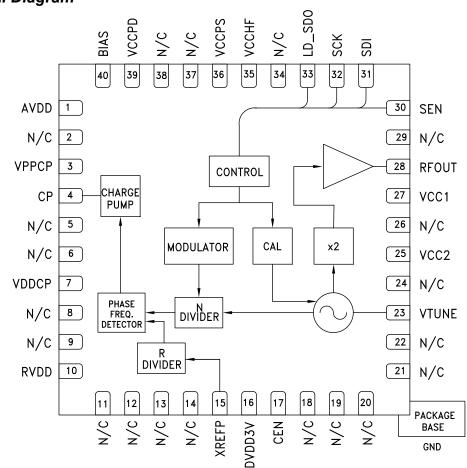


v07.1211

HMC836LP6CE

FRACTIONAL-N PLL WITH INTEGRATED VCO, 3365 - 3705 MHz

Features


- RF Bandwidth: 3365 to 3705 MHz
- Ultra Low Phase Noise -98 dBc/Hz in Band Typ
- Figure of Merit (FOM) -227 dBc
- < 180 fs rms Jitter (Integrated 100 Hz to 100 MHz SSB)
- 24-bit Frequency Step Size, Resolution 3 Hz typ
- Exact Frequency Mode
- Built-in Digital Self Test
- 40 Lead 6x6 mm SMT Package: 36 mm²

Typical Applications

- Cellular/4G Infrastructure
- Repeaters and Femtocells
- Communications Test Equipment
- CATV Equipment

Functional Diagram

- Phased Array Applications
- DDS Replacement
- Very High Data Rate Radios

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v07.1211

FRACTIONAL-N PLL WITH INTEGRATED VCO, 3365 - 3705 MHz

General Description

The HMC836LP6CE is a fully functioned Fractional-N Phase-Locked-Loop (PLL) with an Integrated Voltage Controlled Oscillator (VCO). The PLL consists of an integrated low noise VCO with x2 output, an autocalibration subsystem for low voltage VCO tuning, a very low noise digital Phase Detector (PD), a precision controlled charge pump, a low noise reference path divider and a fractional divider.

The fractional PLL features an advanced delta-sigma modulator design that allows both fine step sizes and low spurious products. The phase detector (PD) features cycle slip prevention (CSP) technology to allow faster frequency hopping times. Ultra low in-close phase noise and low spurious also allows wider loop bandwidths for faster frequency hopping and low micro-phonics.

For theory of operation and register map refer to the "<u>PLLs with Integrated VCOs - RF VCOs Operating Guide</u>". To view the Operating Guide, please visit www.hittite.com and choose HMC836LP6CE from the "Search by Part Number" pull down menu.

Electrical Specifications, $T_A = +25^{\circ}$ C VPPCP, VDDCP, VCC1, VCC2 = 5V ±4%; RVDD, AVDD, DVDD3V, VCCPD, VCCHF, VCCPS = 3.3V ±6% GNDCP = GNDLS = Ground Paddle = 0V

Parameter	Condition	Min.	Тур.	Max.	Units
RF Output Characteristics					
VCO Frequency		1682.5		1852.5	MHz
RF Output Frequency at f _{VCO} x2		3365		3705	MHz
RF Output Power at f _{VCO} x2		-1	6	9	dBm
VCO Tuning Sensitivity	Measured at 2 GHz, 2V		15		MHz/V
VCO Supply Pushing	Measured at 2 GHz, 2V	-2		1.5	MHz/V
RF Output 2nd Harmonic			-25		dBc
RF Output 3rd Harmonic			-23		dBc
RF Output 4th Harmonic			-31		dBc
RF Divider Characteristics					
19-Bit N-Divider Range (Integer)	Max = 2 ¹⁹ - 1	16		524,287	
19-Bit N-Divider Range (Fractional)	Fractional nominal divide ratio varies (-3 / +4) dynamically max	20		524,283	
REF Input Characteristics	· · · · ·				•
Ref Input Frequency	Synthesizer phase noise can degrade by about 5dB when oper- ating with a reference frequency near the low end of this range.	10	50	200	MHz
Ref Input Range	AC Coupled	1.5	2	3.3	Vpp
Ref Input Capacitance				5	pF
14-Bit R-Divider Range		1		16,383	
Phase Detector (PD)				•	
PD Frequency Fractional Feedback Mode	[1]	0.1		100	MHz
PD Frequency Fractional Feedforward [1] Mode (and Register 6 [17:16] = 10)		0.1		80	MHz
PD Frequency Integer Mode	[1]	0.1		125	MHz

Note 1: This maximum phase detector frequency can only be achieved if the minimum N value is respected. eg. In the case of fractional feedback mode, the maximum PFD rate = fvco/20 or 100MHz, whichever is less.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v07.1211

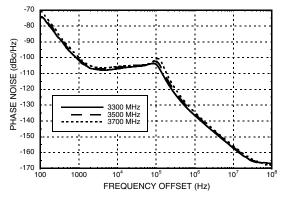
FRACTIONAL-N PLL WITH INTEGRATED VCO, 3365 - 3705 MHz

Electrical Specifications (Continued)

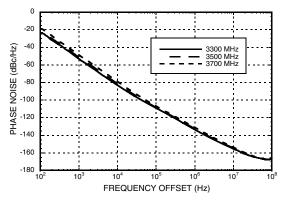
Parameter	Condition	Min.	Тур.	Max.	Units
Charge Pump	Oundition	IVIIII.	iyp.	ινίαλ.	Units
Output Current		0.02		2.54	mA
Charge Pump Gain Step Size (5-Bits)		0.02	20	2.54	μΑ
PD/Charge Pump SSB Phase Noise	50 MHz Ref, Input Referred,		20		μ/
1 kHz			-141		dBc/Hz
10 kHz	add 1 dB for fractional		-149		dBc/Hz
100 kHz	add 3 dB for fractional		-153		dBc/Hz
Logic Inputs			100		000/112
VIH Input High Voltage		DVDD3V-0.4		DVDD3V	v
VIL Input Low Voltage		0		0.4	v
Logic Outputs				0.1	
VOH Output High Voltage		DVDD3V-0.4		DVDD3V	v
VOL Output Low Voltage		0		0.4	v
Power Supply Voltages					v
	AVDD, VCCHF, VCCPS,				
Analog 3.3V Supplies	VCCPD, RVDD	3.0	3.3	3.5	V
Digital Supply	DVDD3V	3.0	3.3	3.5	V
Analog 5V Supplies	VPPCP, VDDCP, VCC1, VCC2	4.8	5	5.2	V
Power Supply Currents					
+5V Analog Charge Pump	VPPCP, VDDCP		5.3		mA
+5V VCO Core and PLL Buffer	VCC2		56		mA
+5V VCO RF Buffer	VCC1		36		mA
+3.3V Analog	AVDD, VCCHF, VCCPS, VCCPD, RVDD		45		mA
+3.3V Digital	DVDD3V		6.5		mA
Power Down - Crystal Off	Reg 01h=0, Crystal Not Clocked		10		μA
Power Down - Crystal On, 100 MHz	Reg 01h=0, Crystal Clocked 100 MHz		10	200	μA
Power on Reset					
Typical Reset Voltage on DVDD			700		mV
DVDD Voltage for No Reset		1.5			V
Power on Reset Delay			250		μs
VCO Open Loop SSB Phase Noise at f	o = 1.75 GHz				
10 kHz Offset			-91		dBc/Hz
100 kHz Offset			-111		dBc/Hz
1 MHz Offset			-136		dBc/Hz
10 MHz Offset			-157		dBc/Hz
100 MHz Offset			-169		dBc/Hz
Closed Loop Phase Noise PLL + VCO	at fo = 3.5 GHz				
Integer, 50 MHz PFD	1 kHz Offset		-102		dBc/Hz
Integer, 50 MHz PFD	10 kHz Offset		-107		dBc/Hz
Integer, 50 MHz PFD	100 kHz Offset		-107		dBc/Hz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

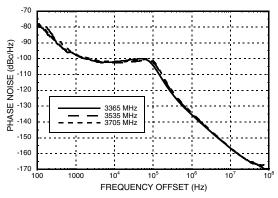
v07.1211

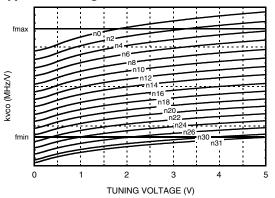


FRACTIONAL-N PLL WITH INTEGRATED VCO, 3365 - 3705 MHz


Electrical Specifications (Continued)

Parameter	Condition	Min.	Тур.	Max.	Units
Fractional, 50 MHz PFD	1 kHz Offset	-197			dBc/Hz
Fractional, 50 MHz PFD	10 kHz Offset	-102		dBc/Hz	
Fractional, 50 MHz PFD	100 kHz Offset	-102		dBc/Hz	
Figure of Merit	Normalized 1 Hz				
Integer Mode	Measured w/ 50 MHz PD at 30 kHz Offset		-229		dBc/Hz
Fractional Mode	Measured w/ 50 MHz PD at 30 kHz Offset		-227		dBc/Hz

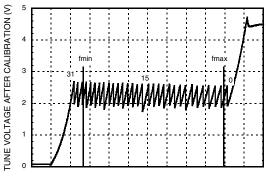

Closed Loop Integer Mode, SSB Phase Noise


VCO Free Running SSB Phase Noise

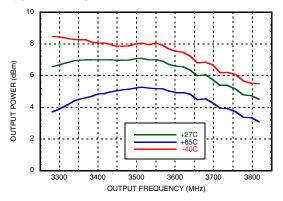
Typical Closed Loop Fractional Mode, SSB Phase Noise [1]

Typical Tuning Curves vs. Switch Position

[1] Fractional Mode, 50 MHz Crystal, R=1, ~80 kHz Loop BW, (Loop filter values: Contact factory for component values) 2mA Charge Pump, -385µA Offset.


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v07.1211



Typical VCO Tuning Voltage After Calibration vs. VCO Frequency & CAP Setting ^[2]

VCO FREQUENCY

Typical Output Power

FRACTIONAL-N PLL WITH INTEGRATED VCO, 3365 - 3705 MHz

Typical VCO Sensitivity vs. VCO Tune Voltage & CAP Setting @ fo^[2]

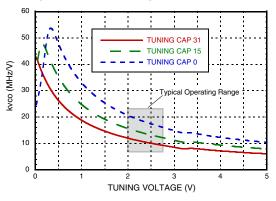
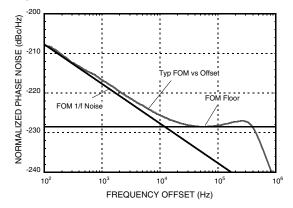



Figure of Merit

[1] Fractional Mode, 50 MHz Crystal, R=1, ~80 kHz Loop BW, (Loop filter values: Contact factory for component values) 2mA Charge Pump, -385µA Offset.

[2] The CAP setting is the digitally selectable VCO tank capacitor setting. This feature allows the nominal center frequency of the VCO to be adjusted by switching in/out VCO tank capacitors.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v07.1211

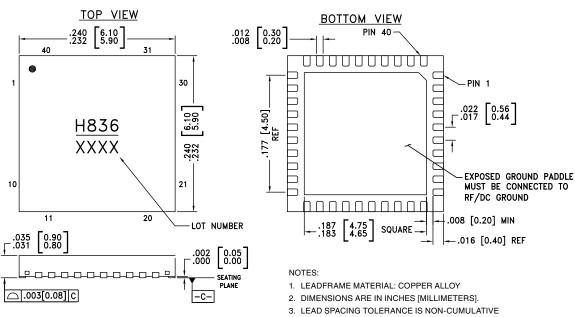
FRACTIONAL-N PLL WITH INTEGRATED VCO, 3365 - 3705 MHz

Pin Descriptions

Pin Number	Function	Description	
1	AVDD	DC Power Supply for analog circuitry.	
2, 5, 6, 8, 9, 11 - 14, 18 - 22, 24, 26, 29, 34, 37, 38	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
3	VPPCP	Power Supply for charge pump analog section	
4	СР	Charge Pump Output	
7	VDDCP	Power Supply for the charge pump digital section	
10	RVDD	Reference Supply	
15	XREFP	Reference Oscillator Input	
16	DVDD3V	DC Power Supply for Digital (CMOS) Circuitry	
17	CEN	Chip Enable. Connect to logic high for normal operation.	
23	VTUNE	VCO Varactor. Tuning Port Input.	
25	VCC2	VCO Analog Supply 2	
27	VCC1	VCO Analog Supply 1	
28	RFOUT	RF Doubler Output	
30	SEN	PLL Serial Port Enable (CMOS) Logic Input	
31	SDI	PLL Serial Port Data (CMOS) Logic Input	
32	SCK	PLL Serial Port Clock (CMOS) Logic Input	
33	LD_SDO	Lock Detect, or Serial Data, or General Purpose (CMOS) Logic Output (GPO)	
35	VCCHF	DC Power Supply for Analog Circuitry	
36	VCCPS	DC Power Supply for Analog Prescaler	
39	VCCPD	DC Power Supply for Phase Detector	
40	BIAS	External bypass decoupling for precision bias circuits. Note: 1.920V ±20mV reference voltage (BIAS) is generated internally and cannot drive an external load. Must be measured with 10GΩ meter such as Agilent 34410A normal 10MΩ DVM will read erroneously.	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FRACTIONAL-N PLL WITH INTEGRATED VCO, 3365 - 3705 MHz


Absolute Maximum Ratings

-		
-0.3V to +3.6V		
-0.3V to +5.8V		
-0.3V to +5.5V		
-40°C to +85°C		
-65°C to 125°C		
125 °C		
20 °C/W		
260°C		
40 sec		
Class 1B		

v07.1211

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Outline Drawing

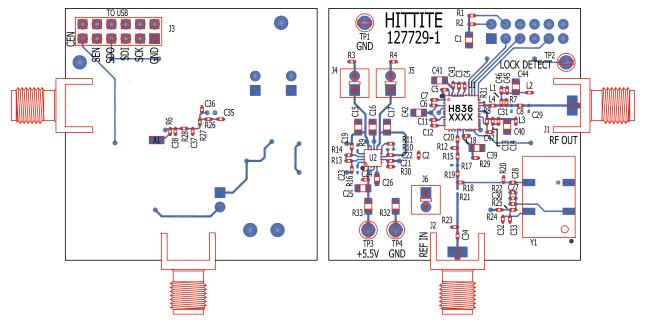
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm. ALL GROUND LEADS AND GROUND PADDLE MUST
- BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC836LP6CE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1	<u>H836</u> XXXX

[1] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v07.1211

FRACTIONAL-N PLL WITH INTEGRATED VCO, 3365 - 3705 MHz

Evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Evaluation PCB Schematic

To view this <u>Evaluation PCB Schematic</u> please visit www.hittite.com and choose HMC836LP6CE from the "Search by Part Number" pull down menu to view the product splash page.

v07.1211

FRACTIONAL-N PLL WITH INTEGRATED VCO, 3365 - 3705 MHz

List of Materials for Evaluation PCB 127832 [1]

Item	Description	
J1, J2	PCB Mount SMA RF Connector	
J3	Dual Row Terminal Strip	
J4 - J6	Connector Header	
C1, C15 - C17, C25	10 μF Capacitor, 0805 Pkg.	
C2, C3, C6, C7, C11, C12, C14, C18, C27, C43, C45	0.47 µF Capacitor, 0402 Pkg.	
C4, C13	22 pF Capacitor, 0402 Pkg.	
C5, C33	1000 pF Capacitor, 0402 Pkg.	
C8	8.2 pF Capacitor, 0402 Pkg.	
C19 - C24, C28, C30, C32, C34	0.1 μF Capacitor, 0402 Pkg.	
C26	1.0 μF Capacitor, 0603 Pkg.	
C35	3300 pF Capacitor, 0402 Pkg.	
C36	270 pF Capacitor, 0402 Pkg.	
C37, C38	68 pF Capacitor, 0402 Pkg.	
C39 - C42, C44	4.7 μF Tantalum Capacitor, 0805 Pkg	
C46	27 pF Capacitor, 0402 Pkg.	
C47	47 pF Capacitor, 0402 Pkg.	
R1, R2, R11, R15, R18, R19, R21, R24	Zero Ohm Resistor, 0402 Pkg.	
R3, R4	1 Ohm Resistor, 0402 Pkg.	
R6	1 MOhm Resistor, 0402 Pkg.	
R8	22 Ohm Resistor, 0402 Pkg.	
R12, R20, R29	51 Ohm Resistor, 0402 Pkg.	
R13, R14, R30	220 kOhm Resistor, 0402 Pkg.	
R22, R25	20 kOhm Resistor, 0402 Pkg.	
R26 - R28	1k Ohm Resistor, 0402 Pkg.	
R32, R33	0 Ohm Resistor, 0805 Pkg.	
L1	10 nH Inductor, 0402 Pkg.	
L2	68 Ohm Resistor, 0402 Pkg.	
L3	4.7 nH Inductor, 0402 Pkg.	
L4	1.5 nH Inductor, 0402 Pkg.	
TP3, TP4	Test Point PC Compact SMT	
U1	HMC836LP6CE PLL with Integrated VCO	
U2	HMC860LP3E Low Noise Quad Linear Regulator	
Y1	3.3V, 50 MHz VCXO Crystal Oscillator	
PCB ^[2]	127729 Evaluation Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25FR and FR4

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v07.1211

Notes:

FRACTIONAL-N PLL WITH INTEGRATED VCO, 3365 - 3705 MHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock & Timer Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

AD9517-0A/PCBZ AD9517-2A/PCBZ AD9522-4/PCBZ AD9520-5PCBZ AD9530/PCBZ AD9553/PCBZ ADCLK914PCBZ LMH2180SDEVAL DSC400-0333Q0032KE1-EVB TDGL013 MAX2750EVKIT ADCLK946PCBZ ADCLK946/PCBZ MAX2622EVKIT EKIT01-HMC1032LP6G Si5332-8IX-EVB Si5332-12IX-EVB RV-3029-C2-EVALUATION-BOARD-OPTION-B Si5332-6IX-EVB SKY72310-11-EVB EV1HMC8364LP6G RV-8263-C7-EVALUATION-BOARD EVK9FGV1002 EVK9FGV1008 EV1HMC6832ALP5L EVAL01-HMC830LP6GE EVAL01-HMC911LC4B EVAL01-HMC988LP3E TS3002DB 125605-HMC702LP6CE LMX2487E-EVM MIKROE-2481 2045 EKIT01-HMC835LP6G EKIT01-HMC834LP6GE TS3006DB DSC-TIMEFLASH2-KIT1 110227-HMC510LP5 110227-HMC513LP5 AD9515/PCBZ ADCLK948/PCBZ ADCLK954/PCBZ 112261-HMC739LP4 ADCLK925/PCBZ AD9522-0/PCBZ AD9520-4/PCBZ AC164147 DFR0469 LMK04133EVAL/NOPB LMH2191TMEVAL/NOPB