FEATURES

Microprocessor Compatible (6800, 8085, Z80, Etc.)
TTL/CMOS Compatible Inputs
On-Chip Data Latches
Endpoint Linearity
Low Power Consumption
Monotonicity Guaranteed (Full Temperature Range) Latch Free (No Protection Schottky Required)

APPLICATIONS

Microprocessor Controlled Gain Circuits Microprocessor Controlled Attenuator Circuits Microprocessor Controlled Function Generation Precision AGC Circuits
Bus Structured Instruments

GENERAL DESCRIPTION

The AD 7524 is a low cost, 8 -bit monolithic C M OS D AC designed for direct interface to most microprocessors.
Basically an 8-bit DAC with input latches, the AD 7524's load cycle is similar to the "write" cycle of a random access memory. U sing an advanced thin-film on CM OS fabrication process, the AD 7524 provides accuracy to 1/8 LSB with a typical power dissipation of less than 10 milliwatts.
A newly improved design eliminates the protection Schottky previously required and guarantees T TL compatibility when using a +5 V supply. L oading speed has been increased for compatibility with most microprocessors.
Featuring operation from +5 V to +15 V , the AD 7524 interfaces directly to most microprocessor buses or output ports.
Excellent multiplying characteristics (2- or 4-quadrant) make the AD 7524 an ideal choice for many microprocessor controlled gain setting and signal control applications.

REV. B

[^0]FUNCTIONAL BLOCK DIAGRAM

ORDERING GUIDE

Model ${ }^{\mathbf{1}}$	Temperature Range	Nonlinearity $\mathbf{(\mathbf { V } _ { \text { dD } } = + \mathbf { 1 5 } \text { V) }}$	Package Option
AD 7524JN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{N}-16$
AD 7524K N	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{N}-16$
AD 7524L N	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{N}-16$
AD 7524JP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD 7524K P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD 7524LP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD 7524JR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{R}-16 \mathrm{~A}$
AD 7524AQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524C	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524T Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524U Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524SE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$
AD 7524T E	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$
AD 7524U E	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$

NOTES
${ }^{1}$ T o order M IL-ST D-883, C lass B processed parts, add/883B to part number. C ontact your local sales office for military data sheet. F or U.S. Standard M ilitary D rawing (SM D) see DESC drawing \#5962-87700.
${ }^{2} \mathrm{E}=$ Leadless C eramic C hip C arrier: $\mathrm{N}=$ Plastic DIP; P = Plastic Leaded Chip C arrier; Q = Cerdip; R = SOIC.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

Parameter	$\begin{array}{r} \text { Limit } \\ V_{D D}=+5 \end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V} \end{aligned}$	$V_{D D}=5 \mathrm{~V}$	$\begin{aligned} & \Gamma_{\text {MIN }}, T_{M A X}{ }^{1} \\ & V_{D D}=+15 V \end{aligned}$	Units	Test Conditions/Comments
```STATIC PERFORMANCE Resolution Relative Accuracy J, A, S Versions K, B, T Versions L, C, U Versions M onotonicity G ain Error \({ }^{2}\) Average G ain TC \({ }^{3}\) DC Supply Rejection, \({ }^{3} \Delta \mathrm{G}\) ain \(/ \Delta \mathrm{V}_{\mathrm{DD}}\) Output Leakage Current IOUT1 (Pin 1) IOUT2 (Pin 2)```	8 $\pm 1 / 2$ $\pm 1 / 2$ $\pm 1 / 2$ Guaranteed $\pm 21 / 2$ $\pm 40$ 0.08 0.002 $\pm 50$ $\pm 50$	$\begin{array}{\|l} 8 \\ \pm 1 / 2 \\ \pm 1 / 4 \\ \pm 1 / 8 \\ \text { Guaranteed } \\ \pm 11 / 4 \\ \pm 10 \\ \\ 0.02 \\ 0.001 \\ \\ \pm 50 \\ \pm 50 \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \text { Guaranteed } \\ & \pm 31 / 2 \\ & \pm 40 \\ & \\ & 0.16 \\ & 0.01 \\ & \\ & \pm 400 \\ & \pm 400 \\ & \hline \end{aligned}$	8 $\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 4 \\ & \pm 1 / 8 \end{aligned}$   G uaranteed $\pm 11 / 2$   $\pm 10$   0.04   0.005 $\pm 200$ $\pm 200$	Bits   LSB max   LSB max   LSB max   LSB max ppm $/{ }^{\circ} \mathrm{C}$   \% FSR/\% max   \% FSR/\% typ   nA max   nA max	$\begin{aligned} & \text { Gain TC M easured from }+25^{\circ} \mathrm{C} \text { to } \\ & \mathrm{T}_{\text {MIN }} \text { or from }+25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\text {MAX }} \\ & \Delta \mathrm{V}_{\text {DD }}= \pm 10 \% \\ & \text { DB0-DB7 }=0 \mathrm{~V} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V} \\ & \text { DB0-DB7 }=\mathrm{V}_{\text {DD }} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$
```DYNAMIC PERFORMANCE Output Current Settling T ime3 (to 1/2 LSB) AC Feedthrough }\mp@subsup{}{}{3 at OUT1 at OUT2```	$\begin{aligned} & 400 \\ & \\ & 0.25 \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 250 \\ \\ 0.25 \\ 0.25 \end{array}$	$\begin{array}{r} 500 \\ 0.5 \\ 0.5 \end{array}$	$\begin{aligned} & 350 \\ & \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	ns max   \% FSR max   \% FSR max	OUT 1 Load $=100 \Omega, C_{E X T}=13 \mathrm{pF} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=$ $0 \mathrm{~V} ; \mathrm{DB} 0-\mathrm{DB7}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}$ to 0 V .   $\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}, 100 \mathrm{kHz}$ Sine Wave; DB0-DB7 = 0 V ; $\overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V}$
REFERENCE INPUT $\mathrm{R}_{\mathrm{IN}}(\text { Pin } 15 \text { to GND })^{4}$	$\begin{aligned} & 5 \\ & 20 \end{aligned}$	$\begin{array}{\|l} 5 \\ 20 \end{array}$	$\begin{aligned} & 5 \\ & 20 \end{aligned}$	$\begin{aligned} & 5 \\ & 20 \end{aligned}$	$k \Omega$ min $k \Omega$ max	
$\begin{gathered} \hline \text { ANALOG OUTPUTS } \\ \text { Output Capacitance }{ }^{3} \\ \text { Cout }^{\text {(}} \text { (Pin 1) } \\ \text { Coutr }^{\text {(Pin 2) }} \text { (Pin 1) } \\ \text { Cout1 }^{\text {Cout2 }} \text { (Pin 2) } \\ \hline \end{gathered}$	$\begin{aligned} & 120 \\ & 30 \\ & 30 \\ & 120 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 120 \\ 30 \\ 30 \\ 120 \\ \hline \end{array}$	$\begin{array}{\|l} 120 \\ 30 \\ 30 \\ 120 \\ \hline \end{array}$	$\begin{aligned} & 120 \\ & 30 \\ & 30 \\ & 120 \\ & \hline \end{aligned}$	pF max pF max pF max pF max	$\begin{aligned} & \mathrm{DB} 0-\mathrm{D} \text { B7 }=\mathrm{V}_{\mathrm{DD}} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V} \\ & \mathrm{DB} 0-\mathrm{DB} 7=0 \mathrm{~V} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V} \end{aligned}$
```DIGITAL INPUTS Input HIGH Voltage Requirement V IH Input LOW Voltage Requirement VIL Input Current IN Input C apacitance }\mp@subsup{}{}{3 DB0-DB7 WR,```	$\begin{aligned} & +2.4 \\ & +0.8 \\ & \pm 1 \\ & 5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & +13.5 \\ & +1.5 \\ & \pm 1 \\ & 5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.4 \\ & +0.5 \\ & \pm 10 \\ & 5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & +13.5 \\ & +1.5 \\ & \pm 10 \\ & 5 \\ & 20 \\ & \hline \end{aligned}$	V min   $V$ max   $\mu \mathrm{A}$ max   pF max   pF max	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{aligned}$
SWITCHING CHARACTERISTICS   Chip Select to Write Setup Time ${ }^{5}$ $t_{c s}$   AD 7524J, K, L, A, B, C   AD 7524S, T, U   Chip Select to Write H old T ime $\mathrm{t}_{\mathrm{CH}}$   All G rades   Write Pulse Width $t_{W R}$ AD 7524, $, K, L, A, B, C$ AD 7524S, T, U   D ata Setup Time $t_{D S}$ AD 7524, K , L, A, B, C AD 7524S, T, U   D ata H old T ime $t_{D H}$ All G rades	0   170   170   135   135   10	$\begin{aligned} & 100 \\ & 100 \end{aligned}$   0   100 100   60   60   10	220 240 0 220 240 170 170 10	130 150   0   130   150   80   100   10	ns min ns min   ns min   ns min ns min   ns min ns min   ns min	See Timing Diagram $\mathrm{t}_{\mathrm{WR}}=\mathrm{t}_{\mathrm{CS}}$ $\mathrm{t}_{\mathrm{CS}} \geq \mathrm{t}_{\mathrm{WR}}, \mathrm{t}_{\mathrm{CH}} \geq 0$
POWER SUPPLY $I_{D D}$	$\begin{aligned} & 1 \\ & 100 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 100 \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 500 \end{aligned}$	mA max $\mu \mathrm{A}$ max	All Digital Inputs $\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$   All Digital Inputs 0 V or $V_{D D}$

NOTES
${ }^{1}$ T emperature ranges as follows: J, K, $L$ versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
A, B, C versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
S, T, U versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
${ }^{2} \mathrm{G}$ ain error is measured using internal feedback resistor. Full-Scale Range $(F S R)=V_{\text {REF }}$.
${ }^{3}$ G uaranteed not tested.
${ }^{4} \mathrm{DAC}$ thin-film resistor temperature coefficient is approximately $-300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
${ }^{5} \mathrm{AC}$ parameter, sample tested @ $+25^{\circ} \mathrm{C}$ to ensure conformance to specification.
Specifications subject to change without notice.

## ABSOLUTE MAXIMUM RATINGS*

( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)
$V_{D D}$ to GND ....................................... $0.3 \mathrm{~V},+17 \mathrm{~V}$
$V_{\text {RFB }}$ to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 25$ V
$V_{\text {REF }}$ to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 25$ V
Digital Input Voltage to GND . . . . . . . . -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
OUT1, OUT 2 to GND . . . . . . . . . . . . . -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
*Stresses above those listed under "Absolute M aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Power Dissipation (Any Package)	
To $+75^{\circ} \mathrm{C}$	450 mW
Derates above $75^{\circ} \mathrm{C}$ by	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating T emperature	
Commercial (J, K, L)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial (A, B, C)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (S, T, U )	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
L ead T emperature (Soldering, 10 secs)	$+300^{\circ} \mathrm{C}$

To $+75^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 mW
Derates above $75^{\circ} \mathrm{C}$ by ....................... . $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
perating T emperature
Industrial (A, B, C) ...................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (S, T, U ) . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 secs) .............. $+300^{\circ} \mathrm{C}$

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7524 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## TERMINOLOGY

RELATIVE ACCURACY: A measure of the deviation from a straight line through the end points of the DAC transfer function. N ormally expressed as a percentage of full scale range. F or the AD 7524 DAC, this holds true over the entire $\mathrm{V}_{\text {REF }}$ range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with $n$ bits has a resolution of $\left(2^{-n}\right)\left(\mathrm{V}_{\text {REF }}\right)$. A bipolar converter of $n$ bits has a resolution of $\left[2^{-(n-1)}\right]\left[V_{\text {REF }}\right]$. Resolution in no way implies linearity.
GAIN ERROR: Gain Error is a measure of the output error between an ideal DAC and the actual device output. It is measured
with all $1 s$ in the DAC after offset error has been adjusted out and is expressed in LSBs. Gain Error is adjustable to zero with an external potentiometer.
FEEDTHROUGH ERROR: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.
OUTPUT CAPACITANCE: Capacity from OUT 1 and OUT 2 terminals to ground.
OUTPUT LEAKAGE CURRENT: Current which appears on OUT 1 terminal with all digital inputs LOW or on OUT2 terminal when all inputs are HIGH. This is an error current which contributes an offset voltage at the amplifier output.

## PIN CONFIGURATIONS



## AD7524

## CIRCUIT DESCRIPTION

## CIRCUIT INFORMATION

The AD 7524, an 8-bit multiplying D/A converter, consists of a highly stable thin film R-2R ladder and eight N -channel current switches on a monolithic chip. M ost applications require the addition of only an output operational amplifier and a voltage or current reference.
The simplified D/A circuit is shown in Figure 1. An inverted $R-2 R$ ladder structure is used-that is, the binarily weighted currents are switched between the OUT 1 and OUT 2 bus lines, thus maintaining a constant current in each ladder leg independent of the switch state.


Figure 1. Functional Diagram

## EQUIVALENT CIRCUIT ANALYSIS

The equivalent circuit for all digital inputs LOW is shown in Figures 2. In Figure 2 with all digital inputs LOW, the reference current is switched to OUT2. The current source I LEAKAGE is composed of surface and junction leakages to the substrate while the $\frac{1}{256}$ current source represents a constant 1-bit current drain through the termination resistor on the R-2R ladder. The "ON" capacitance of the output N -channel switches is 120 pF , as shown on the OUT 2 terminal. The "OF F" switch capacitance is 30 pF , as shown on the OUT 1 terminal. A nalysis of the circuit for all digital inputs high is similar to Figure 2 however, the "ON" switches are now on terminal OUT 1, hence the 120 pF appears at that terminal.


Figure 2. AD7524 DAC Equivalent Circuit-All Digital Inputs Low

## INTERFACE LOGIC INFORMATION MODE SELECTION

AD 7524 mode selection is controlled by the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ inputs.

## WRITE MODE

When $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are both LOW, the AD 7524 is in the WRIT E mode, and the AD 7524 analog output responds to data activity at the D B0-D B7 data bus inputs. In this mode, the AD 7524 acts like a nonlatched input D/A converter.

## HOLD MODE

When either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WR}}$ is HIGH, the AD 7524 is in the H OLD mode. The AD 7524 analog output holds the value corresponding to the last digital input present at DB0-D B7 prior to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{CS}}$ assuming the HIGH state.

MODE SELECTION TABLE

$\overline{\overline{\mathbf{C S}}}$	$\overline{\mathbf{W R}}$	Mode	DAC Response
L	L	Write	DAC responds to data bus   (D B0-D B7) inputs.
H	X	Hold	Data bus (D B0-D B7) is   Locked Out:
X	H	Hold	DAC holds last data present   when $\overline{\mathrm{WR}}$ or $\overline{\mathrm{CS}}$ assumed   HIGH state.

$\mathrm{L}=$ Low State, $\mathrm{H}=\mathrm{H}$ igh State, $\mathrm{X}=\mathrm{D}$ on't C are.

## WRITE CYCLE TIMING DIAGRAM



Figure 3. Supply Current vs. Logic Level T ypical plots of supply current, $I_{D D}$, versus logic input voltage, $V_{I N}$, for $V_{D D}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$ are shown above.

ANALOG CIRCUIT CONNECTIONS


Figure 4. Unipolar Binary Operation (2-Quadrant Multiplication)

Table I. Unipolar Binary CodeTable

Digital Input   MSB LSB	Analog Output
11111111	$-V_{\text {REF }}(255 / 256)$
10000001	$-V_{\text {REF }}(129 / 256)$
10000000	$-V_{\text {REF }}(128 / 256)=-V_{\text {REF }} / 2$
01111111	$-V_{\text {REF }}(127 / 256)$
00000001	$-V_{\text {REF }}(1 / 256)$
00000000	$-V_{\text {REF }}(0 / 256)=0$

Note: 1 LSB $=\left(2^{-8}\right)\left(\mathrm{V}_{\text {REF }}\right)=1 / 256\left(\mathrm{~V}_{\text {REF }}\right)$
MICROPROCESSOR INTERFACE


Figure 6. AD7524/8085A Interface


Figure 5. Bipolar (4-Quadrant) Operation

Table II. Bipolar (Offset Binary) CodeTable

Digital Input   MSB   LSB
11111111
10000001
10000000
01111111
00000001
00000000
N ote: 1 LSB $=\left(2^{-7}\right)\left(V_{\text {REF }}\right)=1 / 128\left(V_{\text {REF }}\right)$



Figure 7. AD7524/MC6800 Interface


Figure 8.

## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

## 20-Terminal Ceramic Leadless Chip Carrier (E-20A)



## 20-Lead Plastic Leadless Chip Carrier (PLCC) <br> (P-20A)



16-Lead Plastic DIP (Narrow)
( $\mathrm{N}-16$ )


16-Lead Cerdip
(Q-16)


16-Lead Narrow-Body (SOIC)
(R-16A)


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
5962-8871903MYA 5962-8876601LA 5962-89697013A 5962-89932012A PM7545FPCZ AD5681RBCPZ-1RL7 AD664TE/883B
AD9115BCPZRL7 AD9162BBCA AD664AJ AD664BJ AD7534JPZ TCC-103A-RT 057536E 5962-87700012A 5962-89657023A 702423BB TCC-103B-RT AD664BE MAX5853ETL+T MAX5801AUB+ AD9116BCPZRL7 AD9121BCPZRL AD9148BBPZRL MAX5110GTJ+ MAX5702BAUB+ DS4412U+T\&R MAX5364EUT+T MAX5858AECM+D AD5821ABCBZ-REEL7 MX7528KP+ $\underline{M A X 5858 E C M+D}$ MAX5138BGTE+T MX7845JN+ MAX5856AECM+D MX7528JP+ TCC-303A-RT MAX5112GTJ+ DS3911T+T MAX5805BAUB+T MAX5705BAUB+T AD5679RBCPZ-2 AD5674RBCPZ-2 AD5770RBCBZ-RL7 MAX5715BAUD+T MAX5825AWP+T MAX5105EEP+T AD5413BCPZ AD5721BRUZ-RL7 DAC8229FSZ-REEL


[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

