

18-Bit, **2 MSPS** Precision, Differential SAR ADC

Known Good Die

AD4003-KGD

FEATURES

Throughput: 2 MSPS INL: ±1.0 LSB (±3.8 ppm) maximum Guaranteed 18-bit no missing codes Low power 9.5 mW at 2 MSPS, 4.9 mW at 1 MSPS, 2.4 mW at 500 kSPS (VDD only) 80 µW at 10 kSPS, 16 mW at 2 MSPS (total) SNR: 100.5 dB typical at 1 kHz, VREF = 5 V; 99 dB typical at 100 kHz THD: -123 dB typical at 1 kHz, VREF = 5 V; -100 dB typical at 100 kHz Ease of use features reduce system power and complexity Input overvoltage clamp circuit Reduced nonlinear input charge kickback **High-Z mode** Long acquisition phase Input span compression Fast conversion time allows low SPI clock rates SPI-programmable modes, read/write capability, status word Differential analog input range: ±VREF 0 V to VREF with VREF from 2.4 V to 5.1 V Single 1.8 V supply operation with 1.71 V to 5.5 V logic interface SAR architecture: no latency/pipeline delay, valid first conversion **First conversion accurate**

Guaranteed operation: -40°C to +125°C

SPI-/QSPI-/MICROWIRE-/DSP-compatible serial interface Ability to daisy chain multiple ADCs and busy indicator

APPLICATIONS

Automatic test equipment **Machine automation Medical equipment Battery-powered equipment** Precision data acquisition systems

GENERAL DESCRIPTION

The AD4003-KGD is a low noise, low power, high speed, 18-bit, precision successive approximation register (SAR) analog-to-digital converter (ADC). The AD4003-KGD offers a 2 MSPS throughput. The AD4003-KGD incorporates ease of use features that reduce signal chain power consumption and complexity, and enable higher channel density. The high-Z mode, coupled with a long acquisition phase, eliminates the need for a dedicated high power, high speed ADC driver. Eliminating this ADC driver broadens the range of low power, precision amplifiers that can drive this ADC directly, while still achieving optimum performance. The input span compression feature enables the ADC driver amplifier and the ADC to operate off common supply rails without a negative supply, yet preserves the full ADC code range. The low serial peripheral interface (SPI) clock rate requirement reduces the digital input/ output power consumption, broadens processor options, and simplifies the task of sending data across digital isolation.

Operating from a 1.8 V supply, the AD4003-KGD has a $\pm V_{REF}$ fully differential input range, with VREF ranging from 2.4 V to 5.1 V, and consumes 16 mW at 2 MSPS with a minimum SCK rate of 75 MHz in turbo mode. The AD4003-KGD achieves ±1.0 LSB integral nonlinearty (INL) error maximum and guarantees no missing codes at 18 bits with 100.5 dB typical signal-to-noise ratio (SNR) for 1 kHz inputs. The reference voltage is applied externally and can be set independently of the supply voltage.

The SPI-compatible, serial interface features seven modes, including the ability, using the SDI input, to daisy-chain several ADCs on a single 3-wire bus and provides an optional busy indicator. The AD4003-KGD uses a simple SPI interface for writing to the configuration register and receiving conversion results. The SPI interface uses a separate supply, VIO, set to the host logic level. By using the VIO supply, the AD4003-KGD is compatible with 1.8 V, 2.5 V, 3 V, and 5 V logic.

Additional application and technical information can be found in the AD4003/AD4007/AD4011 data sheet. Known Good Die (KGD): these die are fully guaranteed to data sheet specifications.

FUNCTIONAL BLOCK DIAGRAM

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. ©2018 Analog Devices, Inc. All rights reserved. Tel: 781.329.4700 **Technical Support** www.analog.com

TABLE OF CONTENTS

Features	. 1
Applications	. 1
General Description	. 1
Functional Block Diagram	. 1
Revision History	. 2
Specifications	. 3
Timing Specifications	. 5
REVISION HISTORY	

6/2018—Revision 0: Initial Version

Absolute Maximum Ratings	7
ESD Caution	7
Pin Configuration and Function Description	8
Outline Dimensions	9
Die Specifications and Assembly Recommendations	9
Ordering Guide	9

SPECIFICATIONS

VDD = 1.71 V to 1.89 V; VIO = 1.71 V to 5.5 V; $V_{REF} = 5 V$; all specifications T_{MIN} to T_{MAX} , high-Z mode disabled, span compression disabled, turbo mode enabled, and sampling frequency (f_s) = 2 MSPS, unless otherwise noted.

Table 1.					
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
RESOLUTION		18			Bits
ANALOG INPUT					
Voltage Range	$IN+$ voltage (V_{IN+}) – $IN-$ voltage (V_{IN-})	-V _{REF}		$+V_{REF}$	V
	Span compression enabled	$-V_{\text{REF}} imes 0.8$		$+V_{\text{REF}} imes 0.8$	V
Operating Input Voltage	V_{IN+r} , V_{IN-} to GND	-0.1		$V_{\text{REF}} + 0.1$	V
	Span compression enabled	$0.1 imes V_{\text{REF}}$		$0.9 \times V_{\text{REF}}$	V
Common-Mode Input Range		$V_{REF}/2 - 0.125$	$V_{\text{REF}}/2$	$V_{REF}/2 + 0.125$	V
Common-Mode Rejection Ratio (CMRR)	$f_{IN} = 500 \text{ kHz}$		68		dB
Analog Input Current	Acquisition phase, $T = 25^{\circ}C$		0.3		nA
	High-Z mode enabled, converting dc input at 2 MSPS		1		μA
THROUGHPUT					
Complete Cycle		500			ns
Conversion Time		270	290	320	ns
Acquisition Phase ¹		290			ns
Throughput Rate ²		0		2	MSPS
Transient Response ³			250		ns
DC ACCURACY					
No Missing Codes		18			Bits
Integral Nonlinearity Error		-1.0	±0.4	+1.0	LSB
		-3.8	±1.52	+3.8	ppm
Differential Nonlinearity (DNL) Error		-0.75	±0.3	+0.75	LSB
Transition Noise			0.8		LSB
Zero Error		-7		+7	LSB
Zero Error Drift ⁴		-0.21		+0.21	ppm/ °C
Gain Error		-26	±3	+26	LSB
Gain Error Drift ⁴		-1.23		+1.23	ppm/ °C
Power Supply Sensitivity	VDD = 1.8 V ± 5%		1.5		LSB
1/f Noise	Bandwidth = 0.1 Hz to 10 Hz		6		μV p-p
AC ACCURACY					
Dynamic Range			101		dB
Total RMS Noise			31.5		μV rms
$f_{IN} = 1 \text{ kHz}, -0.5 \text{ dBFS}, V_{REF} = 5 \text{ V}$					
SNR		99	100.5		dB
Spurious-Free Dynamic Range (SFDR)			122		dB
Total Harmonic Distortion (THD)			-123		dB
Signal-to-Noise-and-Distortion Ratio (SINAD)		98.5	100		dB
Oversampled Dynamic Range	Oversampling ratio (OSR) = 256, $V_{REF} = 5 V$		122		dB
$f_{IN} = 1 \text{ kHz}, -0.5 \text{ dBFS}, V_{REF} = 2.5 \text{ V}$					
SNR		93.5	94.5		dB
SFDR			122		dB
THD			-119		dB
SINAD		93	94		dB
f_{IN} = 100 kHz, -0.5 dBFS, V_{REF} = 5 V					
SNR			99		dB
THD			-100		dB
SINAD			96.5		dB

AD4003-KGD

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
$f_{IN} = 400 \text{ kHz}, -0.5 \text{ dBFS}, V_{REF} = 5 \text{ V}$					
SNR			91.5		dB
THD			-94		dB
SINAD			90		dB
–3 dB Input Bandwidth			10		MHz
Aperture Delay			1		ns
Aperture Jitter			1		ps rms
REFERENCE					
Voltage Range, VREF		2.4		5.1	V
Current	2 MSPS		1.1		mA
INPUT OVERVOLTAGE CLAMP					
IN+/IN- Current, In+/In-	$V_{\text{REE}} = 5 \text{ V}$			50	mA
	$V_{\text{RFF}} = 2.5 \text{ V}$			50	mA
V _{IN} /V _{IN} at Maximum I _N /I _{IN}	$V_{\text{DEF}} = 5 \text{ V}$		54		V
	$V_{\text{NEF}} = 2.5 \text{ V}$		3.1		v
Vw. //w. Clamp Op/Off Threshold	$V_{\text{NEF}} = 5.0$	5 25	5.4		v
	$V_{REF} = 2.5 V$	2.68	יד. 29		v
Deactivation Time	VREF - 2.5 V	2.00	2.0		v nc
Deactivation Time			100		115
	VIN+/VIN- > VREF		100		μΑ
Logic Levels					
Input Low Voltage, V _{IL}	VIO > 2.7 V	-0.3		+0.3 × VIO	V
	VIO ≤ 2.7 V	-0.3		+0.2 × VIO	V
Input High Voltage, V _{IH}	VIO > 2.7 V	$0.7 \times VIO$		VIO + 0.3	V
	$VIO \le 2.7 V$	$0.8 \times VIO$		VIO + 0.3	V
Input Low Current, I⊾		-1		+1	μΑ
Input High Current, I _{IH}		-1		+1	μΑ
Input Pin Capacitance			6		pF
DIGITAL OUTPUTS					
Data Format		Serial 18 b	oits, twos coi	mplement	
Pipeline Delay		Conversion res	sults availabl	le immediately	
		after co	mpleted cor	nversion	
Output Low Voltage, Vol	I _{SINK} = 500 μA			0.4	V
Output High Voltage, Vон	$I_{SOURCE} = -500 \ \mu A$	VIO – 0.3			V
POWER SUPPLIES					
VDD		1.71	1.8	1.89	V
VIO		1.71		5.5	V
Standby Current	VDD = 1.8 V, VIO = 1.8 V, T = 25°C		1.6		μA
Power Dissipation, P _{DISS}	VDD = 1.8 V, VIO = 1.8 V, V _{REF} = 5 V				•
	10 kSPS, high-Z mode disabled		80		uW
	500 kSPS, high-7 mode disabled		4	4.7	mW
	1 MSPS_high-7 mode disabled		8	93	mW
	2 MSPS high-7 mode disabled		16	18 5	mW
	500 kSPS high-7 mode enabled		5	62	mW
	1 MSPS high-7 mode enabled		10	123	mW
	2 MSPS high 7 mode enabled		20	12.5	m\//
	2 MSP3, High-Z mode disabled		20	24.5	111VV mo\//
VDD Only	1 MCDC high Z mode disabled		2.4		
	1 MSPS, high-Z mode disabled		4.9		mvv
	Z IVISYS, NIGN-Z MODE DISADIED		9.5		mvv
KEF ONly	500 KSPS, high-2 mode disabled		1.4		mW
	I MSPS, high-∠ mode disabled		2.8		mW
	2 MSPS, high-Z mode disabled		5.5		mW
VIO Only	500 kSPS, high-Z mode disabled		0.1		mW
	1 MSPS, high-Z mode disabled		0.4		mW
	2 MSPS, high-Z mode disabled		1.0		mW

Known Good Die

AD4003-KGD

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
Energy per Conversion			8		nJ/ sample
TEMPERATURE RANGE					
Specified Performance	T _{MIN} to T _{MAX}	-40		+125	°C

¹ The acquisition phase is the time available for the input sampling capacitors to acquire a new input with the ADC running at a throughput rate of 2 MSPS. ² A throughput rate of 2 MSPS can only be achieved with turbo mode enabled and a minimum SCK rate of 75 MHz. Refer to Table 4 for the maximum achievable

throughput for different modes of operation.

³ Transient response is the time required for the ADC to acquire a full-scale input step to ±1 LSB accuracy. ⁴ The minimum and maximum values are guaranteed by characterization, but not production tested.

TIMING SPECIFICATIONS

VDD = 1.71 V to 1.89 V; VIO = 1.71 V to 5.5 V; VREF = 5 V; all specifications TMIN to TMAX, high-Z mode disabled, span compression disabled, turbo mode enabled, and sampling frequency $f_s = 2$ MSPS.

Table 2. Digital Interface Timing

Parameter	Symbol	Min	Тур	Max	Unit
CONVERSION TIME—CNV RISING EDGE TO DATA AVAILABLE	t _{CONV}	270	290	320	ns
ACQUISITION PHASE ¹	t _{ACQ}	290			ns
TIME BETWEEN CONVERSIONS	t _{CYC}	500			ns
CNV PULSE WIDTH (CS MODE) ²	t _{CNVH}	10			ns
SCK PERIOD (CS MODE) ³	t _{scк}				
VIO > 2.7 V		9.8			ns
VIO > 1.7 V		12.3			ns
SCK PERIOD (DAISY-CHAIN MODE) ⁴	t _{scк}				
VIO > 2.7 V		20			ns
VIO > 1.7 V		25			ns
SCK LOW TIME	t _{SCKL}	3			ns
SCK HIGH TIME	tscкн	3			ns
SCK FALLING EDGE TO DATA REMAINS VALID DELAY	thsdo	1.5			ns
SCK FALLING EDGE TO DATA VALID DELAY	t _{DSDO}				
VIO > 2.7 V				7.5	ns
VIO > 1.7 V				10.5	ns
CNV OR SDI LOW TO SDO D17 MOST SIGNIFICANT BIT (MSB) VALID DELAY (CS MODE)	t _{EN}				
VIO > 2.7 V				10	ns
VIO > 1.7 V				13	ns
CNV RISING EDGE TO FIRST SCK RISING EDGE DELAY	t _{QUIET1}	190			ns
LAST SCK FALLING EDGE TO CNV RISING EDGE DELAY ⁵	t _{QUIET2}	60			ns
CNV OR SDI HIGH OR LAST SCK FALLING EDGE TO SDO HIGH IMPEDANCE (CS MODE)	t _{DIS}			20	ns
SDI VALID SETUP TIME FROM CNV RISING EDGE	tssdicnv	2			ns
SDI VALID HOLD TIME FROM CNV RISING EDGE (CS MODE)	t _{HSDICNV}	2			ns
SCK VALID HOLD TIME FROM CNV RISING EDGE (DAISY-CHAIN MODE)	t HSCKCNV	12			ns
SDI VALID SETUP TIME FROM SCK RISING EDGE (DAISY-CHAIN MODE)	t ssdisck	2			ns
SDI VALID HOLD TIME FROM SCK RISING EDGE (DAISY-CHAIN MODE)	thsdisck	2			ns

¹ The acquisition phase is the time available for the input sampling capacitors to acquire a new input with the ADC running at a throughput rate of 2 MSPS.

 2 For turbo mode, $t_{\mbox{CNVH}}$ must match the $t_{\mbox{QUIET1}}$ minimum.

⁴ A 50% duty cycle is assumed for SCK.

³ A throughput rate of 2 MSPS can only be achieved with turbo mode enabled and a minimum SCK rate of 75 MHz. Refer to Table 4 for the maximum achievable throughput for different modes of operation.

AD4003-KGD

Table 3. Register Read/Write Timing

Parameter	Symbol	Min Typ	Мах	Unit
READ/WRITE OPERATION				
CNV Pulse Width ¹	t _{CNVH}	10		ns
SCK Period	tscк			
VIO > 2.7 V		9.8		ns
VIO > 1.7 V		12.3		ns
SCK Low Time	t scĸ∟	3		ns
SCK High Time	tscкн	3		ns
READ OPERATION				
CNV Low to SDO D17 MSB Valid Delay	t _{EN}			
VIO > 2.7 V			10	ns
VIO > 1.7 V			13	ns
SCK Falling Edge to Data Remains Valid	t _{HSDO}	1.5		ns
SCK Falling Edge to Data Valid Delay	t _{DSDO}			
VIO > 2.7 V			7.5	ns
VIO > 1.7 V			10.5	ns
CNV Rising Edge to SDO High Impedance	t _{DIS}		20	ns
CNV RISING EDGE TO FIRST SCK RISING EDGE DELAY		190		ns
WRITE OPERATION				
SDI Valid Setup Time from SCK Rising Edge	t _{ssdisck}	2		ns
SDI Valid Hold Time from SCK Rising Edge	thsdisck	2		ns
CNV Rising Edge to SCK Edge Hold Time	t _{HCNVSCK}	0		ns
CNV Falling Edge to SCK Active Edge Setup Time	t SCNVSCK	6		ns

¹ For turbo mode, t_{CNVH} must match the t_{QUIET1} minimum.

Figure 2. Voltage Levels for Timing

Table 4. Achievable Throughput for Different Modes of Operation

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
THROUGHPUT, CS MODE					
3-Wire and 4-Wire Turbo Mode	$f_{SCK} = 100 \text{ MHz}, \text{VIO} \ge 2.7 \text{ V}$			2	MSPS
	$f_{SCK} = 80 \text{ MHz}$, VIO $< 2.7 \text{ V}$			2	MSPS
3-Wire and 4-Wire Turbo Mode and Six Status Bits	$f_{SCK} = 100 \text{ MHz}, \text{VIO} \ge 2.7 \text{ V}$			2	MSPS
	$f_{SCK} = 80 \text{ MHz}, \text{VIO} < 2.7 \text{ V}$			1.78	MSPS
3-Wire and 4-Wire Mode	$f_{SCK} = 100 \text{ MHz}, \text{VIO} \ge 2.7 \text{ V}$			1.75	MSPS
	$f_{SCK} = 80 \text{ MHz}, \text{VIO} < 2.7 \text{ V}$			1.62	MSPS
3-Wire and 4-Wire Mode and Six Status Bits	$f_{SCK} = 100 \text{ MHz}, \text{VIO} \ge 2.7 \text{ V}$			1.59	MSPS
	$f_{SCK} = 80 \text{ MHz}, \text{VIO} < 2.7 \text{ V}$			1.44	MSPS

ABSOLUTE MAXIMUM RATINGS

Note that the input overvoltage clamp cannot sustain the overvoltage condition for an indefinite amount of time.

Table 5.

Parameter	Rating
Analog Inputs	
IN+, IN– to GND	$-0.3V$ to $V_{\text{REF}}+0.4V$
	or ± 130 mA ¹
Supply Voltage	
REF, VIO to GND	–0.3 V to +6.0 V
VDD to GND	–0.3 V to +2.1 V
VDD to VIO	-6 V to +2.4 V
Digital Inputs to GND	–0.3 V to VIO + 0.3 V
Digital Outputs to GND	–0.3 V to VIO + 0.3 V
Storage Temperature Range	–65°C to +150°C
Operating Temperature	-40°C to +125°C
Junction Temperature	150°C
Electrostatic Discharge (ESD) Ratings	
Human Body Model (HBM)	4 kV
Machine Model	200 V
Field Induced Charged Device Model	1.25 kV

¹ Current condition tested over a 10 ms time interval.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTION

Figure 3. Pad Configuration

Table 6. Pad Function Descriptions

Pad	X-Axis	Y-Axis		
No.	(μm)	(μm)	Mnemonic	Description
1	-747.675	+996.855	REF	Reference Input Voltage. The VREF range is 2.4 V to 5.1 V. This pin is referred to the GND pin and must be decoupled closely to the GND pin with a 10 μ F X7R ceramic capacitor.
2	-747.675	+823.805	REF	Reference Input Voltage. The VREF range is 2.4 V to 5.1 V. This pin is referred to the GND pin and must be decoupled closely to the GND pin with a 10 μ F X7R ceramic capacitor.
3	-750	+607.545	VDD	1.8 V Power Supply. The VDD range is 1.71 V to 1.89 V. Bypass VDD to GND with a 0.1 μF ceramic capacitor.
4	-750	+442.715	VDD	1.8 V Power Supply. The VDD range is 1.71 V to 1.89 V. Bypass VDD to GND with a 0.1 μF ceramic capacitor.
5	-744.365	+272.19	IN+	Differential Positive Analog Input.
6	-744.365	-260.63	IN–	Differential Negative Analog Input.
7	-745.845	-382.055	GND	Power Supply Ground.
8	-745.845	-546.885	GND	Power Supply Ground.
9	-745.845	-702.35	GND	Power Supply Ground.
10	+747.78	-942.43	CNV	Convert Input. This input has multiple functions. On its leading edge, this input initiates the conversions and selects the interface mode of the device: daisy-chain mode or CS mode. In $\overline{\text{CS}}$ mode, the SDO pin is enabled when CNV is low. In daisy-chain mode, the data is read when CNV is high.
11	+747.78	-733.54	SDO	Serial Data Output. The conversion result is output on this pin. It is synchronized to SCK.
12	+747.78	-345.685	SCK	Serial Data Clock Input. When the device is selected, the conversion result is shifted out by this clock.
13	+747.78	-132.405	SDI	Serial Data Input. This input provides multiple features. This input selects the interface mode of the ADC as follows: daisy-chain mode is selected if SDI is low during the CNV rising edge. In daisy-chain mode, SDI is used as a data input to daisy-chain the conversion results of two or more ADCs onto a single SDO line. The digital data level on SDI is output on SDO with a delay of 18 SCK cycles. CS mode is selected if SDI is high during the CNV rising edge. In this mode, either SDI or CNV can enable the serial output signals when low. If SDI or CNV is low when the conversion is complete, the busy indicator feature is enabled. With CNV low, the device can be programmed by clocking in a 16-bit word on SDI on the rising edge of SCK.
14	+747.675	+832.805	VIO	Input/Output Interface Digital Power. Nominally, this pin is at the same supply as the host interface (1.8 V, 2.5 V, 3 V, or 5 V). Bypass VIO to GND with a 0.1 μ F ceramic capacitor.
15	+747.675	+996.855	VIO	Input/Output Interface Digital Power. Nominally, this pin is at the same supply as the host interface (1.8 V, 2.5 V, 3 V, or 5 V). Bypass VIO to GND with a 0.1 μ F ceramic capacitor.

OUTLINE DIMENSIONS

Dimensions shown in millimeters

DIE SPECIFICATIONS AND ASSEMBLY RECOMMENDATIONS

Table 7. Die Specifications

Parameter	Value	Unit
Chip Size	1695 × 2205	μm
Scribe Line Width	80×80	μm
Die Size	1695 × 2285	μm maximum
Thickness	410	μm
Bond Pad	70×70	μm maximum
Bond Pad Composition	AICu (0.5%)	%
Backside	Standard assembly die attach	N/A
Passivation	Oxynitride	N/A

Table 8. Assembly Recommendations

Assembly Component	Recommendation
Die Attach	Epoxy adhesive
Bonding Method	Gold ball or aluminum wedge
Bonding Sequence	Bond pin five first

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD4003-KGD-WP	-40°C to +125°C	15-Pad Bare Die [CHIP]	C-15-1

©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D16525-0-6/18(0)

Rev. 0 | Page 9 of 9

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analog to Digital Converters - ADC category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

ADC0804LCD ADC0808 MCP37211-200I/TE MAX15511TGTL+ MCP3202T-CI/MS ADE1201ACCZ ADE1202ACCZ LTC1090CN LTC1605IG LTC2238IUH LTC1418AIG LTC1605ACG LTC1605AIG LTC2208IUP ADS1282HPW LTC1297DCN8 LTC1741CFW MCP3422A0-E/MS MCP3426A2-E/MC MCP3426A3-E/MC MCP3427-E/MF TLC0820ACN TLC2543IN TLV2543IDW NCD9830DBR2G ADS5231IPAG ADS7807U ADS7891IPFBT ADS8328IBPW AMC1204BDWR ADS7959QDBTRQ1 ADS7807UB ADS7805UB ADS1220IPWR MCP3426A0-E/MS MCP3423-E/UN MCP3422A0-E/MC AD9220AR MAX11123ATI+ MAX11212AEUB+ MAX11135ATI+ TLV1570CDW TLC3574IDWR TLC0838CDWR AD7714ARZ-5REEL AD7914BRUZ-REEL7 AD977ABRZ ADC101S021CIMFX/NOPB ADC12130CIWM/NOPB MAX11213EEE+