



## GaAs pHEMT MMIC ½ WATT POWER AMPLIFIER, 22 - 26.5 GHz

#### Typical Applications

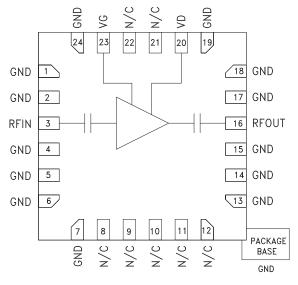
The HMC863LP4E is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios
- VSAT
- Military & Space

#### **Features**

Saturated Output Power: up to +27.5 dBm @ 15% PAE

High Output IP3: +33 dBm


High Gain: 21.5 dB

DC Supply: +6V @ 350mA

No External Matching Required

24 Lead 4x4 mm SMT Package: 16 mm<sup>2</sup>

#### **Functional Diagram**



#### **General Description**

The HMC863LP4E is a three stage GaAs pHEMT MMIC ½ Watt Power Amplifier which operates between 22 and 26.5 GHz. The HMC863LP4E provides 21.5 dB of gain, +27.5 dBm of saturated output power and 15% PAE from a +6V supply. High output IP3 makes the HMC863LP4E ideal for point-to-point and point-to-multi-point radio systems as well as VSAT applications. The RF I/Os are DC blocked and matched to 50 Ohms for ease of integration into higher level assemblies. The HMC863LP4E can also be operated from a 5V supply with only a slight decrease in output power & IP3.

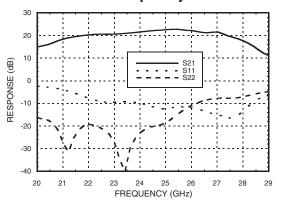
### Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = Vdd1 = Vdd2 = +6V, Idd = 350mA [1]

| Parameter                                         | Min.      | Тур.  | Max. | Units  |
|---------------------------------------------------|-----------|-------|------|--------|
| Frequency Range                                   | 22 - 26.5 |       | GHz  |        |
| Gain                                              | 19        | 21.5  |      | dB     |
| Gain Variation Over Temperature                   |           | 0.032 |      | dB/ °C |
| Input Return Loss                                 |           | 11    |      | dB     |
| Output Return Loss                                |           | 15    |      | dB     |
| Output Power for 1 dB Compression (P1dB)          | 22        | 24.5  |      | dBm    |
| Saturated Output Power (Psat)                     |           | 27    |      | dBm    |
| Output Third Order Intercept (IP3) <sup>[2]</sup> |           | 33    |      | dBm    |
| Total Supply Current (Idd)                        |           | 350   | 380  | mA     |

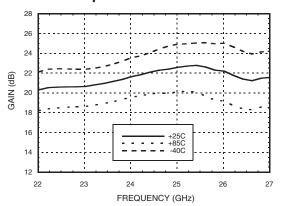
<sup>[1]</sup> Adjust Vgg between -2 to 0V to achieve Idd = 350mA typical.

<sup>[2]</sup> Measurement taken at +6V @ 350mA, Pout / Tone = +14 dBm

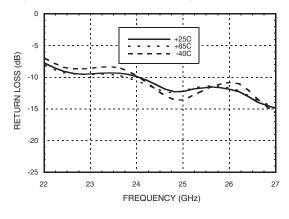
GaAs pHEMT MMIC 1/2 WATT


**POWER AMPLIFIER, 22 - 26.5 GHz** 

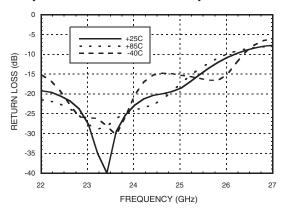



v02.0111

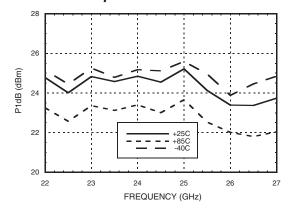



### Broadband Gain & Return Loss vs. Frequency




#### Gain vs. Temperature




#### Input Return Loss vs. Temperature



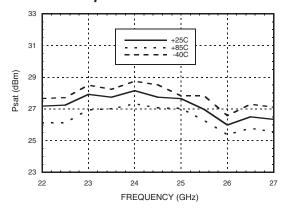
#### **Output Return Loss vs. Temperature**



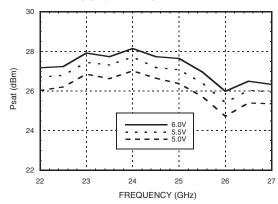
#### P1dB vs. Temperature



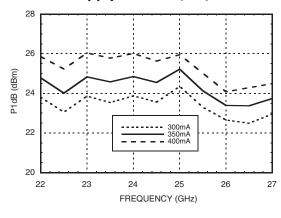
#### P1dB vs. Supply Voltage



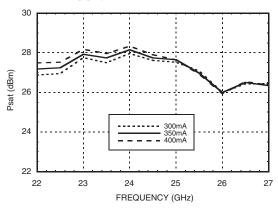


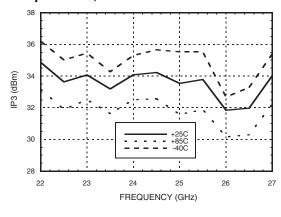

# GaAs pHEMT MMIC ½ WATT POWER AMPLIFIER, 22 - 26.5 GHz


#### Psat vs. Temperature

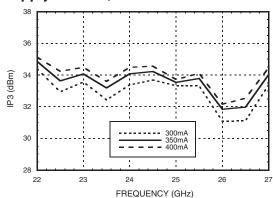



#### Psat vs. Supply Voltage




#### P1dB vs. Supply Current (Idd)




Psat vs. Supply Current (Idd)



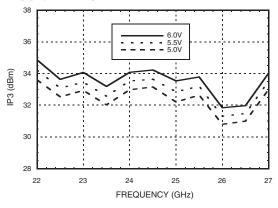
### Output IP3 vs. Temperature, Pout/Tone = +14 dBm



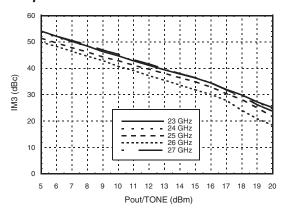
Output IP3 vs.
Supply Current, Pout/Tone = +14 dBm



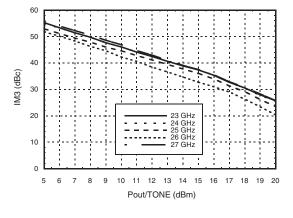
GaAs pHEMT MMIC 1/2 WATT


POWER AMPLIFIER, 22 - 26.5 GHz

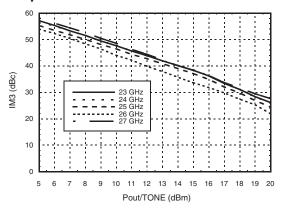



v02.0111

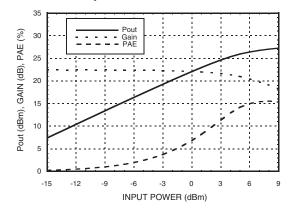



#### Output IP3 vs. Supply Voltage, Pout/Tone = +14 dBm

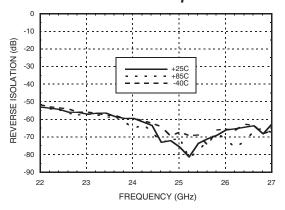



#### Output IM3 @ Vdd = +5V




#### **Output IM3 @ Vdd = +5.5V**

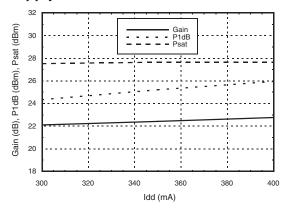



#### Output IM3 @ Vdd = +6V



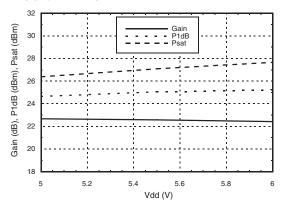
#### Power Compression @ 25 GHz



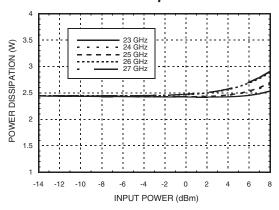

#### Reverse Isolation vs. Temperature








#### Gain & Power vs. Supply Current @ 25 GHz




# GaAs pHEMT MMIC ½ WATT POWER AMPLIFIER, 22 - 26.5 GHz

#### Gain & Power vs. Supply Voltage @ 25 GHz



#### **Power Dissipation**



#### **Absolute Maximum Ratings**

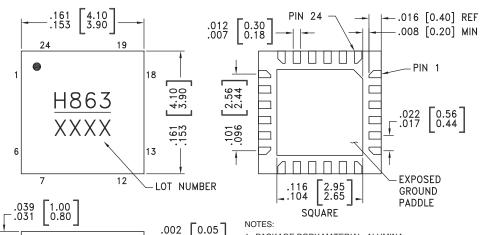
| Drain Bias Voltage (Vd)                                      | 6.3V           |
|--------------------------------------------------------------|----------------|
| RF Input Power (RFIN)                                        | +26 dBm        |
| Channel Temperature                                          | 150 °C         |
| Continuous Pdiss (T= 85 °C)<br>(derate 37 mW/°C above 85 °C) | 2.52 W         |
| Thermal Resistance (channel to ground paddle)                | 26.9 C/W       |
| Storage Temperature                                          | -65 to +150 °C |
| Operating Temperature                                        | -55 to +85 °C  |
| ESD Sensitivity (HBM)                                        | Class 0, 150V  |

#### Typical Supply Current vs. Vdd

| Vdd (V) | ldd (mA) |
|---------|----------|
| +5.0    | 350      |
| +5.5    | 350      |
| +6.0    | 350      |

Note: Amplifier will operate over full voltage ranges shown above Vgg adjusted to achieve Idd = 350mA at +5.5V




ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS





### GaAs pHEMT MMIC 1/2 WATT POWER AMPLIFIER, 22 - 26.5 GHz

#### **Outline Drawing**



PLANE

-C-

#### .002 0.05

1. PACKAGE BODY MATERIAL: ALUMINA

**BOTTOM VIEW** 

- 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.

#### Package Information

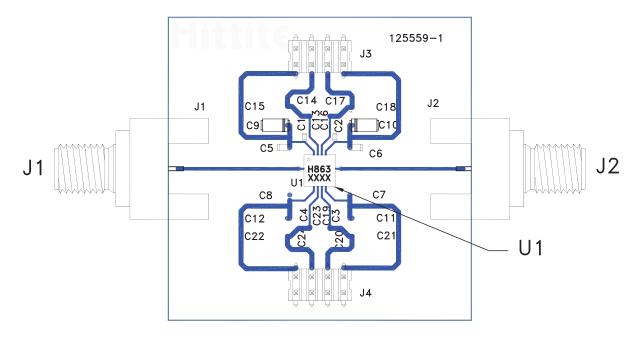
.003[0.08] C

| Part Number | Package Body Material                              | Lead Finish   | MSL Rating | Package Marking [1] |
|-------------|----------------------------------------------------|---------------|------------|---------------------|
| HMC863LP4E  | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2]   | <u>H863</u><br>XXXX |

<sup>[1] 4-</sup>Digit lot number XXXX

#### **Pin Descriptions**

| Pin Number                                             | Function | Description                                                                                                                              | Interface Schematic     |
|--------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1, 2, 4 - 7, 12 -<br>15, 17 - 19, 24<br>Package Bottom | GND      | Ground pins and package bottom must be connected to RF/DC ground.                                                                        | GND<br>=                |
| 3                                                      | RFIN     | This pin is AC coupled and matched to 50 Ohms.                                                                                           | RFIN ○──                |
| 8 - 11                                                 | N/C      | The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally. |                         |
| 16                                                     | RFOUT    | This pin is AC coupled and matched to 50 Ohms.                                                                                           | —                       |
| 20                                                     | Vd       | Drain bias for amplifier. External 100 pF, 0.1 μF and 4.7 μF bypass capacitors are required.                                             | oVd<br>-<br>-<br>-<br>- |
| 23                                                     | Vg       | Gate control for PA. Adjust Vg to achieve recommended bias current. External 100 pF, 0.1 μF and 4.7 μF bypass capacitors are required.   | vg o                    |


<sup>[2]</sup> Max peak reflow temperature of 260 °C





## GaAs pHEMT MMIC ½ WATT POWER AMPLIFIER, 22 - 26.5 GHz

#### **Evaluation PCB**

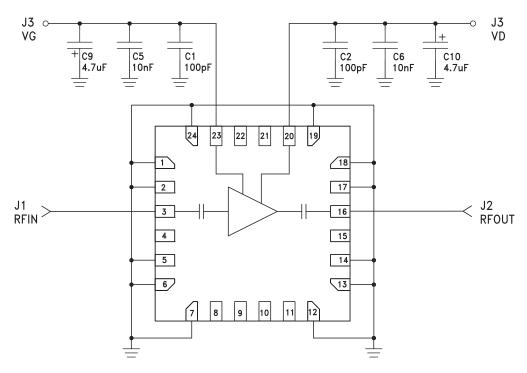


#### List of Materials for Evaluation PCB 130560 [1]

| Item    | Description                  |
|---------|------------------------------|
| J1 - J2 | 2.9 mm Connectors            |
| J3 - J4 | DC Pins                      |
| C1, C2  | 100 pF Capacitors, 0402 Pkg. |
| C6      | 10 kpF Capacitor, 0402 Pkg   |
| C10     | 4.7 μF Capacitor, 0402 Pkg.  |
| U1      | HMC863LP4E Power Amplifier   |
| PCB [2] | 125559 Evaluation PCB        |

<sup>[1]</sup> Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.


<sup>[2]</sup> Circuit Board Material: Rogers 4350 or Arlon FR4





# GaAs pHEMT MMIC ½ WATT POWER AMPLIFIER, 22 - 26.5 GHz

#### **Application Circuit**



### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB SKY13373-460LF-EVB