

HMC687LP4 / 687LP4E

v04.0509

BICMOS MMIC MIXER W/ INTEGRATED LO AMPLIFIER, 1.7 - 2.2 GHz

Typical Applications

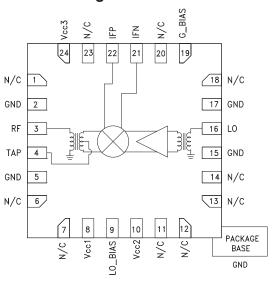
The HMC687LP4(E) is Ideal for:

- Cellular/3G & LTE/WiMAX/4G
- Basestations & Repeaters
- GSM, CDMA & OFDM
- Transmitters and Receivers

Features

High Input IP3: +35 dBm

8 dB Conversion Loss @ 0 dBm LO


Optimized for High Side LO Input

Upconversion & Downconversion Applications

Adjustable Supply Current

24 Lead 4x4mm SMT Package: 16mm²

Functional Diagram

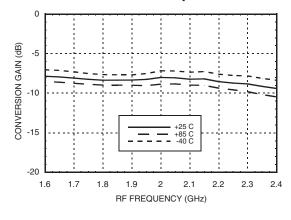
General Description

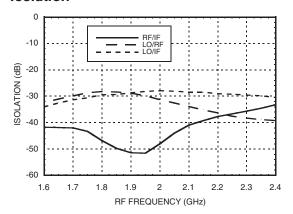
The HMC687LP4(E) is a high dynamic range passive MMIC mixer with integrated LO amplifier in a 4x4 SMT QFN package covering 1.7 to 2.2 GHz. Excellent input IP3 performance of +35 dBm for down conversion is provided for 3G & 4G GSM/CDMA applications at an LO drive of 0 dBm. With an input 1 dB compression of +23 dBm, the RF port will accept a wide range of input signal levels. Conversion loss is 8 dB typical. The DC to 500 MHz IF frequency response will satisfy GSM/CDMA transmit or receive frequency plans. The HMC687LP4(E) is optimized for high side LO frequency plans and is pin for pin compatible with the HMC685LP4(E) which is a 1.7 - 2.2 GHz converter optimized for low side LO.

Electrical Specifications,

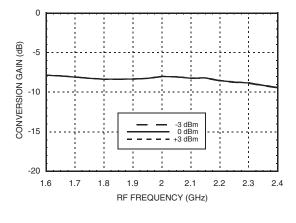
 $T_A = +25^{\circ} \text{ C, IF} = 200 \text{ MHz, LO} = 0 \text{ dBm, Vcc} = \text{Vcc1, 2, 3} = +5\text{V, G_Bias} = +2.5\text{V*}$

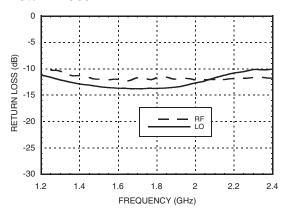
Nominal Supply	Icc = 120 mA		Icc = 100 mA	Icc = 70 mA	Units		
Parameter	Min.	Тур.	Max.	Тур.	Тур.	Units	
Frequency Range, RF	1.7 - 2.2			GHz			
Frequency Range, LO			1.7 -	2.4		GHz	
Frequency Range, IF			DC -	500		MHz	
Conversion Loss		8	10.5	8	8	dB	
Noise Figure (SSB)		8		8	8	dB	
LO to RF Isolation	22	30		32	34	dB	
LO to IF Isolation	22	29		29	31	dB	
RF to IF Isolation	31	42		42	42	dB	
IP3 (Input)		35		34	32	dBm	
1 dB Compression (Input)		23		22	20	dBm	
LO Drive Input Level (Typical)	-3 to +3 -3 to +3 -3 to +3		dBm				
Supply Current Icc total		120	145	100	70	mA	

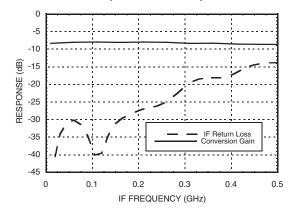

 $^{^{\}star}$ Unless otherwise noted all measurements performed as downconverter with high side LO & IF = 200 MHz.

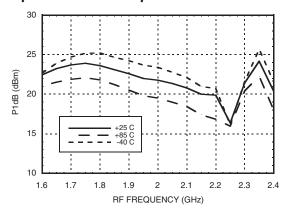


BICMOS MMIC MIXER W/ INTEGRATED LO AMPLIFIER, 1.7 - 2.2 GHz


Conversion Gain vs. Temperature

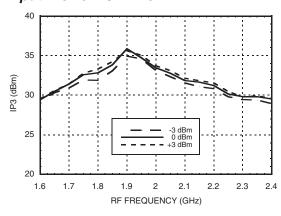

Isolation

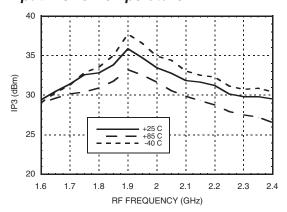

Conversion Gain vs. LO Drive


Return Loss

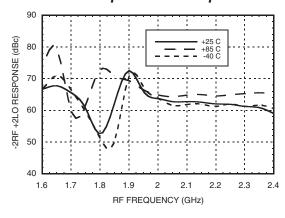
IF Bandwidth (LO= 2.2 GHz)

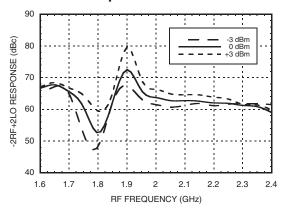
Input P1dB vs. Temperature

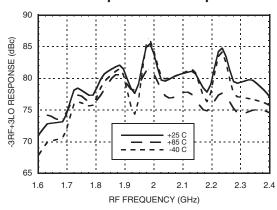


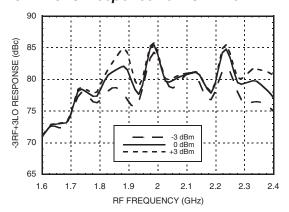


BICMOS MMIC MIXER W/ INTEGRATED LO AMPLIFIER, 1.7 - 2.2 GHz


Input IP3 vs. LO Drive [1]


Input IP3 vs. Temperature [1]

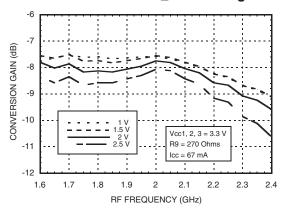

-2RF +2LO Response vs. Temperature [2]

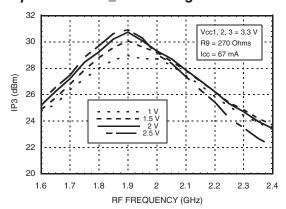

-2RF +2LO Response vs. LO Drive [2]

-3RF +3LO Response vs. Temperature [2]

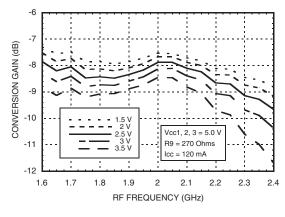
-3RF +3LO Response vs. LO Drive [2]

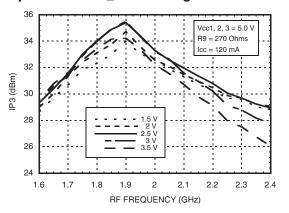
[1] Two-tone input power = +9 dBm each tone, 1 MHz spacing. [2] Referenced to RF Input power at 0 dBm

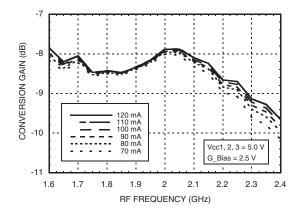


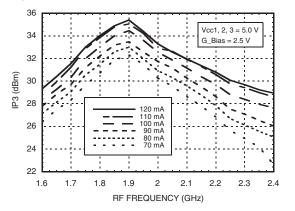

BICMOS MMIC MIXER W/ INTEGRATED LO AMPLIFIER, 1.7 - 2.2 GHz

Low Power Consumption Performance


Conversion Gain vs. G_Bias Voltage


Input IP3 vs. G_Bias Voltage [1]

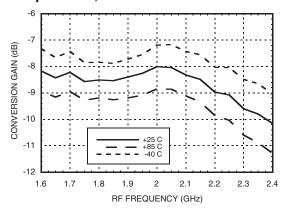

Conversion Gain vs. G_Bias Voltage

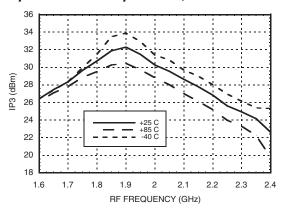

Input IP3 vs. G_Bias Voltage [1]

Conversion Gain vs. Icc

Input IP3 vs. Icc [1]

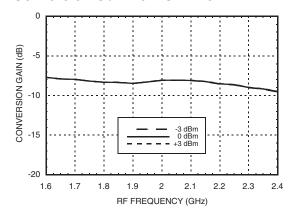
[1] Two-tone input power = +9 dBm each tone, 1 MHz spacing

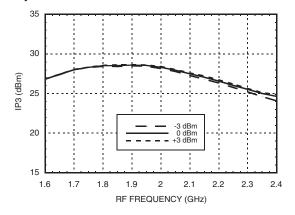



BICMOS MMIC MIXER W/ INTEGRATED LO AMPLIFIER, 1.7 - 2.2 GHz

Low Power Consumption Performance

Conversion Gain vs. Temperature, Icc = 70 mA


Input IP3 vs. Temperature, Icc = 70 mA [1]


Icc vs. R9 130 120 110 **E** 100 <u>၁</u> 90 80 70 60 300 350 450 500 600 250 400 550 R9 (Ohms)

Typical Upconverter Performance

Conversion Gain vs. LO Drive

Input IP3 vs. LO Drive [1]

[1] Two-tone input power = +9 dBm each tone, 1 MHz spacing.

HMC687LP4 / 687LP4E

v04.0509

BICMOS MMIC MIXER W/ INTEGRATED LO AMPLIFIER, 1.7 - 2.2 GHz

Absolute Maximum Ratings

RF / IF Input (Vcc1, 2, 3 = +5V)	+23 dBm
LO Drive (Vcc1, 2, 3 = +5V)	+10 dBm
Vcc1,2,3	+5.5V
Channel Temperature	125 °C
Continuous Pdiss (T = 85°C) (derate 20.69 mW/°C above 85°C)	0.83 mW
Thermal Resistance (channel to ground paddle)	48.33 °C/W
Storage Temperature	-65 to 150 °C
Operating Temperature	-40 to +85 °C

•	
	ELECTROSTATIC SENSITIVE DEVICE
	ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

MxN Spurious @ IF Port

	nLO				
mRF	0	1	2	3	4
0	xx	20	27	54	28
1	43	0	39	31	57
2	64	60	59	68	87
3	110	81	102	77	96
4	115	129	115	115	112

RF Freq. = 1.9 GHz @ 0 dBm LO Freq. = 2.1 GHz @ 0 dBm

All values in dBc below IF power level (-1RF + 1LO).

Typical Supply Current vs. Vcc

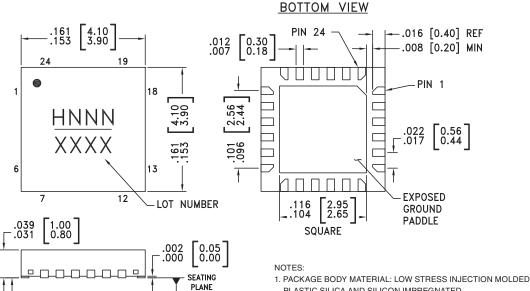
Vcc1, 2, 3 (V)	Icc total (mA)	
4.75	113	
5.00	120	
5.25	127	
Downconverter will operate over full voltage range shown above.		

Harmonics of LO

	nLO Spur @ RF Port			
LO Freq. (GHz)	1	2	3	4
1.6	37	25	46	42
1.7	35	24	44	41
1.8	33	23	43	42
1.9	30	22	36	36
2.0	29	23	40	28
2.1	29	24	44	27
2.2	32	24	42	31
2.3	34	24	42	38

LO = 0 dBm

All values in dBc below input LO level measured at RF port.


[1] Two-tone input power = +9 dBm each tone, 1 MHz spacing.

BICMOS MMIC MIXER W/ INTEGRATED LO AMPLIFIER, 1.7 - 2.2 GHz

Outline Drawing

-C-

- PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY.
- 3. LEAD AND GROUND PADDLE PLATING: 100% MATTE TIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 6. PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.25mm MAX.
- 7. PACKAGE WARP SHALL NOT EXCEED 0.05mm
- 8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 9. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

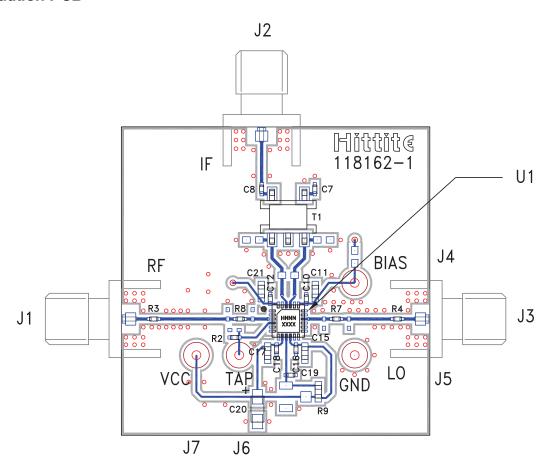
△|.003[0.08]|C

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC687LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H687 XXXX
HMC687LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H687 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

BICMOS MMIC MIXER W/ INTEGRATED LO AMPLIFIER, 1.7 - 2.2 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic	
1, 6, 7, 11 - 14, 18, 20, 23	N/C	No connection. These pins may be connected to RF ground. Performance will not be affected.		
2, 5, 15, 17	GND	Package bottom must be connected to RF/DC ground.	GND =	
3	RF	This pin is matched single-ended 50 Ohm and DC shorted to ground through a balun.	RF O S	
4	TAP	Center tap of secondary side of the internal RF balun. Short to ground with a zero ohm close to the IC.	TAP	
8, 10, 24	Vcc1, Vcc2, Vcc3	Power supply voltage. See application circuit for required external components.	Vcc1-3 ESD ESD	
9	LO_BIAS	LO buffer current adjustment pin. Adjust the LO buffer current through the external resistor R9 shown in the application circuit (connect 270 Ohms for nominal operation). This adjustment allows for a trade-off between power dissipation and linearity performance of the converter.	LO_BIAS ESD = =	
16	LO	This pin is matched single-ended 50 Ohm and DC shorted to ground through a balun.	LO CO	
19	G_BIAS	External bias. See application circuit for recommended external components. Apply +2.5V for nominal operation at 5V supply voltage. G_Bias can be set to between 0 and 5Vdc. The G_bias pin has an internal 15K ohm resistance to ground. This adjustment allows for a trade off between conversion loss and linearity performance of the converter (see figures CG, IP3 vs. G-Bias).	G_BIAS ESD =	
21, 22	IFN, IFP	Differential IF input / output pins matched to differential 50 Ohms. For applications not requiring operation to DC an off chip DC blocking capacitor should be used.	IFN	

BICMOS MMIC MIXER W/ INTEGRATED LO AMPLIFIER, 1.7 - 2.2 GHz

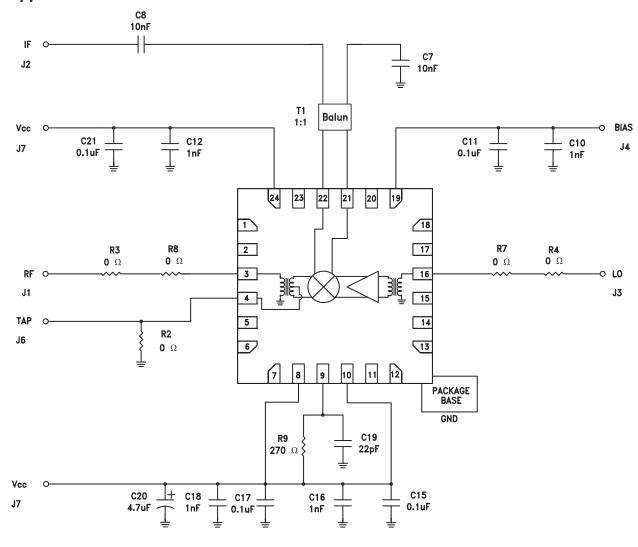
Evaluation PCB

List of Materials for Evaluation PCB 119935 [1]

Item	Description
J1 - J3	SMA Connector
J4 - J7	DC Pin
C19	22 pF Capacitor, 0402 Pkg.
C7, C8	10 nF Capacitor, 0402 Pkg.
C10, C12, C16, C18	1 nF Capacitor, 0402 Pkg.
C11, C15, C17, C21	0.1 μF Capacitor, 0402 Pkg.
C20	4.7 μF Case A, Tantulum
R2 - R4, R7, R8	0 Ohm Resistor, 0402 Pkg.
R9	270 Ohm Resistor, 0603 Pkg.
T1	1:1 Transformer - Tyco MABA CT0039
U1	HMC687LP4(E) Downconverter
PCB ^[2]	118162 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25R, FR4


The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

BICMOS MMIC MIXER W/ INTEGRATED LO AMPLIFIER, 1.7 - 2.2 GHz

Application Circuit

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4
EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT#
MAX2692EVKIT# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2
EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4
MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1
SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB