
v03.0514

Typical Applications

The HMC573LC3B is suitable for:

- Clock Generation Applications: SONET OC-192 & SDH STM-64
- Point-to-Point & VSAT Radios
- Test Instrumentation
- Military & Space

Functional Diagram

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 22 GHz OUTPUT

Features

High Output Power: +12 dBm Low Input Power Drive: 0 to +6 dBm Fo Isolation: >20 dBc @ Fout= 16 GHz 100 KHz SSB Phase Noise: -134 dBc/Hz Single Supply: +5V@ 92 mA RoHS Compliant 3x3 mm SMT Package

General Description

The HMC573LC3B is a x2 active broadband frequency multiplier utilizing GaAs PHEMT technology in a leadless RoHS compliant SMT package. When driven by a +5 dBm signal, the multiplier provides +12 dBm typical output power from 8 to 22 GHz. The Fo and 3Fo isolations are >20 dBc and >25 dBc respectively at 16 GHz. The HMC573LC3B is ideal for use in LO multiplier chains for Pt-to-Pt & VSAT Radios yielding reduced parts count vs. traditional approaches. The low additive SSB Phase Noise of -134 dBc/Hz at 100 kHz offset helps maintain good system noise performance. The RoHS packaged HMC573LC3B eliminates the need for wire bonding, and allows the use of surface mount manufacturing techniques.

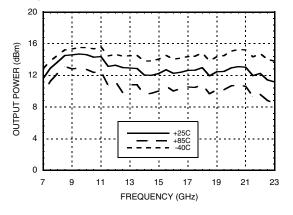
Electrical Specifications, $T_{A} = +25^{\circ}$ C, Vdd = +5V, 5 dBm Drive Level

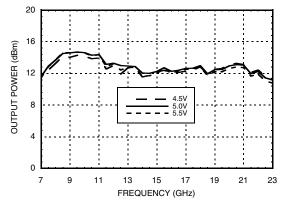
Parameter		Тур.	Max.	Units
Frequency Range, Input		4 - 11		GHz
Frequency Range, Output		8 - 22		
Output Power	9	9 12		
Fo Isolation (with respect to output level)		20		dBc
3Fo Isolation (with respect to output level)		25		dBc
4Fo Isolation (with respect to output level)		15		dBc
Input Return Loss		10		dB
Output Return Loss		10		dB
SSB Phase Noise (100 kHz Offset)		-134		dBc/Hz
Supply Current (Idd) (Vdd = 5V, Vgg = -1.25V Typ.)		92		mA

*Adjust Vgg between -1.5 and ~1.1V to achieve Idd = 92 mA

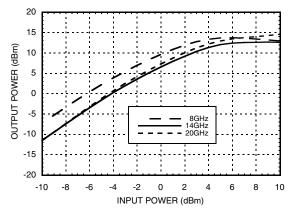
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

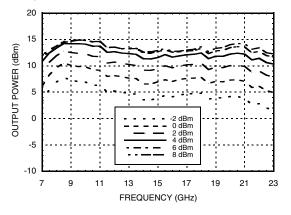
Freq. Multipliers - Active - SM1

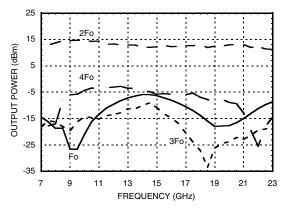


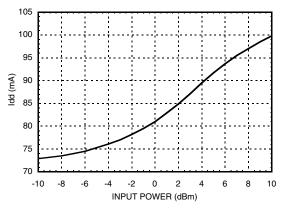

v03.0514

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 22 GHz OUTPUT


Output Power vs. Temperature @ 5 dBm Drive Level


Output Power vs. Supply Voltage @ 5 dBm Drive Level

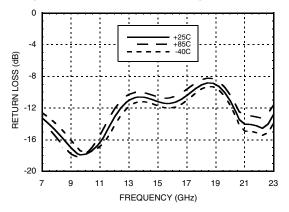

Output Power vs. Input Power


Output Power vs. Drive Level

Isolation @ 5 dBm Drive Level

Supply Current vs. Input Power

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 22 GHz OUTPUT

Input Return Loss vs. Temperature -4 RETURN LOSS (dB) -8 -12 +25C -16 +85C -40C -- --20 3 4 5 8 10 11 12 6 7 9 FREQUENCY (GHz)

v03.0514

Output Return Loss vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FREQ. MULTIPLIERS - ACTIVE - SMT

v03.0514

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 22 GHz OUTPUT

Absolute Maximum Ratings

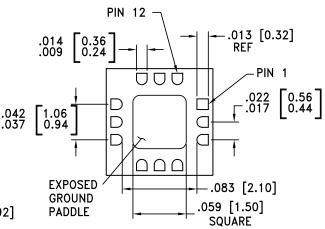
RF Input (Vdd = +5V)	+10 dBm
Supply Voltage (Vdd)	+6.0 Vdc
Channel Temperature	175 °C
Continuous Pdiss (T= 85 °C) (derate 8.0 mW/°C above 85 °C)	719 mW
Thermal Resistance (channel to ground paddle)	125 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Typical Supply Current vs. Vdd

Vdd (Vdc)	ldd (mA)
4.5	90
5.0	92
5.5	94

Note:

Multiplier will operate over full voltage range shown above.



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

BOTTOM VIEW

NOTES:

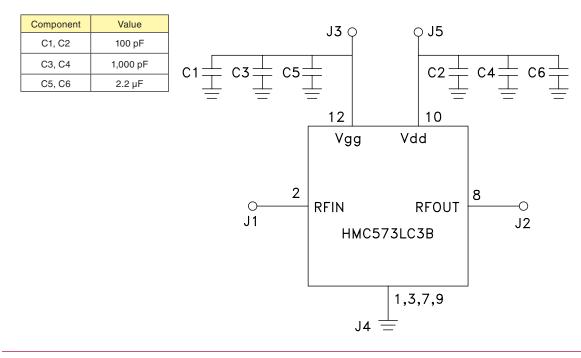
- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC573LC3B	Alumina, White	Gold over Nickel	MSL3 ^[1]	H573 XXXX

Max peak reflow temperature of 260 °C
4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v03.0514

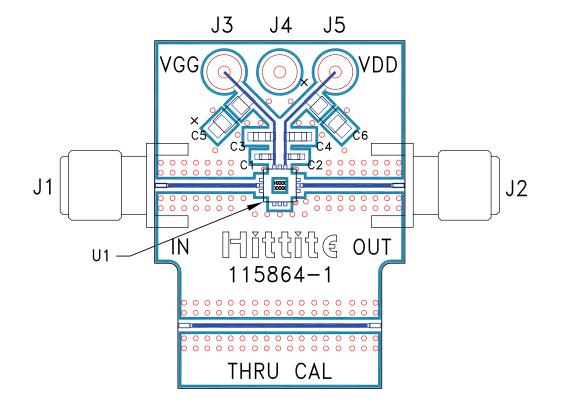
SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 22 GHz OUTPUT

Pin Description

Pin Number	Function	Description	Interface Schematic
1, 3, 7, 9	GND	Package bottom must also be connected to RF/DC ground.	
2	RFIN	Pin is AC coupled and matched to 50 Ohms.	
4 - 6, 11	N/C	These pins are internally not connected; however, this product was specified with these pins connected to RF/ DC ground.	
8	RFOUT	Pin is AC coupled and matched to 50 Ohms.	├ ○ RFOUT
10	Vdd	Supply voltage 5V \pm 0.5V. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are required.	Vdd
12	Vgg	Gate control for amplifier. Adjust to achieve ldd of 92 mA. Please follow "MMIC Amplifier Biasing Procedure" Application note.	Vgg o

Application Circuit

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v03.0514

HMC573LC3B

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 8 - 22 GHz OUTPUT

Evaluation PCB

List of Materials for Evaluation PCB 115739^[1]

Item	Description
J1, J2	PCB Mount SRI K Connector
J3 - J5	DC Pin
C1, C2	100 pF Capacitor, 0402 Pkg.
C3, C4	1,000 pF Capacitor, 0603 Pkg.
C5, C6	2.2 µF Tantalum Capacitor
U1	HMC573LC3B x2 Active Multiplier
PCB [2]	115864 Eval Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB