FEATURES

Isolation Test Voltage: To 3.5 kV ms

Five Isolated Logic Lines: Available in Six I/O Configurations

 Logic Signal Bandwidth: 20 MHz (min)CMV Transient Immunity: 10 kV/ $\mu \mathrm{s}$ min
Waveform Edge Transmission Symmetry: ± 1 ns
Field and System Output Enable/Three-State Functions Performance Rated Over $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
UL1950, IEC950, EN60950 Certification (VDE, CE, Pending)

APPLICATIONS

PLC/DCS Analog Input and Output Cards
Communications Bus Isolation
General Data Acquisition Applications
IGBT Motor Drive Controls
High Speed Digital I/O Ports

GENERAL DESCRIPTION

The AD 261 is designed to isolate five digital control signals to/from a microcontroller and its related field I/O components. Six models allow all I/O combinations from five input lines to five output lines, including combinations in between. Every AD 261 effectively replaces up to five opto-isolators.
Each line of the AD 261 has a bandwidth of $20 \mathrm{M} \mathrm{Hz}(\mathrm{min})$ with a propagation delay of only 14 ns , which allows for extremely fast data transmission. O utput waveform symmetry is maintained to within $\pm 1 \mathrm{~ns}$ of the input so the AD 261 can be used to accurately isolate time-based PWM signals.
All field or system output pins of the AD 261 can be set to a high resistance three-state level by use of the two enable pins. A field output three-stated offers a convenient method of presetting logic levels at power-up by use of pull-up/down resistors. System side outputs being three-stated allows for easy multiplexing of multiple AD 261s.
The isolation barrier of the AD 261 B Grade is 100% tested as high as 3.5 kV rms (system to field). The barrier design also provides excellent common-mode transient immunity from $10 \mathrm{kV} / \mu \mathrm{s}$ common-mode voltage excursions of field side terminals relative to the system side, with no false output triggering on either side.
Each output is updated within nanoseconds by input logic transitions, the AD 261 also has a continuous output update feature that automatically updates each output based on the dc level of the input. T his guarantees the output is always valid $10 \mu \mathrm{~s}$ after a fault condition or after the power-up reset interval.

REV. 0

[^0]FUNCTIONAL BLOCK DIAGRAM

(AD261-2)

PRODUCT HIGHLIGHTS

Six Isolated Logic Line I/O Configurations Available The AD 261 is available in six pin-compatible versions of I/O configurations to meet a wide variety of requirements.
Wide Bandwidth with Minimal Edge Error: The AD 261 affords extremely fast isolation of logic signals due to its 20 M Hz bandwidth and 14 ns propagation delay. It maintains a waveform input-to-output edge transition error of typically less than $\pm 1 \mathrm{~ns}$ (total) for positive vs. negative transition.
3.5 kV rms Test Voltage Isolation Rating: The AD 261

B G rade is rated to operate at 1.25 kV rms and is 100% production tested at 3.5 kV rms, using a standard ADI test method.
High Transient Immunity: T he AD 261 rejects commonmode transients slewing at up to $10 \mathrm{kV} / \mathrm{\mu s}$ without false triggering or damage to the device.
(Continued on page 5)

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 Wordd Wide Web Site: http://www.analog.com Fax: 781/326-8703
© Analog Devices, Inc., 1997

Parameter	Conditions	Min	Typ	Max	Units
INPUT CHARACTERISTICS Threshold Voltage Positive T ransition ($\mathrm{V}_{\mathrm{T}+}$) N egative T ransition ($\mathrm{V}_{\mathrm{T}_{-}}$) Hysteresis Voltage (V_{H}) Input C apacitance ($\mathrm{C}_{\text {IN }}$) Input Bias Current (I)	$\begin{aligned} & +5 \mathrm{Vd} c_{\text {SYS }}=4.5 \mathrm{~V} \\ & +5 \mathrm{Vd} c_{\text {SYS }}=5.5 \mathrm{~V} \\ & +5 \mathrm{Vd} c_{\text {SYS }}=4.5 \mathrm{~V} \\ & +5 \mathrm{Vd} c_{\text {SYS }}=5.5 \mathrm{~V} \\ & +5 \mathrm{Vd} c_{\text {SYS }}=4.5 \mathrm{~V} \\ & +5 \mathrm{~V} c_{\text {SYS }}=5.5 \mathrm{~V} \end{aligned}$ Per Input	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 0.9 \\ & 1.2 \\ & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.2 \\ & 1.8 \\ & 2.2 \\ & 0.9 \\ & 1.0 \\ & 5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3.15 \\ & 4.2 \\ & 2.2 \\ & 3.0 \\ & 1.4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & V \\ & p F \\ & \mu A \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage ${ }^{1}$ High Level (V_{OH}) Low Level (V_{OL}) Output Three-State Leakage Current		$\begin{aligned} & 4.4 \\ & 3.7 \end{aligned}$	0.5	$\begin{aligned} & 0.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \\ & \mu A \end{aligned}$
DYNAMIC RESPONSE ${ }^{1}$ (Refer to Figure 2) M ax Logic Signal Frequency ($\mathrm{f}_{\text {MIN }}$) Waveform Edge Symmetry Error ($\mathrm{t}_{\text {ERror }}$) Logic Edge Propagation Delay ($\mathrm{t}_{\text {phL }}, \mathrm{t}_{\text {PLH }}$) M inimum Pulsewidth ($\mathrm{t}_{\text {pwmin }}$) M ax O utput U pdate Delay on F ault or After Power-U p Reset Interval $(\approx 30 \mu \mathrm{~S})^{2}$	$\begin{aligned} & 50 \% \text { D uty C ycle, }+5 \mathrm{~V} \text { dc } \mathrm{SYYS}=5 \mathrm{~V} \\ & \mathrm{t}_{\text {PHL }} \text { vs. } \mathrm{t}_{\text {PLH }} \end{aligned}$	20 25	$\begin{aligned} & \pm 1 \\ & 14 \end{aligned}$ 12	25	M Hz ns ns ns $\mu \mathrm{S}$
ISOLATION BARRIER RATING ${ }^{3}$ Operating I solation Voltage ($\mathrm{V}_{\text {CMV }}$) Isolation Rating Test Voltage $\left(\mathrm{V}_{\text {CMV TEST }}\right)^{4}$ Transient Immunity ($\mathrm{V}_{\text {transient }}$) I solation M ode Capacitance (C_{150}) C apacitive L eakage C urrent (ILEAD)	$\begin{aligned} & \text { AD261A } \\ & \text { AD261B } \\ & \text { AD261A } \\ & \text { AD261B } \end{aligned}$ T otal C apacitance, All Lines 240 V rms @ 60 Hz	$\begin{aligned} & 1750 \\ & 3500 \\ & 10,000 \end{aligned}$	9	$\begin{aligned} & 375 \\ & 1250 \\ & \\ & 15 \\ & 2 \end{aligned}$	V rms V rms V rms V rms $\mathrm{V} / \mathrm{\mu s}$ pF $\mu \mathrm{A}$ rms
POWER SUPPLY Supply Voltage ($+5 \mathrm{~V} \mathrm{dc}_{\text {SYS }}$ and $+5 \mathrm{~V} \mathrm{dc}_{\mathrm{FLD}}$) Power Dissipation C apacitance Quiescent Supply Current Supply Current	R ated Performance Operating Effective, per Input, Either Side Effective per Output, Either Side-No L oad Each, $+5 \mathrm{~V} \mathrm{dc}_{\text {SYS } \& F L D}$ All Lines @ 10 M Hz (Sum of $+5 \mathrm{Vdc} \mathrm{S}_{\mathrm{SYS}} \& \mathrm{FLD}$)	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8 \\ & 28 \\ & 4 \\ & 18 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.75 \end{aligned}$	V dc V dc pF pF mA mA
$\begin{aligned} & \text { TEM PERATURE RANGE ERAT } \\ & \text { Rated Performance }\left(T_{A}\right)^{5} \\ & \text { Storage (} \mathrm{T}_{\mathrm{STG}} \text {) } \end{aligned}$		$\begin{aligned} & -25 \\ & -40 \end{aligned}$		$\begin{aligned} & +85 \\ & +85 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

NOTES

${ }^{1}$ F or best performance, bypass +5 V dc supplies to com., at or near the device ($0.01 \mu \mathrm{~F}$). +5 V dc supplies are also internally bypassed with $0.05 \mu \mathrm{~F}$.
${ }^{2}$ As the supply voltage is applied to either side of the AD 261 , the internal circuitry will go into a power-up reset mode (all lines disabled) for about $30 \mu \mathrm{~s}$ after the point where $+5 \mathrm{~V} \mathrm{dc}_{\text {SYS } \& \text { FLD }}$ passes above 3.3 V .
${ }^{3 "}$ O perating" isolation voltage is derived from the Isolation T est Voltage in accordance with such methods as found in VDE-0883 wherein a device will be "hi-pot" tested at twice the operating voltage, plus one thousand volts. Partial discharge testing, with an acceptance threshold of 80 pC of discharge may be considered the same as a hi-pot test (but nondestructive).
${ }^{4}$ Partial Discharge at 80 pC THLD.
${ }^{5}$ Supply Current will increase slightly, but otherwise the unit will function within specification to $-40^{\circ} \mathrm{C}$.
Specifications are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Parameter	Conditions	Min	Typ	Max	Units
Supply Voltage ($+5 \mathrm{~V} \mathrm{dc}_{\text {SY } ~ \& ~ F L D ~}^{\prime}$)		-0.5		+6.0	V
DC Input Voltage (V $\mathrm{IN} \mathrm{max}^{\text {) }}$	Referred to $+5 \mathrm{~V} \mathrm{dc}_{\text {SYS }}$ F FLD ${ }^{\text {and }} 5 \mathrm{~V}$ RT $\mathrm{N}_{\text {SYS } ~}^{\text {F FLD }}$ Respectively	-0.5		+0.5	V
DC Output Voltage (Vout max)	Referred to +5 V RTN ${ }_{\text {SYS } ~ \& ~ F L D ~}^{\prime}$ and 5 V dc SYS $~ \& ~ F L D ~_{\text {R }}$ Respectively	-0.5		+0.5	V
Clamp D iode Input C urrent (I_{IK})	For $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>5 \mathrm{~V}$ RTN $\mathrm{SYS}^{\text {FFLD }}$ + +0.5 V	-25		+25	mA
Clamp Diode Output Current ($\mathrm{I}_{\text {OK }}$)	For $\mathrm{V}_{0}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{0}>5 \mathrm{~V}$ RT $\mathrm{N}_{\text {SYS \& FLD }}+0.5 \mathrm{~V}$	-25		+25	mA
Output DC Current, per Pin (Iout)		-25		+25	mA
DC C urrent, $\mathrm{V}_{C C}$ or GND ($\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\mathrm{GND}}$)		-50		+50	mA
Storage Temperature ($\mathrm{T}_{\text {STG }}$)		-40		+85	${ }^{\circ} \mathrm{C}$
L ead T emperature (Soldering, 10 sec)				+300	${ }^{\circ} \mathrm{C}$
Electrostatic Protection (VESD	Per M IL-ST D-883, M ethod 3015	4.5	5		kV

*Stresses above those listed under Absolute M aximum R atings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

I/O CONFIGURATIONS AVAILABLE

The AD 261 is available in several configurations. The choice of model is determined by the desired number of input vs. output lines. All models have identical footprints with the power and enable pins always being in the same locations.

PIN FUNCTION DESCRIPTIONS

Pin	Mnemonic	Function
1-5*	S0 T hrough S4	Digital X mt or Rcv from F0 T hrough F4
6	$\overline{\text { ENABLE }}$ SYS	System O utput Enable/T hree-State
7	$+5 \mathrm{Vdc}{ }_{\text {SY }}$	System Power Supply (+5 V dc Input)
8	5 V RTN ${ }_{\text {SYS }}$	System Power Supply Common
9-14		N ot Present On U nit
15	5 V RTN ${ }_{\text {FLD }}$	Field Power Supply Common
16	+5 V dc ${ }_{\text {FLD }}$	Field Power Supply (+5 V Input)
17	ENABLE $\mathrm{FLD}^{\text {d }}$	Field Output Enable/T hree-State
18-22*	F 0 T hrough F4	D igital X mt or Rcv from S0 Through S4

*F unction of pin determined by model. Refer to T able I .

PIN CONFIGURATION

ORDERING GUIDE

Model Number	Description	Isolation Ratings	Package Description	Package Option
AD 261AND-0	0 Inputs, 50 utputs	1.75 kV rms	Plastic DIP	ND-22A
AD 261AND-1	1 Input, 4 Outputs	1.75 kV rms	Plastic DIP	ND-22A
AD 261AND-2	2 Inputs, 3 Outputs	1.75 kV rms	Plastic DIP	ND-22A
AD 261AND-3	3 Inputs, 2 Outputs	1.75 kV rms	Plastic DIP	ND-22A
AD 261AND-4	4 Inputs, 1 Output	1.75 kV rms	Plastic DIP	ND-22A
AD 261AND-5	5 Inputs, 0 Outputs	1.75 kV rms	Plastic DIP	ND-22A
AD 261BND-0	0 Inputs, 5 Outputs	3.5 kV rms	Plastic DIP	ND-22A
AD 261BND-1	1 Input, 4 Outputs	3.5 kV rms	Plastic DIP	ND-22A
AD 261BND-2	2 Inputs, 30 utputs	3.5 kV rms	Plastic DIP	ND-22A
AD 261BND-3	3 Inputs, 2 Outputs	3.5 kV rms	Plastic DIP	ND-22A
AD 261BND-4	4 Inputs, 1 Output	3.5 kV rms	Plastic DIP	ND-22A
AD 261BND-5	5 Inputs, 0 Outputs	3.5 kV rms	Plastic DIP	ND-22A

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 261 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD 261 CONFIGURATIONS

AD 261 CONFIGURATIONS

(Continued from page 1)
Field and System Enable Functions: Both the isolated and nonisolated sides of the AD 261 have ENABLE pins that threestate all outputs. U pon reenabling these pins, all outputs are updated to reflect the current input logic level.
CE Certifiable Simply by adding the external bypass capacitors at the supply pins, the AD 261 can attain CE certification in most applications (to the EMC directive) and conformance to the low voltage (safety) directive is assured by the EN 60950 certification.

Table I. Model Number and Pinout Function

Pin	AD 261-0	AD 261-1	AD 261-2	AD261-3	AD 261-4	AD 261-5
1	SO (Xmt)	SO (Xmt)	S0 (Xmt)	S0 (Xmt)	S0 (Xmt)	SO (Rcv)
2	S1 (Xmt)	S1 (Xmt)	S1 (Xmt)	S1 (Xmt)	S1 (Rcv)	S1 (Rcv)
3	S2 (Xmt)	S2 (Xmt)	S2 (Xmt)	S2 (Rcv)	S2 (Rcv)	S2 (Rcv)
4	S3 (Xmt)	S3 (Xmt)	S3 (Rcv)	S3 (Rcv)	S3 (Rcv)	S3 (Rcv)
5	S4 (Xmt)	S4 (Rcv)				
6	ENABLE ${ }_{\text {SYS }}$	*	*	*	*	*
7	+5V dcsYs	*	*		*	*
8	$5 \mathrm{~V}^{\text {RTN }}$ SYS	*			*	
9-14			Not			
15	5 V RTN FLD	*				*
16	$+5 \mathrm{Vdc} \mathrm{FLD}$	*	*	*	*	*
17	ENABLE $\mathrm{F}_{\text {FL }}$	*	*	*	*	*
18	FO (Rcv)	F0 (X mt)				
19	F1 (Rcv)	F1 (Rcv)	F1 (Rcv)	F1 (Rcv)	F1 (Xmt)	F1 (Xmt)
20	F2 (Rcv)	F2 (Rcv)	F2 (Rcv)	F2 (Xmt)	F2 (Xmt)	F2 (Xmt)
21	F3 (Rcv)	F3 (Rcv)	F3 (Xmt)	F3 (Xmt)	F3 (Xmt)	F3 (Xmt)
22	F4 (Rcv)	F4 (Xmt)				

[^1]
GENERAL ATTRIBUTES

The AD 261 provides five HCM OS compatible isolated logic lines with $\geq 10 \mathrm{kV} / \mu \mathrm{s}$ common-mode transient immunity.
The case design and pin arrangement provides greater than 18 mm spacing between field and system side conductors, providing CSA/IS and IEC creepage spacing consistent with 750 V mains isolation.
The five unidirectional logic lines have six possible combinations of "ins" and "outs," or transmitter/receiver pairs; hence there are six AD 261 part configurations (see T able I).
Each 20 M Hz logic line has a Schmidt trigger input and a threestate output (on the other side of the isolation barrier) and 14 ns of propagation delay. A single enable pin on either side of the barrier causes all outputs on that side to go three-state and all inputs (driven pins) to ignore their inputs and retain their last known state.
N ote: A ll unused logic inputs (1-5) should be tied either high or low, but not left floating.
Edge "fidelity," or the difference in propagation time for rising and falling edges, is typically less than ± 1 ns.
Power consumption, unlike opto-isolators, is a function of operating frequency. Each logic line barrier driver requires about $160 \mu \mathrm{~A}$ per M Hz and each receiver $40 \mu \mathrm{~A}$ per M Hz plus, of course, 4 mA total idle current (each side). The supply current diminishes slightly with increasing temperature (about $-0.03 \% /{ }^{\circ} \mathrm{C}$).
The total capacitance spanning the isolation barrier is less than 10 pF .
The minimum period of a pulse that can be accurately coupled across the barrier is about 25 ns . Therefore the maximum square-wave frequency of operation is 20 M Hz .

AD261

Logic information is sent across the barrier as "set-hi/set-lo" data that is derived from logic level transitions of the input. At power-up or after a fault condition, an output might not represent the state of the respective channel input to the isolator. An internal circuit operates in the background which interrogates all inputs about every 5μ s and in the absence of logic transitions, sends appropriate "set-hi" or "set-lo" data across the barrier.
Recovery time from a fault condition or at power-up is thus between $5 \mu \mathrm{~s}$ and $10 \mu \mathrm{~s}$.

UPDATE CIRCUIT LATCH

Figure 1. Simplified Block Diagram

Figure 2. Typical Timing and Delay Models

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm)

22-Pin Plastic DIP
 (ND-22A)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Isolators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
SI8380P-IUR IL3485-3E IL514E IL515E IL611-1E IL612A-3E IL711-1E IL711-2E IL721VE IL814TE ADN4652BRSZ-RL7 ADUM1441ARSZ ADUM1447ARSZ ADUM1447ARSZ-RL7 ADUM230D0BRIZ-RL ADUM230E1BRIZ-RL ISO7820DW ADUM1440ARSZ ADUM1445ARSZ ADUM1246ARSZ-RL7 ADUM231E0BRWZ-RL ADUM4150ARIZ-RL ADUM4150BRIZ-RL ADUM5211ARSZ-RL7 ISO7730DBQR IL3522E IL3422-3E IL510-1E IL610-1E IL611-2E IL613-3E IL716-1E ISO7342CDWR ISO7810FDW ISO7820FDW IL611-3E ADN4655BRWZ ADUM2211SRIZ-RL ADUM1440ARSZ-RL7 ADUM3471CRSZ-RL7 ADUM3473ARSZ ADUM6210ARSZ ADUM1446ARSZ-RL7 ADN4650BRWZ-RL7 ADUM7641ARQZ ADUM7643CRQZ ADUM7643CRQZ-RL7 ADM2582EBRWZ-REEL7 ADM2587EBRWZ-REEL7 ADM3251EARWZ

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: *Pin function is the same on all models, as shown in the AD 261-0 column.

