

v04 0914

EARTH FRIENDLY

14 Gbps, 2 x 2 CROSSPOINT SWITCH WITH PROGRAMMABLE OUTPUT VOLTAGE

Typical Applications

The HMC857LC5 is ideal for:

- SONET OC-192 and 10 GbE
- 16G Fiber Channel
- Networking & Storage
- Dual 2:1 Selector
- 1:2 Fanout with Input Mux

Features

Supports High Data Rates: up to 14 Gbps Differential or Single-Ended Inputs / Outputs Fast Rise and Fall Times: 21 / 21 ps Low Power Consumption: 345 mW typ. Programmable Differential Output Voltage Swing: 475 - 1200 mVp-p Propagation Delay: 117 ps Single Supply: -3.3 V 32 Lead Ceramic 5 x 5 mm SMT Package: 25 mm²

General Description

The HMC857LC5 is a 2x2 Crosspoint Switch designed to support data transmission rates of up to 14 Gbps and selector port operation up to 14 GHz. The selector routes the differential inputs to either one or both of the desired outputs upon assertion of the appropriately selected port.

All differential inputs to the HMC857LC5 are CML and terminated on-chip with 50 Ohms to the positive supply, GND, and may be DC or AC coupled. Outputs can be connected directly to a 50 Ohm groundterminated system or drive devices with CML logic input. The HMC857LC5 also features an output level control pin, VR, which allows for loss compensation or signal level optimization. The HMC857LC5 operates from a single -3.3 V supply and is available in ROHScompliant 3x3 mm SMT package.

Functional Diagram

Electrical Specifications, $T_A = +25 \text{ °C}$, Vee = -3.3 V, Vr = 0 V

Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage		-3.6	-3.3	-3.0	V
Power Supply Current			105		mA
Maximum Data Rate			14		Gbps
Maximum Select Rate			14		GHz
Input Voltage Range		-1.5		0.5	V
Input Differential Range		0.1		2.0	Vp-p
Input Return Loss	Frequency <20 GHz		10		dB
Output Amplitude	Single-Ended, peak-to-peak		500		mVp-p
	Differential, peak-to-peak		1000		mVp-p
Output High Voltage			-10		mV
Output Low Voltage			-510		mV

14 Gbps, 2 x 2 CROSSPOINT SWITCH WITH PROGRAMMABLE OUTPUT VOLTAGE

Electrical Specifications (continued)

Parameter	Conditions	Min.	Тур.	Мах	Units
Output Rise / Fall Time	Differential, 20% - 80%		21		ps
Output Return Loss	Frequency <22 GHz		10		dB
Random Jitter, Jr	rms ^[1]		0.08	0.11	ps rms
Deterministic Jitter, Jd	peak-to-peak, 2 ¹⁵ -1 PRBS input ^[1]		2		ps, p-p
Propagation Delay, A or B to D _{OUT} , td			117		ps
Propagation Delay Select to Data, tds			114		ps
Set Up & Hold Time, t _{SH}			5		ps

[1] Added jitter calculated by de-embedding the source's jitter at 13 Gbps, 2¹⁵ -1 PRBS input.

Output Differential Voltage vs. Supply Voltage [1][2]

Output Differential Voltage vs. VR [2][3]

For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

14 Gbps, 2 x 2 CROSSPOINT SWITCH WITH PROGRAMMABLE OUTPUT VOLTAGE

Rise / Fall Time vs. Supply Voltage [1] [2] 26 24 RISE/FALL TIME (ps) 22 20 18 16 -3.7 -3.6 -3.5 -3.4 -3.3 -3.2 -3.1 -3 -2.9 SUPPLY VOLTAGE (V)

Select Input Return Loss vs. Frequency [1] [3] [4]

Output Return Loss vs. Frequency [1] [3] [4]

Rise / Fall Time vs. VR [2] [3]

Data Input Return Loss vs. Frequency [1] [3] [4]

[4] Device measured on evaluation board with gating

14 Gbps, 2 x 2 CROSSPOINT SWITCH WITH PROGRAMMABLE OUTPUT VOLTAGE

Isolation [1] [2] [3]

Eye Diagram

Timing Diagram

[1] Test Conditions:

Waveform generated with a differential 400 mV Agilent N4903A J-Bert with a 13 Gbps PN 2¹⁵ -1 signal.

Eye Diagram data presented on a Tektronix CSA 8000

Truth Table

Inputs		Outputs	
SB	SA	DP	
Х	L	IN0 ->A	
Х	Н	IN1 ->A	
L	Х	IN0 ->B	
Н	Х	IN1 -> B	
H = Positive voltage level L = Negative voltage level			
Notes: D = DP - DN IN0 = IN0P - IN0N IN1 = IN1P - IN1N			

HIGH SPEED LOGIC - SMT

[1] VR = 0.0 V [2] Device measured on evaluation board with port extensions [3] Vee = -3.3 V

HMC857LC5 v04.0914

RoHS√

14 Gbps, 2 x 2 CROSSPOINT SWITCH WITH PROGRAMMABLE OUTPUT VOLTAGE

Absolute Maximum Ratings

•
-3.75 V to +0.5 V
-2.0 V to 0.5 V
-1.5 V to 0.5 V
125 °C
1.33 W
30 °C/W
-65 °C to +150 °C
-40 °C to +85 °C
Class 1B

Outline Drawing

5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-

6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

7. PADDLE MUST BE SOLDERED TO Vee.

BOTTOM VIEW

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC857LC5	Alumina, White	Gold over Nickel	MSL3 ^[1]	H857 XXXX
[1] Max peak reflow temperature of 260 °C				

temperatu e of 260 °C [2] 4-Digit lot number XXXX

ROHS

14 Gbps, 2 x 2 CROSSPOINT SWITCH WITH PROGRAMMABLE OUTPUT VOLTAGE

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 11, 14, 17, 20, 21, 24	GND	Signal Grounds	
2, 3, 6, 7	ln0+, ln0-, ln1+, ln1-	Differential Inputs: Current Mode Logic (CML) referenced to positive supply.	GND GND Inx+ GND GND Inx- Contraction Cont
9, 10, 15, 16	SelB+, SelB-, SelA+, SelA-	Differential Select Inputs: Current Mode Logic (CML) referenced to positive supply.	GND O GND Selx+O Selx-
12, 13, 25, 29, 32	N/C	No connection necessary. These pins may be connected to RF/DC ground without affecting performance.	
18, 19, 22, 23	OutB-, OutB+, OutA-, OutA+	Differential Outputs: Current Mode Logic (CML) referenced to positive supply.	GND GND Outx+O Outx+O Outx+O
26, 31	GND	Supply Ground	
27, 30 Package Base	Vee	These pins and the exposed paddle must be connected to the negative voltage supply.	
28	VR	Output level control. Output level may be increased or decreased by applying a voltage to VR per "Output Differential vs. VR" plot.	VR 0

ROHS V

14 Gbps, 2 x 2 CROSSPOINT SWITCH WITH PROGRAMMABLE OUTPUT VOLTAGE

Evaluation PCB

List of Materials for Evaluation PCB 126968^[1]

Item	Description
J1 - J6, J9 - J14	PCB Mount SMA RF Connectors
J15 - J20	DC Pin
JP1	0.1" Header with Shorting Jumper
C1, C2	4.7 µF Capacitor, Tantalum
C3 - C5	330 pF Capacitor, 0402 Pkg.
R1	10 Ohm Resistor, 0603 Pkg.
U1	HMC857LC5 2 x 2 Crossbar Switch
PCB ^[2]	126966 Evaluation Board

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Arlon 25FR or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed package base should be connected to Vee. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. Install jumper on JP1 to short VR to GND for normal operation.

14 Gbps, 2 x 2 CROSSPOINT SWITCH WITH PROGRAMMABLE OUTPUT VOLTAGE

Application Circuit

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switch IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

EVAL-8MSOPEBZ TPS2061EVM-292 MAX4993EVKIT+ ISL54059EVAL1Z MAX4989EVKIT+ MAX14983EEVKIT# MAX14589EEVKIT# TPS2051BEVM TPS2560DRCEVM-424 TSU6721EVM BOB-09056 EKIT01-HMC1027BG TPS2561DRCEVM-424 2717 ISL54220IRUEVAL1Z TS3USB221AEVM 126968-HMC857LC5 EVAL-ADGS1212SDZ TPS22924CEVM-532 ASL1101 SIP32102EVB DC858A DC892A-B EVAL-10MSOPEBZ EVAL-14TSSOPEBZ EVAL-16TSSOPEBZ EVAL-28TSSOPEBZ EVAL-5SC70EBZ EVAL-ADG4612EBZ EVAL-ADG5243FEBZ EVAL-ADG5249FEBZ EVAL-ADG5298EB1Z EVAL-ADG5412BFEBZ EVAL-ADG5412FEBZ EVAL-ADG5436FEBZ EVAL-ADG5462FEBZ EVAL-ADG788EBZ EVAL-ADG854EBZ EVAL-ADG888EBZ EVAL-ADG5412FEBZ EVAL-ADG51208SDZ EVAL-ADG51209SDZ EVAL-ADG51409SDZ EVAL-ADGS1412SDZ EVAL-ADGS5414SDZ DFR0576 DG1208EVKIT# DG1209EVKIT# MAX12005EVKIT# MAX14575AEVKIT#