14 Gbps, 2×2 CROSSPOINT SWITCH WITH PROGRAMMABLE OUTPUT VOLTAGE

Typical Applications

The HMC857LC5 is ideal for:

- SONET OC-192 and 10 GbE
- 16G Fiber Channel
- Networking \& Storage
- Dual 2:1 Selector
- 1:2 Fanout with Input Mux

Features
Supports High Data Rates: up to 14 Gbps
Differential or Single-Ended Inputs / Outputs
Fast Rise and Fall Times: 21 / 21 ps
Low Power Consumption: 345 mW typ.
Programmable Differential
Output Voltage Swing: 475-1200 mVp-p
Propagation Delay: 117 ps
Single Supply: -3.3 V
32 Lead Ceramic $5 \times 5 \mathrm{~mm}$ SMT Package: $25 \mathrm{~mm}^{2}$

Functional Diagram

General Description

The HMC857LC5 is a $2 x 2$ Crosspoint Switch designed to support data transmission rates of up to 14 Gbps and selector port operation up to 14 GHz . The selector routes the differential inputs to either one or both of the desired outputs upon assertion of the appropriately selected port.

All differential inputs to the HMC857LC5 are CML and terminated on-chip with 50 Ohms to the positive supply, GND, and may be DC or AC coupled. Outputs can be connected directly to a 50 Ohm groundterminated system or drive devices with CML logic input. The HMC857LC5 also features an output level control pin, VR, which allows for loss compensation or signal level optimization. The HMC857LC5 operates from a single -3.3 V supply and is available in ROHScompliant $3 \times 3 \mathrm{~mm}$ SMT package.

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}$, vee $=-3.3 \mathrm{~V}, \mathrm{vr}=0 \mathrm{~V}$

Parameter	Conditions	Min.	Typ.	Max	Units
Power Supply Voltage		-3.6	-3.3	-3.0	V
Power Supply Current			105		mA
Maximum Data Rate			14		Gbps
Maximum Select Rate			14		GHz
Input Voltage Range		-1.5		0.5	V
Input Differential Range		0.1		2.0	Vp-p
Input Return Loss	Frequency <20 GHz		10		dB
Output Amplitude	Single-Ended, peak-to-peak		500		mVp-p
	Differential, peak-to-peak		1000		mVp-p
Output High Voltage			-10		mV
Output Low Voltage			-510		mV

Electrical Specifications (continued)

Parameter	Conditions	Min.	Typ.	Max
Output Rise / Fall Time	Differential, $20 \%-80 \%$		21	
Output Return Loss	Frequency $<22 \mathrm{GHz}$		10	
Random Jitter, Jr	rms $^{[1]}$	0.08	0.11	
Deterministic Jitter, Jd	peak-to-peak, $2^{15}-1$ PRBS input ${ }^{[1]}$		ps rms	
Propagation Delay, A or B to D ${ }_{\text {OUT }}$, td		2	$\mathrm{ps}, \mathrm{p}-\mathrm{p}$	
Propagation Delay Select to Data, tds			117	ps
Set Up \& Hold Time, $\mathrm{t}_{\text {SH }}$			114	ps

[1] Added jitter calculated by de-embedding the source's jitter at 13 Gbps, $2^{15}-1$ PRBS input.

DC Current vs. Supply Voltage [1][2]

Output Differential Voltage

vs. Supply Voltage [1][2]

DC Current vs. VR ${ }^{[2][3]}$

Output Differential Voltage vs. VR ${ }^{[2][3]}$

[1] $\mathrm{VR}=0.0 \mathrm{~V}$
[2] Frequency $=13 \mathrm{GHz}$
[3] $\mathrm{Vee}=-3.3 \mathrm{~V}$

HMC857LC5
14 Gbps, 2 x 2 CROSSPOINT SWITCH WITH PROGRAMMABLE OUTPUT VOLTAGE

Rise / Fall Time vs. Supply Voltage ${ }^{[1][2]}$

Select Input Return Loss vs. Frequency ${ }^{[1][3][4]}$

Output Return Loss vs. Frequency ${ }^{[1][3][4]}$

[1] VR $=0.0 \mathrm{~V}$
[2] Frequency $=13 \mathrm{GHz}$
[3] Vee $=-3.3 \mathrm{~V}$
[5] Device measured on evaluation board with port extensions

Rise / Fall Time vs. VR ${ }^{[2][3]}$

Data Input Return Loss vs. Frequency ${ }^{[1][3][4]}$

Response vs. Input Power [1] [3] [5]

[4] Device measured on evaluation board with gating

Isolation [1] [2] [3]

Eye Diagram

[1] Test Conditions:
Waveform generated with a differential 400 mV Agilent N4903A J-Bert with a 13 Gbps PN $2^{15}-1$ signal.
Eye Diagram data presented on a Tektronix CSA 8000

Timing Diagram

td $=$ propagation delay, \mathbb{N} to Aout
tds $=$ propagation delay, Select to DataOut

Truth Table

Inputs		Outputs
SB	SA	DP
X	L	IN0 ->A
X	H	IN1 ->A
L	X	IN0 ->B
H	X	IN1 -> B
H = Positive voltage level L = Negative voltage level		
Notes: D $~=~ D P ~-~ D N ~$		
INO = INOP - INON		
IN1 = IN1P - IN1N		

[1] $\mathrm{VR}=0.0 \mathrm{~V}$
[2] Device measured on evaluation board with port extensions
[3] $\mathrm{Vee}=-3.3 \mathrm{~V}$

Absolute Maximum Ratings

Power Supply Voltage (Vee)	-3.75 V to +0.5 V
Input Signals	-2.0 V to 0.5 V
Output Signals	-1.5 V to 0.5 V
Junction Temperature	$125^{\circ} \mathrm{C}$
Continuous Pdiss $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right.$ (derate $33.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $85^{\circ} \mathrm{C}$)	1.33 W
Thermal Resistance $\left(\mathrm{R}_{\text {th }}\right.$-j-p Wage paddle	$30{ }^{\circ} \mathrm{C} / \mathrm{W}$
Worst case device to package	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 1 B

Outline Drawing

BOTTOM VIEW

NOTES:

1. PACKAGE BODY MATERIAL: ALUMINA
2. LEAD AND GROUND PADDLE PLATING:

30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM -C-
6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
7. PADDLE MUST BE SOLDERED TO Vee.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[2]}$
HMC857LC5	Alumina, White	Gold over Nickel	MSL3 ${ }^{[1]}$	H857 XXXX

[^0]For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824 WITH PROGRAMMABLE OUTPUT VOLTAGE

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
$\begin{gathered} 1,4,5,8,11,14 \\ 17,20,21,24 \end{gathered}$	GND	Signal Grounds	$\underbrace{\text { OGND }}$
$\begin{gathered} 2,3, \\ 6,7 \end{gathered}$	$\begin{gathered} \ln 0+, \ln 0-, \\ \ln 1+, \ln 1- \end{gathered}$	Differential Inputs: Current Mode Logic (CML) referenced to positive supply.	
$\begin{aligned} & 9,10 \\ & 15,16 \end{aligned}$	$\begin{aligned} & \text { SelB+, SelB-, } \\ & \text { SelA+, SelA- } \end{aligned}$	Differential Select Inputs: Current Mode Logic (CML) referenced to positive supply.	
$\begin{gathered} 12,13,25,29, \\ 32 \end{gathered}$	N/C	No connection necessary. These pins may be connected to RF/DC ground without affecting performance.	
$\begin{aligned} & 18,19, \\ & 22,23 \end{aligned}$	OutB-, OutB+, OutA-, OutA+	Differential Outputs: Current Mode Logic (CML) referenced to positive supply.	
26, 31	GND	Supply Ground	$\frac{\text { OGND }}{\underline{=}}$
$\begin{gathered} \text { 27, } 30 \\ \text { Package Base } \end{gathered}$	Vee	These pins and the exposed paddle must be connected to the negative voltage supply.	
28	VR	Output level control. Output level may be increased or decreased by applying a voltage to VR per "Output Differential vs. VR" plot.	VRO—m

14 Gbps, 2 x 2 CROSSPOINT SWITCH WITH PROGRAMMABLE OUTPUT VOLTAGE

Evaluation PCB

List of Materials for Evaluation PCB $126968{ }^{[1]}$

Item	Description
J1 - J6, J9- J14	PCB Mount SMA RF Connectors
J15 - J20	DC Pin
JP1	0.1 " Header with Shorting Jumper
C1, C2	4.7μ F Capacitor, Tantalum
C3 - C5	330 pF Capacitor, 0402 Pkg.
R1	10 Ohm Resistor, 0603 Pkg.
U1	HMC857LC5 2×2 Crossbar Switch
PCB [2]	126966 Evaluation Board

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Arlon 25FR or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed package base should be connected to Vee. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. Install jumper on JP1 to short VR to GND for normal operation.

Application Circuit

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-8MSOPEBZ TPS2061EVM-292 MAX4993EVKIT+ ISL54059EVAL1Z MAX4989EVKIT+ MAX14983EEVKIT\# MAX14589EEVKIT\# TPS2051BEVM TPS2560DRCEVM-424 TSU6721EVM BOB-09056 EKIT01-HMC1027BG TPS2561DRCEVM-424 2717 ISL54220IRUEVAL1Z TS3USB221AEVM 126968-HMC857LC5 EVAL-ADGS1212SDZ TPS22924CEVM-532 ASL1101 SIP32102EVB DC858A DC892A-B EVAL-10MSOPEBZ EVAL-14TSSOPEBZ EVAL-16TSSOPEBZ EVAL-28TSSOPEBZ EVAL5SC70EBZ EVAL-ADG4612EBZ EVAL-ADG5243FEBZ EVAL-ADG5249FEBZ EVAL-ADG5298EB1Z EVAL-ADG5412BFEBZ EVAL-ADG5412FEBZ EVAL-ADG5436FEBZ EVAL-ADG5462FEBZ EVAL-ADG788EBZ EVAL-ADG854EBZ EVAL-ADG884EBZ EVAL-ADG888EBZ EVAL-ADGS1208SDZ EVAL-ADGS1209SDZ EVAL-ADGS1409SDZ EVAL-ADGS1412SDZ EVALADGS5414SDZ DFR0576 DG1208EVKIT\# DG1209EVKIT\# MAX12005EVKIT\# MAX14575AEVKIT\#

[^0]: [1] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
 [2] 4-Digit lot number XXXX

