Data Sheet

FEATURES

PLL generated or direct master clock
Low EMI design
112 dB DAC/107 dB ADC dynamic range and SNR
-94 dB THD + N
\section*{Single 3.3 V supply}
Tolerance for 5 V logic inputs
Supports 24-bits and $\mathbf{8} \mathbf{~ k H z}$ to 192 kHz sample rates
Differential ADC input
Differential DAC output
Log volume control with autoramp function
SPI controllable for flexibility
Software-controllable clickless mute
Software power-down
Right-justified, left-justified, $I^{2} S$, and TDM modes
Master and slave modes up to 16-channel input/output
64-lead LQFP package
Qualified for automotive applications

APPLICATIONS

Automotive audio systems

Home Theater Systems

Set-top boxes
Digital audio effects processors

GENERAL DESCRIPTION

The AD1939 is a high performance, single-chip codec that provides four analog-to-digital converters (ADCs) with differential input, and eight digital-to-analog converters (DACs) with differential output using the Analog Devices, Inc. patented multibit sigma-delta ($\Sigma-\Delta$) architecture. An SPI port is included, allowing a microcontroller to adjust volume and many other parameters. The AD1939 operates from 3.3 V digital and analog supplies. The AD1939 is available in a 64 -lead (differential output) LQFP package.

The AD1939 is designed for low EMI. This consideration is apparent in both the system and circuit design architectures. By using the on-board PLL to derive the master clock from the LR clock or from an external crystal, the AD1939 eliminates the need for a separate high frequency master clock and can also be used with a suppressed bit clock. The DACs and ADCs are designed using the latest Analog Devices continuous time architectures to further minimize EMI. By using 3.3 V supplies, power consumption is minimized, further reducing emissions.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Test Conditions 3
Analog Performance Specifications 3
Crystal Oscillator Specifications. 4
Digital Input/Output Specifications. 5
Power Supply Specifications. 5
Digital Filters. 6
Timing Specifications 6
Absolute Maximum Ratings 8
Thermal Resistance 8
ESD Caution 8
Pin Configuration and Function Descriptions. 9
Typical Performance Characteristics 11
Theory of Operation 13

REVISION HISTORY

2/13—Rev. D to Rev. E
Change to tcıн Parameter, Table 7 7
Changes to Serial Control Port Section 14
7/11—Rev. C to Rev. D
Changes to Pin 15, Pin 18, Pin 19, and Pin 20 Descriptions 9
Changes to Pin 26 and Pin 27 Descriptions 10
9/10—Rev. B to Rev. C
Added Qualified for Automotive Applications to the FeaturesSection.1
Changed Case Temperature from $130^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ 4
Changed T_{A} from $-40^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ 5
Changed T_{A} from $-40^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. 7
Changes to Ordering Guide 31
Added Automotive Products Section 31
Analog-to-Digital Converters (ADCs) 13
Digital-to-Analog Converters (DACs) 13
Clock Signals 13
Reset and Power-Down 14
Serial Control Port 14
Power Supply and Voltage Reference. 15
Serial Data Ports-Data Format. 15
Time-Division Multiplexed (TDM) Modes 15
Daisy-Chain Mode 19
Control Registers 24
Definitions 24
PLL and Clock Control Registers 24
DAC Control Registers 25
ADC Control Registers 27
Additional Modes 29
Application Circuits 30
Outline Dimensions 31
Ordering Guide 31
Automotive Products 31
Changes to Ordering Guide 31
6/07-Rev. 0 to Rev. A
Deleted I ${ }^{2} \mathrm{C}$ References. Universal
Change to Figure 1 1
Changes to Figure 2.9
Changes to Table 10 9
Changes to Table 11 14
Changes to Table 12 16
Changes to Figure 24 and Figure 25 22
Changes to Table 13 23
Change to Figure 26 23
Changes to Table 15 and Table 16 24
Changes to Figure 27 and Figure 28 29
Change to Figure 30 30
Updated Outline Dimensions. 31
Changes to Ordering Guide 31
7/06-Revision 0: Initial Version

SPECIFICATIONS

TEST CONDITIONS

Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications.

Supply voltages (AVDD, DVDD)	3.3 V
Temperature range ${ }^{1}$	As specified in Table 1 and Table 2
Master clock	$12.288 \mathrm{MHz}\left(48 \mathrm{kHz} \mathrm{f}_{\mathrm{s}}, 256 \times \mathrm{f}_{\mathrm{s}}\right.$ mode $)$
Input sample rate	48 kHz
Measurement bandwidth	20 Hz to 20 kHz
Word width	24 bits
Load capacitance (digital output)	20 pF
Load current (digital output)	$\pm 1 \mathrm{~mA}$ or $1.5 \mathrm{k} \Omega$ to $1 / 2$ DVDD supply
Input voltage high	2.0 V
Input voltage low	0.8 V

${ }^{1}$ Functionally guaranteed at $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ case temperature.

ANALOG PERFORMANCE SPECIFICATIONS

Specifications guaranteed at an ambient temperature of $25^{\circ} \mathrm{C}$.
Table 1.

Parameter	Conditions/Comments	Min	Typ	Max	Unit
ANALOG-TO-DIGITAL CONVERTERS					
ADC Resolution	All ADCs		24		Bits
Dynamic Range	20 Hz to $20 \mathrm{kHz},-60 \mathrm{~dB}$ input				
No Filter (RMS)		96	102		dB
With A-Weighted Filter (RMS)		98	105		dB
Total Harmonic Distortion + Noise	-1 dBFS		-96	-87	dB
Full-Scale Input Voltage (Differential)			1.9		V rms
Gain Error		-10		+10	\%
Interchannel Gain Mismatch		-0.25		+0.25	dB
Offset Error		-10	0	+10	mV
Gain Drift			100		ppm/ ${ }^{\circ} \mathrm{C}$
Interchannel Isolation			-110		dB
CMRR	$100 \mathrm{mV} \mathrm{rms}, 1 \mathrm{kHz}$		55		dB
	$100 \mathrm{mV} \mathrm{rms}, 20 \mathrm{kHz}$		55		dB
Input Resistance			14		$\mathrm{k} \Omega$
Input Capacitance			10		pF
Input Common-Mode Bias Voltage			1.5		V
DIGITAL-TO-ANALOG CONVERTERS					
Dynamic Range	20 Hz to $20 \mathrm{kHz},-60 \mathrm{~dB}$ input				
No Filter (RMS)		102	107		dB
With A-Weighted Filter (RMS)		105	110		dB
With A-Weighted Filter (Average)			112		dB
Total Harmonic Distortion + Noise	0 dBFS				
	Two channels running		-94		dB
	Eight channels running		-86	-76	dB
Full-Scale Output Voltage			1.76 (4.96)		$\checkmark \mathrm{rms}$ (V p-p)
Gain Error		-10		+10	\%
Interchannel Gain Mismatch		-0.2		+0.2	dB
Offset Error		-25	-6	+25	mV
Gain Drift		-30		+30	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Interchannel Isolation			100		

AD1939

Parameter	Conditions/Comments	Min	Typ	Max	Unit
Interchannel Phase Deviation			0		Degrees
Volume Control Step			0.375		dB
Volume Control Range			95		dB
De-emphasis Gain Error				± 0.6	dB
Output Resistance at Each Pin			100		Ω
REFERENCE					
Internal Reference Voltage	FILTR pin		1.50		V
External Reference Voltage	FILTR pin	1.32	1.50	1.68	V
Common-Mode Reference Output	CM pin		1.50		V
REGULATOR					
Input Supply Voltage	VSUPPLY pin	4.5	5	5.5	V
Regulated Output Voltage	VSENSE pin	3.19	3.37	3.55	V

Specifications measured at a case temperature of $125^{\circ} \mathrm{C}$.
Table 2.

Parameter	Conditions/Comments	Min	Typ	Max	Unit
ANALOG-TO-DIGITAL CONVERTERS ADC Resolution Dynamic Range No Filter (RMS) With A-Weighted Filter (RMS) Total Harmonic Distortion + Noise Full-Scale Input Voltage (Differential) Gain Error Interchannel Gain Mismatch Offset Error	All ADCs 20 Hz to $20 \mathrm{kHz},-60 \mathrm{~dB}$ input $-1 \mathrm{dBFS}$	93 96 $\begin{aligned} & -10 \\ & -0.25 \\ & -10 \end{aligned}$	24 102 104 -96 1.9 0	$\begin{aligned} & -87 \\ & +10 \\ & +0.25 \\ & +10 \end{aligned}$	Bits dB dB dB V rms \% dB mV
DIGITAL-TO-ANALOG CONVERTERS Dynamic Range No Filter (RMS) With A-Weighted Filter (RMS) With A-Weighted Filter (Average) Total Harmonic Distortion + Noise Full-Scale Output Voltage Gain Error Interchannel Gain Mismatch Offset Error Gain Drift	20 Hz to $20 \mathrm{kHz},-60 \mathrm{~dB}$ input 0 dBFS Two channels running Eight channels running	101 104 $\begin{aligned} & -10 \\ & -0.2 \\ & -25 \\ & -30 \end{aligned}$	$\begin{aligned} & 107 \\ & 110 \\ & 112 \\ & \\ & -94 \\ & -86 \\ & 1.76 \text { (4.96) } \end{aligned}$ -6	$\begin{aligned} & -70 \\ & +10 \\ & +0.2 \\ & +25 \\ & +30 \end{aligned}$	dB dB dB dB dB V rms (V p-p) \% dB mV ppm $/{ }^{\circ} \mathrm{C}$
REFERENCE Internal Reference Voltage External Reference Voltage Common-Mode Reference Output	FILTR pin FILTR pin CM pin	1.32	$\begin{aligned} & 1.50 \\ & 1.50 \\ & 1.50 \\ & \hline \end{aligned}$	1.68	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
REGULATOR Input Supply Voltage Regulated Output Voltage	VSUPPLY pin VSENSE pin	$\begin{aligned} & 4.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5 \\ & 3.43 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.65 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

CRYSTAL OSCILLATOR SPECIFICATIONS
Table 3.

Parameter	Min	Typ	Max
Transconductance	3.5	Unit	

DIGITAL INPUT/OUTPUT SPECIFICATIONS

$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+105^{\circ} \mathrm{C}, \mathrm{DVDD}=3.3 \mathrm{~V} \pm 10 \%$.
Table 4.

POWER SUPPLY SPECIFICATIONS

Table 5.

Parameter	Conditions/Comments	Min	Typ	Max	Unit
SUPPLIES					
Voltage	DVDD	3.0	3.3	3.6	V
	AVDD	3.0	3.3	3.6	V
	VSUPPLY	4.5	5.0	5.5	V
Digital Current	Master clock $=256 \mathrm{fs}_{\text {s }}$				
Normal Operation	$\mathrm{f}_{5}=48 \mathrm{kHz}$		56		mA
	$\mathrm{f}_{\mathrm{s}}=96 \mathrm{kHz}$		65		mA
	$\mathrm{f}_{\mathrm{s}}=192 \mathrm{kHz}$		95		mA
Power-Down	$\mathrm{f}_{\mathrm{S}}=48 \mathrm{kHz}$ to 192 kHz		2.0		mA
Analog Current					
Normal Operation			74		mA
Power-Down			23		mA
DISSIPATION					
Operation	Master clock $=256 \mathrm{fs}, 48 \mathrm{kHz}$				
All Supplies			429		mW
Digital Supply			185		mW
Analog Supply			244		mW
Power-Down, All Supplies			83		mW
POWER SUPPLY REJECTION RATIO					
Signal at Analog Supply Pins	$1 \mathrm{kHz}, 200 \mathrm{mV}$ p-p		50		dB
	$20 \mathrm{kHz}, 200 \mathrm{mV}$ p-p		50		dB

DIGITAL FILTERS

Table 6.

TIMING SPECIFICATIONS

$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+105^{\circ} \mathrm{C}, \mathrm{DVDD}=3.3 \mathrm{~V} \pm 10 \%$.
Table 7.

Parameter	Condition	Comments	Min	Max	Unit
INPUT MASTER CLOCK (MCLK) AND RESET					
$\mathrm{t}_{\text {MH }}$	MCLK duty cycle	DAC/ADC clock source $=$ PLL clock @ 256 fs, 384 $\mathrm{fs}_{5}, 512 \mathrm{fs}$, and 768 fs	40	60	
$\mathrm{t}_{\text {M }}$		DAC/ADC clock source $=$ direct MCLK @ 512 fs (bypass on-chip PLL)	40	60	\%
$\mathrm{f}_{\text {MCLK }}$	MCLK frequency	PLL mode, 256 fs reference	6.9	13.8	MHz
fmCLK		Direct 512 fs mode		27.6	MHz
tPDR	Low		15		ns
$\mathrm{t}_{\text {PDRR }}$	Recovery	Reset to active output	4096		$\mathrm{t}_{\text {MCLK }}$
PLL					
Lock Time	MCLK and LRCLK input			10	ms
256 fs VCO Clock, Output Duty Cycle, MCLKO/XO Pin			40	60	\%

AD1939

Parameter	Condition	Comments	Min	Max	Unit
SPI PORT		See Figure 11			
$\mathrm{t}_{\mathrm{CCH}}$	CCLK high		35		ns
tccl	CCLK low		35		ns
fcclk	CCLK frequency	$\mathrm{fcCLK}=1 / \mathrm{tccp}^{\text {; only }}$ tccp shown in Figure 11		10	MHz
tcos	CIN setup	To CCLK rising	10		ns
$\mathrm{t}_{\text {coh }}$	CIN hold	From CCLK rising	10		ns
tcls	$\overline{\text { CLATCH }}$ setup	To CCLK rising	10		ns
$\mathrm{t}_{\text {cLH }}$	$\overline{\text { CLATCH }}$ hold	From CCLK falling	10		ns
tclulig	$\overline{\text { CLATCH }}$ high	Not shown in Figure 11	10		ns
tcoe	COUT enable	From CCLK falling		30	ns
t COD	COUT delay	From CCLK falling		30	ns
tcor	COUT hold	From CCLK falling, not shown in Figure 11	30		ns
tcots	COUT tristate	From CCLK falling		30	ns
DAC SERIAL PORT		See Figure 24			
tob	DBCLK high	Slave mode	10		ns
$\mathrm{t}_{\text {DBL }}$	DBCLK low	Slave mode	10		ns
tols	DLRCLK setup	To DBCLK rising, slave mode	10		ns
tolh	DLRCLK hold	From DBCLK rising, slave mode	5		ns
tbls	DLRCLK skew	From DBCLK falling, master mode	-8	+8	ns
tods	DSDATA setup	To DBCLK rising	10		ns
$\mathrm{t}_{\text {DDH }}$	DSDATA hold	From DBCLK rising	5		ns
ADC SERIAL PORT		See Figure 25			
$\mathrm{t}_{\text {AbH }}$	ABCLK high	Slave mode	10		ns
$t_{\text {ABL }}$	ABCLK low	Slave mode	10		ns
$\mathrm{t}_{\text {ALS }}$	ALRCLK setup	To ABCLK rising, slave mode	10		ns
$\mathrm{taLH}^{\text {ath }}$	ALRCLK hold	From ABCLK rising, slave mode	5		ns
$\mathrm{t}_{\text {ALS }}$	ALRCLK skew	From ABCLK falling, master mode	-8	+8	ns
$\mathrm{t}_{\text {ABDD }}$	ASDATA delay	From ABCLK falling		18	ns
AUXILIARY INTERFACE					
$\mathrm{t}_{\text {AXDS }}$	AAUXDATA setup	To AUXBCLK rising	10		ns
$\mathrm{taxdH}^{\text {a }}$	AAUXDATA hold	From AUXBCLK rising	5		ns
$t_{\text {DxD }}$	DAUXDATA delay	From AUXBCLK falling		18	ns
$\mathrm{t}_{\text {¢в }}$	AUXBCLK high		10		ns
$\mathrm{t}_{\text {¢ }}$ L	AUXBCLK low		10		ns
tols	AUXLRCLK setup	To AUXBCLK rising	10		ns
$\mathrm{t}_{\text {DLH }}$	AUXLRCLK hold	From AUXBCLK rising	5		ns

ABSOLUTE MAXIMUM RATINGS

Table 8.

Parameter	Rating
Analog (AVDD)	-0.3 V to +3.6 V
Digital (DVDD)	-0.3 V to +3.6 V
VSUPPLY	-0.3 V to +6.0 V
Input Current (Except Supply Pins)	$\pm 20 \mathrm{~mA}$
Analog Input Voltage (Signal Pins)	-0.3 V to AVDD +0.3 V
Digital Input Voltage (Signal Pins)	-0.3 V to DVDD +0.3 V
Operating Temperature Range (Case)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

$\theta_{\text {IA }}$ represents thermal resistance, junction-to-ambient; θ_{JC} represents the thermal resistance, junction-to-case. All characteristics are for a 4-layer board.
Table 9. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathbf{\prime c}}$	Unit
64-Lead LQFP	47	11.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. 64-Lead LQFP, Differential Output, Pin Configuration
Table 10. Pin Function Descriptions

Pin No.	In/Out	Mnemonic	Description
1	I	AGND	Analog Ground.
2	1	MCLKI/XI	Master Clock Input/Crystal Oscillator Input.
3	0	MCLKO/XO	Master Clock Output/Crystal Oscillator Output.
4	1	AGND	Analog Ground.
5	1	AVDD	Analog Power Supply. Connect to analog 3.3 V supply.
6	0	OL3P	DAC 3 Left Positive Output.
7	0	OL3N	DAC 3 Left Negative Output.
8	0	OR3P	DAC 3 Right Positive Output.
9	0	OR3N	DAC 3 Right Negative Output.
10	0	OL4P	DAC 4 Left Positive Output.
11	0	OL4N	DAC 4 Left Negative Output.
12	0	OR4P	DAC 4 Right Positive Output.
13	0	OR4N	DAC 4 Right Negative Output
14	1	$\overline{\mathrm{PD}} / \overline{\mathrm{RST}}$	Power-Down Reset (Active Low).
15	I/O	DSDATA4	DAC Serial Data Input 4. Data input to DAC4 data in/TDM DAC2 data out (dual-line mode)/AUX DAC2 data out (to external DAC2).
16	I	DGND	Digital Ground.
17	1	DVDD	Digital Power Supply. Connect to digital 3.3 V supply.
18	I/O	DSDATA3	DAC Serial Data Input 3. Data input to DAC3 data in/TDM DAC2 data in (dual-line mode)/AUX ADC2 data in (from external ADC2).
19	I/O	DSDATA2	DAC Serial Data Input 2. Data input to DAC2 data in/TDM DAC data out/AUX ADC1 data in (from external ADC1).
20	1	DSDATA1	DAC Serial Data Input 1. Data input to DAC1 data in/TDM DAC data in/TDM data in.
21	I/O	DBCLK	Bit Clock for DACs.
22	I/O	DLRCLK	LR Clock for DACs.

Pin No.	In/Out	Mnemonic	Description	
23	I	VSUPPLY	5 V Input to Regulator, Emitter of Pass Transistor.	
24	1	VSENSE	3.3 V Output of Regulator, Collector of Pass Transistor.	
25	0	VDRIVE	Drive for Base of Pass Transistor.	
26	I/O	ASDATA2	ADC Serial Data Output 2. Data Output from ADC2/TDM ADC data in/AUX DAC1 data out (to external DAC1).	
27	0	ASDATA1	ADC Serial Data Output 1. Data Output from ADC1/TDM ADC data out/TDM data out.	
28	I/O	ABCLK	Bit Clock for ADCs.	
29	I/O	ALRCLK	LR Clock for ADCs.	
30	I	CIN	Control Data Input (SPI).	
31	I/O	COUT	Control Data Output (SPI).	
32	I	DVDD	Digital Power Supply. Connect to digital 3.3 V supply.	
33	1	DGND	Digital Ground.	
34	1	CCLK	Control Clock Input (SPI).	
35	1	$\overline{\text { CLATCH }}$	Latch Input for Control Data (SPI).	
36	0	OL1P	DAC 1 Left Positive Output.	
37	0	OL1N	DAC 1 Left Negative Output.	
38	0	OR1P	DAC 1 Right Positive Output.	
39	0	OR1N	DAC 1 Right Negative Output.	
40	0	OL2P	DAC 2 Left Positive Output.	
41	0	OL2N	DAC 2 Left Negative Output.	
42	0	OR2P	DAC 2 Right Positive Output.	
43	0	OR2N	DAC 2 Right Negative Output.	
44	I	AGND	Analog Ground.	
45	I	AVDD	Analog Power Supply. Connect to analog 3.3 V supply.	
46	1	AGND	Analog Ground.	
47	0	FILTR	Voltage Reference Filter Capacitor Connection. Bypass with $10 \mu \mathrm{~F} \\| 100 \mathrm{nF}$ to AGND.	
48	I	AGND	Analog Ground.	
49		NC	No Connect.	
50		NC	No Connect.	
51	1	AVDD	Analog Power Supply. Connect to analog 3.3 V supply.	
52	0	CM	Common-Mode Reference Filter Capacitor Connection. Bypass with $47 \mu \mathrm{~F}\|\mid 100 \mathrm{nF}$ to AGND.	
53	1	ADC1LP	ADC1 Left Positive Input.	
54	1	ADC1LN	ADC1 Left Negative Input.	
55	1	ADC1RP	ADC1 Right Positive Input.	
56	1	ADC1RN	ADC1 Right Negative Input.	
57	1	ADC2LP	ADC2 Left Positive Input.	
58	I	ADC2LN	ADC2 Left Negative Input.	
59	1	ADC2RP	ADC2 Right Positive Input.	
60	1	ADC2RN	ADC2 Right Negative Input.	
61	0	LF	PLL Loop Filter, Return to AVDD.	
62	I	AVDD	Analog Power Supply. Connect to analog 3.3 V supply.	
63		NC	No Connect.	
64		NC	No Connect.	

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. ADC Pass-Band Filter Response, 48 kHz

Figure 4. ADC Stop-Band Filter Response, 48 kHz

Figure 5. DAC Pass-Band Filter Response, 48 kHz

Figure 6. DAC Stop-Band Filter Response, 48 kHz

Figure 7. DAC Pass-Band Filter Response, 96 kHz

Figure 8. DAC Stop-Band Filter Response, 96 kHz

Figure 9. DAC Pass-Band Filter Response, 192 kHz

Figure 10. DAC Stop-Band Filter Response, 192 kHz

THEORY OF OPERATION

ANALOG-TO-DIGITAL CONVERTERS (ADCS)

There are four analog-to-digital converter (ADC) channels in the AD1939 configured as two stereo pairs with differential inputs. The ADCs can operate at a nominal sample rate of 48 kHz , 96 kHz , or 192 kHz . The ADCs include on-board digital antialiasing filters with 79 dB stop-band attenuation and linear phase response, operating at an oversampling ratio of 128 ($48 \mathrm{kHz}, 96 \mathrm{kHz}$, and 192 kHz modes). Digital outputs are supplied through two serial data output pins (one for each stereo pair) and a common frame clock (ALRCLK) and bit clock (ABCLK). Alternatively, one of the TDM modes can be used to access up to 16 channels on a single TDM data line.

The ADCs must be driven from a differential signal source for best performance. The input pins of the ADCs connect to internal switched capacitors. To isolate the external driving op amp from the glitches caused by the internal switched capacitors, each input pin should be isolated by using a series-connected external 100Ω resistor together with a 1 nF capacitor connected from each input to ground. This capacitor must be of high quality, for example, ceramic NP0 or polypropylene film.

The differential inputs have a nominal common-mode voltage of 1.5 V . The voltage at the common-mode reference pin (CM) can be used to bias external op amps to buffer the input signals (see the Power Supply and Voltage Reference section). The inputs can also be ac-coupled and do not need an external dc bias to CM.

A digital high-pass filter can be switched in line with the ADCs under serial control to remove residual dc offsets. It has a 1.4 Hz , 6 dB per octave cutoff at a 48 kHz sample rate. The cutoff frequency scales directly with sample frequency.

DIGITAL-TO-ANALOG CONVERTERS (DACS)

The AD1939 digital-to-analog converter (DAC) channels are arranged as differential, four stereo pairs giving eight analog outputs for improved noise and distortion performance. The DACs include on-board digital reconstruction filters with 70 dB stop-band attenuation and linear phase response, operating at an oversampling ratio of 4 (48 kHz or 96 kHz modes) or 2 (192 kHz mode). Each channel has its own independently programmable attenuator, adjustable in 255 steps in increments of 0.375 dB . Digital inputs are supplied through four serial data input pins (one for each stereo pair) and a common frame clock (DLRCLK) and bit clock (DBCLK). Alternatively, one of the TDM modes can be used to access up to 16 channels on a single TDM data line.

Each output pin has a nominal common-mode dc level of 1.5 V and swings $\pm 1.27 \mathrm{~V}$ for a 0 dBFS digital input signal. A single op amp, third-order, external, low-pass filter is recommended to remove high frequency noise present on the output pins, as well as to provide differential-to-single-ended conversion in the case of the differential output. Note that the use of op amps with low
slew rate or low bandwidth can cause high frequency noise and tones to fold down into the audio band; exercise care in selecting these components.

The voltage at CM, the common-mode reference pin, can be used to bias the external op amps that buffer the output signals (see the Power Supply and Voltage Reference section).

CLOCK SIGNALS

The on-chip phase-locked loop (PLL) can be selected to reference the input sample rate from either of the LRCLK pins or $256,384,512$, or 768 times the sample rate, referenced to the 48 kHz mode from the MCLKI/XI pin. The default at power-up is $256 \times \mathrm{fs}$ from the MCLKI/XI pin. In 96 kHz mode, the master clock frequency stays at the same absolute frequency; therefore, the actual multiplication rate is divided by 2 . In 192 kHz mode, the actual multiplication rate is divided by 4 . For example, if a device in the AD1939 family is programmed in $256 \times \mathrm{f}_{\mathrm{S}}$ mode, the frequency of the master clock input is $256 \times 48 \mathrm{kHz}=12.288 \mathrm{MHz}$. If the AD1939 is then switched to 96 kHz operation (by writing to the SPI port), the frequency of the master clock should remain at 12.288 MHz , which is $128 \times \mathrm{fs}$ in this example. In 192 kHz mode, this becomes $64 \times \mathrm{ff}_{\mathrm{s}}$.

The internal clock for the ADCs is $256 \times$ fs for all clock modes. The internal clock for the DACs varies by mode: $512 \times \mathrm{fs}(48 \mathrm{kHz}$ mode), $256 \times \mathrm{f}_{\mathrm{S}}$ (96 kHz mode), or $128 \times \mathrm{fs}_{\mathrm{s}}$ (192 kHz mode). By default, the on-board PLL generates this internal master clock from an external clock. A direct $512 \times \mathrm{f}_{\mathrm{S}}$ (referenced to 48 kHz mode) master clock can be used for either the ADCs or DACs if selected in the PLL and Clock Control 1 register.

Note that it is not possible to use a direct clock for the ADCs set to the 192 kHz mode. It is required that the on-chip PLL be used in this mode.

The PLL can be powered down in the PLL and Clock Control 0 register. To ensure reliable locking when changing PLL modes, or if the reference clock is unstable at power-on, power down the PLL and then power it back up when the reference clock stabilizes.

The internal master clock (MCLK) can be disabled in the PLL and Clock Control 0 register to reduce power dissipation when the AD1939 is idle. The clock should be stable before it is enabled. Unless a standalone mode is selected (see the Serial Control Port section), the clock is disabled by reset and must be enabled by writing to the SPI port for normal operation.

To maintain the highest performance possible, limit the clock jitter of the internal master clock signal to less than a 300 ps rms time interval error (TIE). Even at these levels, extra noise or tones can appear in the DAC outputs if the jitter spectrum contains large spectral peaks. If the internal PLL is not used, it is best to use an independent crystal oscillator to generate the
master clock. In addition, it is especially important that the clock signal not pass through an FPGA, CPLD, or other large digital chip (such as a DSP) before being applied to the AD1939. In most cases, this induces clock jitter due to the sharing of common power and ground connections with other unrelated digital output signals. When the PLL is used, jitter in the reference clock is attenuated above a certain frequency depending on the loop filter.

RESET AND POWER-DOWN

The function of the $\overline{\mathrm{RST}}$ pin sets all the control registers to their default settings. To avoid pops, reset does not power down the analog outputs. After $\overline{\mathrm{RST}}$ is deasserted and the PLL acquires lock condition, an initialization routine runs inside the AD1939. This initialization lasts for approximately 256 master clock cycles.

The power-down bits in the PLL and Clock Control 0, DAC Control 1, and ADC Control 1 registers power down the respective sections. All other register settings are retained. To guarantee proper startup, the $\overline{\mathrm{RST}}$ pin should be pulled low by an external resistor.

SERIAL CONTROL PORT

The AD1939 has an SPI control port that permits programming and reading back of the internal control registers for the ADCs, DACs, and clock system. A standalone mode is also available
for operation without serial control; standalone is configured at reset by connecting CIN, CCLK, and $\overline{\text { CLATCH }}$ to ground. In standalone mode, all registers are set to default, except the internal MCLK enable, which is set to 1 . The ADC, ABCLK, and ALRCLK clock ports are set to master/slave by the connecting the COUT pin to either DVDD or ground. Standalone mode only supports stereo mode with an I2S data format and $256 \mathrm{f}_{\mathrm{S}}$ MCLK rate. Refer to Table 11 for details. If CIN, CCLK, and $\overline{\text { CLATCH }}$ are not grounded, the AD1939 SPI port is active. It is recommended to use a weak pull-up resistor on $\overline{\text { CLATCH }}$ in applications that have a microcontroller. This pull-up resistor ensures that the AD1939 recognizes the presence of a microcontroller.

The SPI control port of the AD1939 is a 4-wire serial control port. The format is similar to the Motorola SPI format except the input data-word is 24 bits wide. The serial bit clock and latch can be completely asynchronous to the sample rate of the ADCs and DACs. Figure 11 shows the format of the SPI signal. The first byte is a global address with a read/write bit. For the AD1939, the address is $0 x 04$, shifted left one bit due to the R/W bit. The second byte is the AD1939 register address and the third byte is the data.

Table 11. Standalone Mode Selection

ADC Clocks	CIN	COUT	CCLK	$\overline{\text { CLATCH }}$
Slave	0	0	0	0
Master	0	1	0	0

Figure 11. Format of the SPI Signal

POWER SUPPLY AND VOLTAGE REFERENCE

The AD1939 is designed for 3.3 V supplies. Separate power supply pins are provided for the analog and digital sections. To minimize noise pickup, these pins should be bypassed with 100 nF ceramic chip capacitors placed as close to the pins as possible. A bulk aluminum electrolytic capacitor of at least $22 \mu \mathrm{~F}$ should also be provided on the same PC board as the codec. For critical applications, improved performance is obtained with separate supplies for the analog and digital sections. If this is not possible, it is recommended that the analog and digital supplies be isolated by means of a ferrite bead in series with each supply. It is important that the analog supply be as clean as possible.

The AD1939 includes a 3.3 V regulator driver that only requires an external pass transistor and bypass capacitors to make a 5 V to 3.3 V regulator. If the regulator driver is not used, connect VSUPPLY, VDRIVE, and VSENSE to DGND.

All digital inputs are compatible with TTL and CMOS levels. All outputs are driven from the 3.3 V DVDD supply and are compatible with TTL and 3.3 V CMOS levels.

The ADC and DAC internal voltage reference ($\mathrm{V}_{\text {REF }}$) is brought out on FILTR and should be bypassed as close as possible to the chip with a parallel combination of $10 \mu \mathrm{~F}$ and 100 nF . Any external current drawn should be limited to less than $50 \mu \mathrm{~A}$.

The internal reference can be disabled in the PLL and Clock Control 1 register and FILTR can be driven from an external source. This can be used to scale the DAC output to the clipping level of a power amplifier based on its power supply voltage. The ADC input gain varies by the inverse ratio. The total gain from ADC input to DAC output remains constant.

The CM pin is the internal common-mode reference. It should be bypassed as close as possible to the chip, with a parallel combination of $47 \mu \mathrm{~F}$ and 100 nF . This voltage can be used to bias external op amps to the common-mode voltage of the input and output signal pins. The output current should be limited to less than 0.5 mA source and 2 mA sink.

SERIAL DATA PORTS—DATA FORMAT

The eight DAC channels use a common serial bit clock (DBCLK) and a common left-right framing clock (DLRCLK) in the serial data port. The four ADC channels use a common serial bit clock (ABCLK) and left-right framing clock (ALRCLK) in the serial data port. The clock signals are all synchronous with the sample rate. The normal stereo serial modes are shown in Figure 23.

The ADC and DAC serial data modes default to $I^{2} S$. The ports can also be programmed for left-justified, right-justified, and TDM modes. The word width is 24 bits by default and can be programmed for 16 or 20 bits. The DAC serial formats are programmable according to the DAC Control 0 register. The
polarity of DBCLK and DLRCLK is programmable according to the DAC Control 1 register. The ADC serial formats and serial clock polarity are programmable according to the ADC Control 1 register. Both DAC and ADC serial ports are programmable to become the bus masters according to DAC Control 1 register and ADC Control 2 register. By default, both ADC and DAC serial ports are in the slave mode.

TIME-DIVISION MULTIPLEXED (TDM) MODES

The AD1939 serial ports also have several different TDM serial data modes. The first and most commonly used configurations are shown in Figure 12 and Figure 13. In Figure 12, the ADC serial port outputs one data stream consisting of four on-chip ADCs followed by four unused slots. In Figure 13, the eight onchip DAC data slots are packed into one TDM stream. In this mode, both DBCLK and ABCLK are 256 fs .

Figure 12. ADC TDM (8-Channel I ${ }^{2}$ S Mode)

The I/O pins of the serial ports are defined according to the serial mode that is selected. For a detailed description of the function of each pin in TDM and AUX modes, see Table 12.

The AD1939 allows systems with more than eight DAC channels to be easily configured by the use of an auxiliary serial data port. The DAC TDM-AUX mode is shown in Figure 14. In this mode, the AUX channels are the last four slots of the TDM data stream. These slots are extracted and output to the AUX serial port. It should be noted that due to the high DBCLK frequency, this mode is available only in the $48 \mathrm{kHz} / 44.1 \mathrm{kHz} / 32 \mathrm{kHz}$ sample rate.

The AD1939 also allows system configurations with more than four ADC channels as shown in Figure 15 (using 8 ADCs) and Figure 16 (using 16 ADCs). Again, due to the high ABCLK frequency, this mode is available only in the $48 \mathrm{kHz} / 44.1 \mathrm{kHz} / 32 \mathrm{kHz}$ sample rate.

Combining the AUX ADC and DAC modes results in a system configuration of 8 ADCs and 12 DACs . The system, then, consists of two external stereo ADCs, two external stereo DACs,
and one AD1939. This mode is shown in Figure 17 (combined AUX DAC and ADC modes).

Table 12. Pin Function Changes in TDM and AUX Modes

Pin Mnemonic	Stereo Modes	TDM Modes	AUX Modes
ASDATA1	ADC1 Data Out	ADC TDM Data Out	TDM Data Out
ASDATA2	ADC2 Data Out	ADC TDM Data In	AUX Data Out 1 (to Ext. DAC 1)
DSDATA1	DAC1 Data In	DAC TDM Data In	TDM Data In
DSDATA2	DAC2 Data In	DAC TDM Data Out	AUX Data In 1 (from Ext. ADC 1)
DSDATA3 (from Ext. ADC 2)			
DSDATA4	DAC3 Data In	DAC4 Data In	DAC TDM Data In 2 (Dual-Line Mode)
ALRCLK	ADC LRCLK In/ADC LRCLK Out	ADC TDM Frame Sync In/ADC TDM Frame Sync Out	TDM Frame Sync In/TDM Frame Sync Out
ABCLK	ADC BCLK In/ADC BCLK Out	ADC TDM BCLK In/ADC TDM BCLK Out	TDM BCLK In/TDM BCLK Out
DLRCLK	DAC LRCLK In/DAC LRCLK Out	DACTDM Frame Sync In/DAC TDM Frame Sync Out	AUX LRCLK In/AUX LRCLK Out
DBCLK	DAC BCLK In/DAC BCLK Out	DAC TDM BCLK In/DAC TDM BCLK Out	AUX BCLK In/AUX BCLK Out

abclk

Figure 16. 16-Channel AUX ADC Mode

AD1939

Figure 17. Combined AUX DAC and ADC Mode

DAISY-CHAIN MODE

The AD1939 also allows a daisy-chain configuration to expand the system to 8 ADCs and 16 DACs (see Figure 18). In this mode, the DBCLK frequency is 512 fs . The first eight slots of the DAC TDM data stream belong to the first AD1939 in the chain and the last eight slots belong to the second AD1939. The second AD1939 is the device attached to the DSP TDM port.

To accommodate 16 channels at a 96 kHz sample rate, the AD1939 can be configured into a dual-line, TDM mode as shown in Figure 19. This mode allows a slower DBCLK than normally required by the one-line TDM mode.

Again, the first four channels of each TDM input belong to the first AD1939 in the chain and the last four channels belong to the second AD1939.

The dual-line TDM mode can also be used to send data at a 192 kHz sample rate into the AD1939 as shown in Figure 20.

There are two configurations for the ADC port to work in daisy-chain mode. The first one is with an ABCLK at $256 \mathrm{f}_{\mathrm{s}}$ shown in Figure 21. The second configuration is shown in Figure 22. Note that in the 512 fs ABCLK mode, the ADC channels occupy the first eight slots; the second eight slots are empty. The TDM_IN of the first AD1939 must be grounded in all modes of operation.

The I/O pins of the serial ports are defined according to the serial mode selected. See Table 13 for a detailed description of the function of each pin. See Figure 26 for a typical AD1939 configuration with two external stereo DACs and two external stereo ADCs.

Figure 23 through Figure 25 show the serial mode formats. For maximum flexibility, the polarity of LRCLK and BCLK are programmable. In these figures, all of the clocks are shown with their normal polarity. The default mode is $I^{2} S$.

Figure 18. Single-Line DAC TDM Daisy-Chain Mode (Applicable to 48 kHz Sample Rate, 16-Channel, Two-AD1939 Daisy Chain)

AD1939

Figure 19. Dual-Line DAC TDM Mode (Applicable to 96 kHz Sample Rate, 16-Channel, Two-AD1939 Daisy Chain); DSDATA3 and DSDATA4 Are the Daisy Chain

Figure 20. Dual-Line DAC TDM Mode (Applicable to 192 kHz Sample Rate, 8-Channel Mode)

Figure 21. ADC TDM Daisy-Chain Mode ($256 f_{s}$ ABCLK, Two-AD1939 Daisy Chain)
alRCLK \square
ABCLK
10

Figure 22. ADC TDM Daisy-Chain Mode (512 fs ABCLK, Two-AD1939 Daisy Chain)

Figure 23. Stereo Serial Modes

AD1939

Figure 24. DAC Serial Timing

Figure 25. ADC Serial Timing

Table 13. Pin Function Changes in TDM and AUX Modes (Replication of Table 12)

Pin Mnemonic	Stereo Modes	TDM Modes	AUX Modes
ASDATA1	ADC1 Data Out	ADC TDM Data Out	TDM Data Out
ASDATA2	ADC2 Data Out	ADC TDM Data In	AUX Data Out 1 (to Ext. DAC 1)
DSDATA1	DAC1 Data In	TAC TDM Data In	AUX Data In
DSDATA2	DAC2 Data In (from Ext. ADC 1)		
DSDATA3	DAC3 Data In	DAC TDM Data Out	AUX Data In 2 (from Ext. ADC 2)
DSDATA4	DAC4 Data In	DAC TDM Data In 2 (Dual-Line Mode)	AUX Data Out 2 (to Ext. DAC 2)
ALRCLK	ADC LRCLK In/ADC LRCLK Out	ADC TDM Data Out 2 (Dual-Line Mode)	ADrame Sync In/ADCTDM Frame Sync Out
ABCLK	ADC BCLK In/ADC BCLK Out	ADC TDM BCLK In/ADC TDM BCLK Out	TDM BCLK In/TDM BCLK Out
DLRCLK	DAC LRCLK In/DAC LRCLK Out	DACTDM Frame Sync In/DACTDM Frame Sync Out	AUX LRCLK In/AUX LRCLK Out
DBCLK	DAC BCLK In/DAC BCLK Out	DAC TDM BCLK In/DAC TDM BCLK Out	AUX BCLK In/AUX BCLK Out

Figure 26. Example of AUX Mode Connection to SHARC (AD1939 as TDM Master/AUX Master Shown)

CONTROL REGISTERS

DEFINITIONS

The global address for the AD1939 is $0 x 04$, shifted left one bit due to the $\mathrm{R} / \overline{\mathrm{W}}$ bit. All registers are reset to 0 , except for the DAC volume registers that are set to full volume.

Note that the first setting in each control register parameter is the default setting.
Table 14. Register Format

	Global Address	$\mathbf{R} / \overline{\mathbf{W}}$	Register Address	Data
Bit	$23: 17$	16	$15: 8$	$7: 0$

Table 15. Register Addresses and Functions

Address	Function
0	PLL and Clock Control 0
1	PLL and Clock Control 1
2	DAC Control 0
3	DAC Control 1
4	DAC Control 2
5	DAC individual channel mutes
6	DAC L1 volume control
7	DAC R1 volume control
8	DAC L2 volume control
9	DAC R2 volume control
10	DAC L3 volume control
11	DAC R3 volume control
12	DAC L4 volume control
13	DAC R4 volume control
14	ADC Control 0
15	ADC Control 1
16	ADC Control 2

PLL AND CLOCK CONTROL REGISTERS

Table 16. PLL and Clock Control 0 Register

Bit	Value	Function	Description
0	0	Normal operation	PLL power-down
	1	Power-down	
$2: 1$	00	INPUT $256(\times 44.1 \mathrm{kHz}$ or 48 kHz$)$	MCLKI/XI pin functionality (PLL active), master clock rate setting
	01	INPUT $384(\times 44.1 \mathrm{kHz}$ or 48 kHz$)$	
	10	INPUT $512(\times 44.1 \mathrm{kHz}$ or 48 kHz$)$	
	11	INPUT $768(\times 44.1 \mathrm{kHz}$ or 48 kHz$)$	
$4: 3$	00	XTAL oscillator enabled	MCLKO/XO pin, master clock rate setting
	01	$256 \times \mathrm{f}_{5}$ VCO output	
	10	$512 \times \mathrm{f}_{\mathrm{s}}$ VCO output	
	11	Off	
$6: 5$	00	MCLKI/XI	
	01	DLRCLK	
	10	ALRCLK	
	11	Reserved	Internal master clock enable
	0	Disable: ADC and DAC idle	

Table 17. PLL and Clock Control 1 Register

Bit	Value	Function	Description
0	0	PLL clock	DAC clock source select
	1	MCLK	ADC clock source select
1	0	PLL clock	On-chip voltage reference
	1	MCLK	Enabled
2	0	Disabled	PLL lock indicator (read only)
	1	0	Not locked
$7: 4$	0000	Reserved	

DAC CONTROL REGISTERS

Table 18. DAC Control 0 Register

Bit	Value	Function	Description
0	0	Normal	Power-down
	1	Power-down	Sample rate
$2: 1$	00	$32 \mathrm{kHz} / 44.1 \mathrm{kHz} / 48 \mathrm{kHz}$	
	01	$64 \mathrm{kHz} / 88.2 \mathrm{kHz} / 96 \mathrm{kHz}$	
	10	$128 \mathrm{kHz} / 176.4 \mathrm{kHz} / 192 \mathrm{kHz}$	SDATA delay (BCLK periods)
	11	Reserved	
$5: 3$	000	1	
	001	0	
	010	8	
	011	12	
	100	16	Reserved
	101	Reserved	
	110	Reserved	
$7: 6$	00	Stereo (normal)	
	01	TDM (daisy chain)	
	10	DAC AUX mode (ADC-, DAC-, TDM-coupled)	
	11	Dual-line TDM	

Table 19. DAC Control 1 Register

Bit	Value	Function	Description
0	0	Latch in mid cycle (normal)	BCLK active edge (TDM in)
	1	Latch in at end of cycle (pipeline)	
$2: 1$	00	64 (2 channels)	BCLKs per frame
	01	128 (4 channels)	
	10	256 (8 channels)	
	11	512 (16 channels)	LRCLK polarity
3	0	Left low	
	1	Left high	LRCLK master/slave
4	0	Slave	BCLK master/slave
	1	Master	
5	0	Slave	BCLK source
	1	Master	BCLK polarity
6	0	DBCLK pin	
7	0	Internally generated	Normal
	1	Inverted	

Table 20. DAC Control 2 Register

Bit	Value	Function	Description
0	0	Unmute	Master mute
	1	Mute	De-emphasis (32 kHz/44.1 kHz/48 kHz mode only)
$2: 1$	00	Flat	
	01	48 kHz curve	
	10	44.1 kHz curve	Word width
	11	32 kHz curve	
$4: 3$	00	24	
	01	20	DAC output polarity
	10	Reserved	
5	11	16	
$7: 6$	0	Noninverted	

Table 21. DAC Individual Channel Mutes

Bit	Value	Function	Description
0	0	Unmute	DAC 1 left mute
	1	Mute	DAC 1 right mute
1	0	Unmute	DAC 2 left mute
	1	Mute	
2	0	Unmute	DAC 2 right mute
	1	Mute	DAC 3 left mute
3	0	Unmute	DAC 3 right mute
	1	Mute	
4	0	Unmute	DAC 4 left mute
	1	Mute	DAC 4 right mute
6	0	Unmute	
7	0	Mute	Unmute
	1	Mute	Unmute
	1	Mute	

Table 22. DAC Volume Controls

Bit	Value	Function	Description
$7: 0$	0	No attenuation	DAC volume control
	1 to 254	$-3 / 8 \mathrm{~dB}$ per step	
	255	Full attenuation	

ADC CONTROL REGISTERS

Table 23. ADC Control 0 Register

Bit	Value	Function	Description
0	0	Normal	
	1	Power down	Power-down
1	0	Off	High-pass filter
	1	On	ADC 1L mute
2	0	Unmute	ADC 1R mute
	1	Mute	ADC 2L mute
3	0	Unmute	ADC 2R mute
	1	Mute	
4	0	Unmute	Output sample rate
	1	Mute	
$7: 6$	0	Unmute	
	1	Mute	$32 \mathrm{kHz} / 44.1 \mathrm{kHz} / 48 \mathrm{kHz}$
	00	$64 \mathrm{kHz} / 88.2 \mathrm{kHz} / 96 \mathrm{kHz}$	
	10	Reserved	

Table 24. ADC Control 1 Register

Bit	Value	Function	Description
$1: 0$	00	24	Word width
	01	20	
	10	Reserved	
	11	16	SDATA delay (BCLK periods)
$4: 2$	000	1	
	001	0	
	010	8	
	011	12	
	100	16	Serial format
	101	Reserved	
$6: 5$	110	Reserved	
	111	Reserved	Stereo
	00	TDM (daisy chain)	
	01	ADC AUX mode (ADC-, DAC-, TDM-coupled)	
	10	Reserved	Latch in mid cycle (normal)
	11	0	Latch in at end of cycle (pipeline)

Table 25. ADC Control 2 Register

Bit	Value	Function	Description
0	0	$50 / 50$ (allows 32, 24, 20, or 16 bit clocks (BCLKs) per channel)	LRCLK format
	1	Pulse (32 BCLKs per channel)	
1	0	Drive out on falling edge (DEF) Drive out on rising edge	BCLK polarity
	1	0	Left low
	1	Left high	LRCLK polarity
2	0	Slave	LRCLK master/slave
	1	Master	BCLKs per frame
$5: 4$	00	64	
6	01	128	BCLK master/slave
	10	256	BCLK source
	11	512	
7	0	Slave	

ADDITIONAL MODES

The AD1939 offers several additional modes for board level design enhancements. To reduce the EMI in board level design, serial data can be transmitted without an explicit BCLK. See Figure 27 for an example of a DAC TDM data transmission mode that does not require high speed DBCLK. This configuration is applicable when the AD1939 master clock is generated by the PLL with the DLRCLK as the PLL reference frequency.

To relax the requirement for the setup time of the AD1939 in cases of high speed TDM data transmission, the AD1939 can latch in the data using the falling edge of DBCLK. This effectively dedicates the entire BCLK period to the setup time. This mode is useful in cases where the source has a large delay time in the serial data driver. Figure 28 shows this pipeline mode of data transmission.

Both the BCLK-less and pipeline modes are available on the ADC serial data port.

Figure 28. I²S Pipeline Mode in DAC Serial Data Transmission
(Applicable in Stereo and TDM, Useful for High Frequency TDM Transmission, This Mode Is Also Available in the ADC Serial Data Port)

APPLICATION CIRCUITS

Typical application circuits are shown in Figure 29 through Figure 32. Figure 29 shows a typical ADC input filter circuit. Recommended loop filters for LR clock and master clock as the PLL reference are shown in Figure 30. Output filters for the DAC outputs are shown in Figure 31 and a regulator circuit is shown in Figure 32.

Figure 29. Typical ADC Input Filter Circuit

Figure 30. Recommended Loop Filters for LRCLK or MCLK PLL Reference

Figure 31. Typical DAC Output Filter Circuit (Differential)

Figure 32. Recommended 3.3 V Regulator Circuit

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-026-BCD
Figure 33. 64-Lead Low Profile Quad Flat Package [LQFP]
(ST-64-2)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1,2	Temperature Range	Package Description	Package Option
AD1939YSTZ	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	64 -Lead LQFP	ST-64-2
AD1939YSTZRL	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	64-Lead LQFP, 13"Tape and Reel	ST-64-2
AD1939WBSTZ	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	64-Lead LQFP	ST-64-2
AD1939WBSTZ-RL	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	64-Lead LQFP, 13"Tape and Reel	ST-64-2
EVAL-AD1939AZ		Evaluation Board	

${ }^{1} Z=$ RoHS Compliant Part.
${ }^{2} \mathrm{~W}=$ Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The AD1939W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface - CODECs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
CS4205-KQZ ADAU1777BCBZRL LE58QL021BVCT TSCS42A2X1NLGIZAX BU92001KN-E2 TLC320AD52CPT TDA7293V-E STA529Q SSM2603CPZ-REEL TLV320AIC14IDBT TLV320AIC23BIPWRQ1 TLV320AIC23IPW TLV320AIC3262IYZFR WM8904CGEFL/RV LE58QL063HVC SSM2167-1RMZ AD1836AASZ AD1836ACSZ ADAU1381BCPZ ADAU1761BCPZ ADAU1761BCPZ-R7 ADAU1787BCBZRL7 ADAV801ASTZ SSM2603CPZ-REEL7 AD74111YRUZ-REEL7 AD74111YRUZ AD1928YSTZ ADAU1328BSTZ ADV212BBCZ-150 AD1938WBSTZ-RL SSM2604CPZ-REEL7 CS4270-CZZ XD74LS42 XD74LS48 XD74LS47 XD74LS145 XD74LS247 XD74LS248 PT2272-L4 PT2262 pt2272-m4 AD2262 EG201A HT12D CPC5750U GM7122 GM7121-D GM7123C CMX649E3 MAX98050ENX+

