature               | -65 to +150 °C            |
| Operating Temperature             | -40 to +85 °C             |
| ESD Sensitivity (HBM)             | Class 0B - Passed<br>150V |

## Typical Supply Current vs. Vdd

| Vdd (V) | Idd (mA) |
|---------|----------|
| +4.5    | 58       |
| +5.0    | 60       |
| +5.5    | 62       |

## **Outline Drawing**



12-Terminal Ceramic Leadless Chip Carrier [LCC] (E-12-2)

Dimensions shown in millimeters.

## Package Information

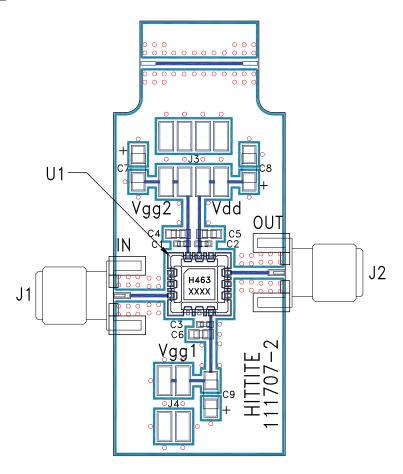
| Part Number | Package Body Material | Lead Finish | MSL Rating | Package Marking [2] |
|-------------|-----------------------|-------------|------------|---------------------|
| HMC463LH250 | Ceramic & Kovar       | Au          | MSL1 [1]   | H463<br>XXXX        |

<sup>[1]</sup> Max peak reflow temperature of 250  $^{\circ}\text{C}$ 

<sup>[2] 4-</sup>Digit lot number XXXX



/06 1217


# GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

## **Pin Descriptions**

| Pin Number              | Function | Description                                                                                    | Interface Schematic |  |
|-------------------------|----------|------------------------------------------------------------------------------------------------|---------------------|--|
| 1, 2, 4, 5,<br>7, 8, 10 | GND      | Ground paddle must be connected to RF/DC ground.                                               | Ģ GND<br>=          |  |
| 3                       | RFIN     | This pad is AC coupled and matched to 50 Ohms.                                                 | RFIN ○── ├──        |  |
| 6                       | Vgg1     | Gate control for amplifier. Adjust to achieve Idd= 60 mA.                                      | Vgg10               |  |
| 9                       | RFOUT    | This pad is AC coupled and matched to 50 Ohms.                                                 | —   —○ RFOUT        |  |
| 11                      | Vdd      | Power supply voltage for the amplifier.<br>External bypass capacitors are required             | Vdd<br>—            |  |
| 12                      | Vgg2     | Optional gate control if AGC is required.<br>Leave Vgg2 open circuited if AGC is not required. | Vgg2                |  |



### **Evaluation PCB**



## List of Materials for Evaluation PCB 111709 [1]

| Item    | Description                  |
|---------|------------------------------|
| J1 - J2 | SRI K Connector              |
| J3 - J4 | 2 mm Molex Header            |
| C1 - C3 | 100 pF Capacitor, 0402 Pkg.  |
| C4 - C6 | 1000 pF Capacitor, 0603 Pkg. |
| C7 - C9 | 4.7 μF Capacitor, Tantalum   |
| U1      | HMC463LH250                  |
| PCB [2] | 111707 Evaluation PCB        |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices upon request.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3
EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+
MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4
EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4
UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL
SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1