

The HMC599ST89(E) is ideal for:

- VHF / UHF Antennas
- HDTV Receivers
- CMTS Equipment
- CATV, Cable Modem & DBS

Functional Diagram

GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz

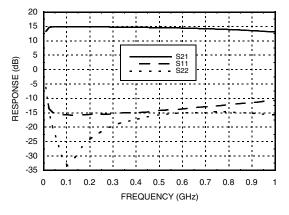
Features

High P1dB Output Power: +19 dBm High Output IP3: +39 dBm Low Noise Figure: 2.2 dB Cascadable 75 Ohm I/Os Single Bias Supply: +3V or +5V Industry Standard SOT89 Package

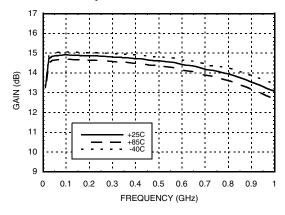
General Description

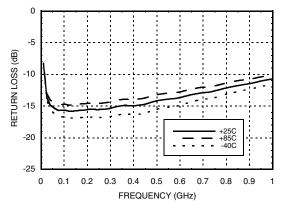
The HMC599ST89(E) is a GaAs PHEMT High Linearity, Low Noise Gain Block MMIC SMT amplifier covering 50 to 1000 MHz. Packaged in an industry standard SOT89, the amplifier can be used as a cascadable 75 Ohm RF or IF gain stage as well as a PA or LO driver with up to +19 dBm output power. The HMC599ST89(E) offers 14 dB of gain with a +39 dBm output IP3 at 250 MHz, and can operate directly from a +3V or +5V supply. The HMC599ST89(E) exhibits excellent gain and output power stability over temperature, while requiring a minimal number of external bias components.

Electrical Specifications, Vdd = 5V, T_{a} = +25° C

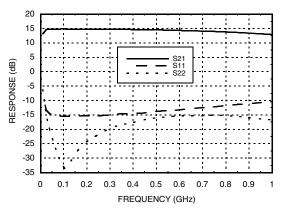

Parameter		Min.	Тур.	Max.	Units
Gain	50 - 500 MHz 500 - 1000 MHz	13 12	14.5 14		dB dB
Gain Variation Over Temperature	50 - 1000 MHz		0.005		dB/ °C
Input Return Loss	50 - 500 MHz 500 - 1000 MHz		15 12		dB dB
Output Return Loss	50 - 500 MHz 500 - 1000 MHz		25 15		dB dB
Reverse Isolation	50 - 1000 MHz		20		dB
Output Power for 1 dB Compression (P1dB)	50 - 500 MHz	16	19		dBm
Output Third Order Intercept (IP3) (Pout= -10 dBm per tone, 1 MHz spacing)	50 - 500 MHz 500 - 1000 MHz		39 36		dBm dBm
Noise Figure	50 - 1000 MHz		2.2		dB
Supply Current (Idd)		100	120	140	mA

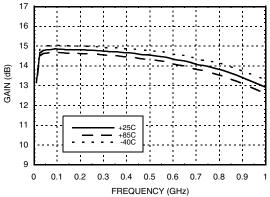
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



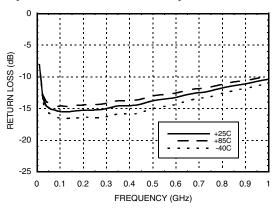

Broadband Gain & Return Loss @ 3V

Gain vs. Temperature @ 3V


Input Return Loss vs. Temperature @ 3V

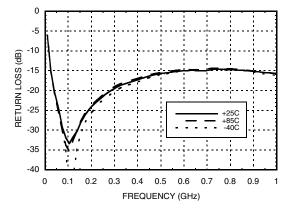

HMC599ST89 / 599ST89E

GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz

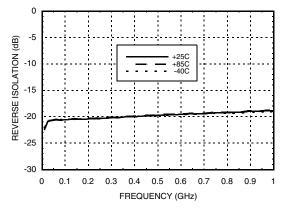

Broadband Gain & Return Loss @ 5V

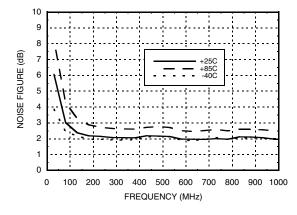
Gain vs. Temperature @ 5V

Input Return Loss vs. Temperature @ 5V

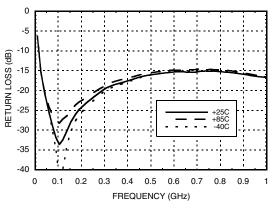


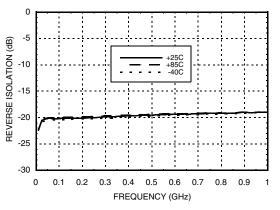
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



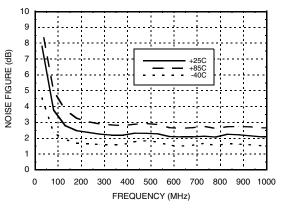

Output Return Loss vs. Temperature @ 3V

Reverse Isolation vs. Temperature @ 3V


Noise Figure vs. Temperature @ 3V


HMC599ST89 / 599ST89E

GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz

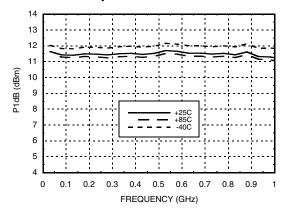

Output Return Loss vs. Temperature @ 5V

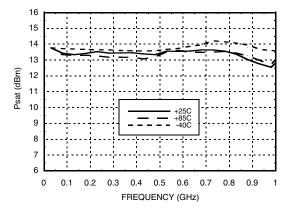
Reverse Isolation vs. Temperature @ 5V

Noise Figure vs. Temperature @ 5V

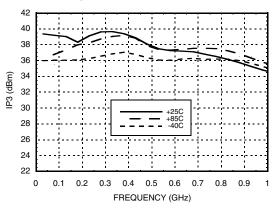


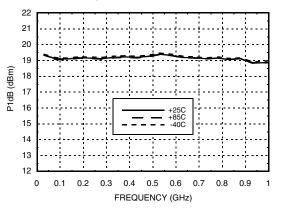
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



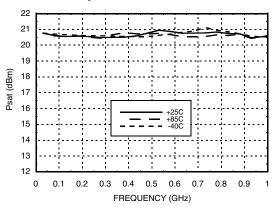

IP3 vs. Temperature @ 3V

P1dB vs. Temperature @ 3V


Psat vs. Temperature @ 3V


HMC599ST89 / 599ST89E

GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz


IP3 vs. Temperature @ 5V

P1dB vs. Temperature @ 5V

Psat vs. Temperature @ 5V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

17

16

15

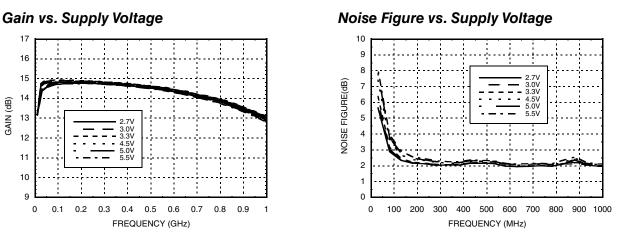
14

13

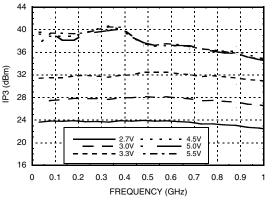
12

11

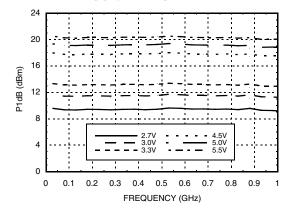
10

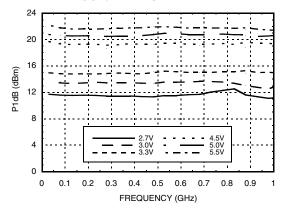

q

0 0.1 0.2


GAIN (dB)

GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz


HMC599ST89 / 599ST89E



P1dB vs. Supply Voltage

Psat vs. Supply Voltage

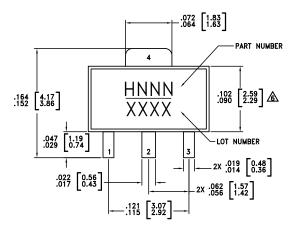
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

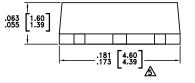
Absolute Maximum Ratings

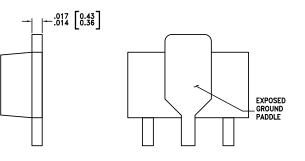
Drain Bias Voltage (Vdd)	+6 Vdc
RF Input Power (RFIN)	+10 dBm
Channel Temperature	175 °C
Continuous Pdiss (T = 85 °C) (derate 9.84 mW/°C above 85 °C)	0.89 W
Thermal Resistance (junction to ground paddle)	101.67 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

HMC599ST89 / 599ST89E

GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz


Typical Supply Current vs. Vdd


Vdd (Vdc)	ldd (mA)
+5	120
+3	120



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

1. PACKAGE BODY MATERIAL:

MOLDING COMPOUND MP-180S OR EQUIVALENT.

2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.

3. LEAD PLATING: 100% MATTE TIN.

4. DIMENSIONS ARE IN INCHES [MILLIMETERS]

ADIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15 mm PER SIDE. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25 mm PER SIDE. 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC599ST89	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H599 XXXX
HMC599ST89E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H599</u> XXXX

[1] Max peak reflow temperature of 235 °C

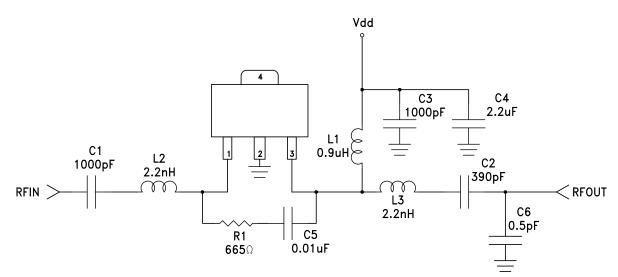
[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC599ST89 / 599ST89E

v02.0311

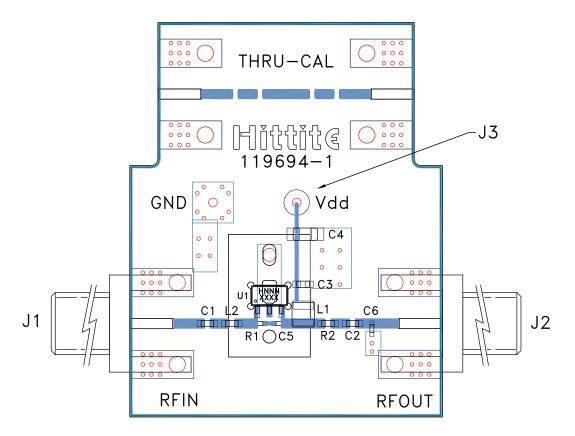

GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1	IN	This pin is DC coupled. See the application circuit for off-chip components		
3	OUT	RF output and DC Bias (Vdd) for the output stage.		
2, 4	GND	These pins and package bottom must be connected to RF/DC ground.		

Application Circuit

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



HMC599ST89 / 599ST89E

GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz

Evaluation PCB

v02.0311

List of Materials for Evaluation PCB 119696 [1]

Item	Description	
J1 - J2	PCB Mount 75 Ohm Connector	
J3	DC Pin	
C1, C3	1000 pF Capacitor, 0603 Pkg.	
C2	390 pF Capacitor, 0603 Pkg.	
C4	2.2 µF Capacitor, Tantalum	
C5	10 KpF Capacitor, 0402 Pkg.	
C6	0.5 pF Capacitor, 0402 Pkg.	
L1	0.9 µH Inductor, 1008 Pkg.	
L2, L3	2.2 nH Inductor, 0603 Pkg.	
R1	665 Ohm Resistor, 0402 Pkg.	
U1	HMC599ST89 / HMC599ST89E	
PCB [2]	119694 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

[3] Evaluation board tuned for 900 MHz operation

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent or ghatent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB