Data Sheet

FEATURES

True rms-to-dc conversion
Laser trimmed to high accuracy
$\pm 0.2 \%$ maximum error (AD536AK)
$\pm 0.5 \%$ maximum error (AD536AJ)
Wide response capability
Computes rms of ac and dc signals
450 kHz bandwidth: V rms > $\mathbf{1 0 0} \mathbf{~ m V}$
2 MHz bandwidth: V rms > 1 V
Signal crest factor of 7 for $\mathbf{1 \%}$ error dB output with $\mathbf{6 0 ~ d B}$ range
Low power: 1.2 mA quiescent current
Single- or dual-supply operation
Monolithic integrated circuit
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation (AD536AS)

GENERAL DESCRIPTION

The AD536A is a complete monolithic integrated circuit that performs true rms-to-dc conversion. It offers performance comparable or superior to that of hybrid or modular units costing much more. The AD536A directly computes the true rms value of any complex input waveform containing ac and dc components. A crest factor compensation scheme allows measurements with 1% error at crest factors up to 7 . The wide bandwidth of the device extends the measurement capability to 300 kHz with less than 3 dB errors for signal levels greater than 100 mV .

An important feature of the AD536A, not previously available in rms converters, is an auxiliary dB output pin. The logarithm of the rms output signal is brought out to a separate pin to allow the dB conversion, with a useful dynamic range of 60 dB . Using an externally supplied reference current, the 0 dB level can be conveniently set to correspond to any input level from 0.1 V to 2 V rms.

The AD536A is laser trimmed to minimize input and output offset voltage, to optimize positive and negative waveform symmetry (dc reversal error), and to provide full-scale accuracy at 7 V rms . As a result, no external trims are required to achieve the rated unit accuracy.
The input and output pins are fully protected. The input circuitry can take overload voltages well beyond the supply levels. Loss of supply voltage with the input connected to external circuitry does not cause the device to fail. The output is short-circuit protected.

FUNCTIONAL BLOCK DIAGRAM
AD536A

Figure 1.

The AD536A is available in two accuracy grades (J and K) for commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ applications, and one grade (S) rated for the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ extended range. The AD536AK offers a maximum total error of $\pm 2 \mathrm{mV} \pm 0.2 \%$ of reading, while the AD536AJ and AD536AS have maximum errors of $\pm 5 \mathrm{mV} \pm 0.5 \%$ of reading. All three versions are available in a hermetically sealed 14-lead DIP or a 10-pin TO-100 metal header package. The AD536AS is also available in a 20 -terminal leadless hermetically sealed ceramic chip carrier.

The AD536A computes the true root-mean-square level of a complex ac (or ac plus dc) input signal and provides an equivalent dc output level. The true rms value of a waveform is a more useful quantity than the average rectified value because it relates directly to the power of the signal. The rms value of a statistical signal also relates to its standard deviation.

An external capacitor is required to perform measurements to the fully specified accuracy. The value of this capacitor determines the low frequency ac accuracy, ripple amplitude, and settling time.

The AD536A operates equally well from split supplies or a single supply with total supply levels from 5 V to 36 V . With 1 mA quiescent supply current, the device is well suited for a wide variety of remote controllers and battery-powered instruments.

TABLE OF CONTENTS

Features 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configurations and Function Descriptions 6
Theory of Operation 8
Connections for dB Operation 8
REVISION HISTORY
3/2019—Rev. F to Rev. G
Changes to Figure 5 and Table 5 7
Change to Figure 16 12
Changes to Ordering Guide 15
11/2014—Rev. E to Rev. F
Change to Figure 1 1
Changes to Table 1 3
Change to Figure 16 12
Changes to Ordering Guide 15
7/2012—Rev. D to Rev. E
Reorganized Layout Universal
Changes to Figure 1 1
Changes to Figure 6 8
Changes to Figure 7 9
Changes to Figure 13, Figure 14, and Figure 15 11
Changes to Figure 16, Figure 17, and Single-Supply Operation
Section 12
Changes to Figure 21 13
Updated Outline Dimensions 14
8/2008—Rev. C to Rev. D
Changes to Features Section 1
Changes to General Description Section 1
Changes to Figure 1 1
Changes to Table 2. 5
Frequency Response 9
AC Measurement Accuracy and Crest Factor 9
Applications Information 11
Typical Connections 11
Optional External Trims For High Accuracy 11
Single-Supply Operation 12
Choosing the Averaging Time Constant 12
Outline Dimensions 14
Ordering Guide 15
Change to Figure 2 5
Changes to Figure 15 10
Changes to Connections for dB Operation Section 11
Changes to Figure 17 12
Changes to Frequency Response Section 12
Updated Outline Dimensions 14
Changes to Ordering Guide 15
3/2006-Rev. B to Rev. C
Updated Format. Universal
Changed Product Description to General Description 1
Changes to General Description 1
Changes to Table 13
Changes to Table 25
Added Pin Configurations and Function Descriptions6
Changed Standard Connection to Typical Connections 8
Changed Single Supply Connection to Single Supply Operation 9
Changes to Connections for dB Operation 11
Changes to Figure 17. 12
Updated Outline Dimensions. 14
Changes to Ordering Guide 15
6/1999—Rev. A to Rev. B
1/1976-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\pm 15 \mathrm{~V}$ dc, unless otherwise noted.
Table 1.

${ }^{1}$ Accuracy is specified for 0 V to 7 Vrms , dc or 1 kHz sine wave input with the AD536A connected as in the figure referenced.
${ }^{2}$ Error vs. crest factor is specified as an additional error for 1 V rms rectangular pulse input, pulse width $=200 \mu \mathrm{~s}$.
${ }^{3}$ Input voltages are expressed in volts rms , and error is expressed as a percentage of the reading.
${ }^{4}$ With $2 \mathrm{k} \Omega$ external pull-down resistor.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	
\quad Dual Supply	$\pm 18 \mathrm{~V}$
\quad Single Supply	+36 V
Internal Power Dissipation	500 mW
Maximum Input Voltage	$\pm 25 \mathrm{~V}$ peak
Buffer Maximum Input Voltage	$\pm \mathrm{V} \mathrm{s}$
Maximum Input Voltage	$\pm 25 \mathrm{~V}$ peak
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
$\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
\quad AD536AJ/AD536AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$
ESD Rating	1000 V
Thermal Resistance $\theta_{\mathrm{jA}}{ }^{1}$	
\quad 10-Pin Header (H-10 Package)	$150^{\circ} \mathrm{C} / \mathrm{W}$
20-Terminal LCC (E-20 Package)	$95^{\circ} \mathrm{C} / \mathrm{W}$
14-Lead SBDIP (D-14 Package)	$95^{\circ} \mathrm{C} / \mathrm{W}$
14-Lead CERDIP (Q-14 Package)	$95^{\circ} \mathrm{C} / \mathrm{W}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.
${ }^{1} \theta_{\mathrm{JA}}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Figure 2. Die Dimensions and Pad Layout Dimensions shown in inches and (millimeters)

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. D-14 and Q-14 Packages Pin Configuration
Table 3. D-14 and Q-14 Packages Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VIN	Input Voltage
2	NC	No Connection
3	$-\mathrm{V}_{\mathrm{S}}$	Negative Supply Voltage
4	CAV^{2}	Averaging Capacitor
5	dB	Log (dB) Value of the RMS Output Voltage
6	BUF OUT	Buffer Output
7	BUF IN	Buffer Input
8	lout	RMS Output Current
9	RL	Load Resistor
10	COM	Common
11	NC	No Connection
12	NC	No Connection
13	NC	No Connection
14	$+V_{S}$	Positive Supply Voltage

Figure 4. H-10 Package Pin Configuration
Table 4. H-10 Package Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RL	Load Resistor
2	COM	Common
3	$+V_{S}$	Positive Supply Voltage
4	$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage
5	$-\mathrm{V}_{\mathrm{S}}$	Negative Supply Voltage
6	$\mathrm{CAV}_{\mathrm{AV}}$	Averaging Capacitor
7	dB	Log (dB) Value of the RMS Output Voltage
8	BUF OUT	Buffer Output
9	BUF IN	Buffer Input
10	lout	RMS Output Current

Figure 5. E-20-1 Package Pin Configuration
Table 5. E-20-1 Package Pin Function Descriptions

Pin No.	Mnemonic	Description
1	NC	No Connection
2	VIN	NC
3	$-V_{S}$	Input Voltage
4	NC Connection	
5	C $_{\text {AV }}$	Negative Supply Voltage
6	NC	No Connection
7	dB	Averaging Capacitor
8	BUF OUT	No Connection
9	BUF IN	Log (dB) Value of the RMS Output Voltage
10	NC	Buffer Output
11	RuT	Buffer Input
12	COM	No Connection
13	NC	RMS Output Current
14	NC	Coad Resistor
15	NC	No Connection
16	NC	No Connection
17	+ V	No Connection
18		No Connection
19	No Connection	
20		Positive Supply Voltage

THEORY OF OPERATION

The AD536A embodies an implicit solution of the rms equation that overcomes the dynamic range as well as other limitations inherent in a straightforward computation of rms. The actual computation performed by the AD536A follows the equation

$$
V r m s=A v g\left[\frac{V_{I N}^{2}}{V r m s}\right]
$$

Figure 6 is a simplified schematic of the AD536A. Note that it is subdivided into four major sections: absolute value circuit (active rectifier), squarer/divider, current mirror, and buffer amplifier. The input voltage ($\mathrm{V}_{\text {IN }}$), which can be ac or dc, is converted to a unipolar current $\left(\mathrm{I}_{1}\right)$ by the active rectifiers $\left(A_{1}, A_{2}\right) . I_{1}$ drives one input of the squarer/divider, which has the transfer function

$$
\mathrm{I}_{4}=\mathrm{I}_{1}^{2} / \mathrm{I}_{3}
$$

The output current, I_{4}, of the squarer/divider drives the current mirror through a low-pass filter formed by R1 and the externally connected capacitor, C_{AV}. If the $\mathrm{R} 1 \mathrm{C}_{\mathrm{AV}}$ time constant is much greater than the longest period of the input signal, then I_{4} is effectively averaged. The current mirror returns a current I_{3}, which equals $\operatorname{Avg}\left[\mathrm{I}_{4}\right]$, back to the squarer/divider to complete the implicit rms computation. Thus,

$$
I_{4}=A v g\left[I_{I}^{2} / I_{4}\right]=I_{I} r m s
$$

Figure 6. Simplified Schematic

The current mirror also produces the output current, Iout, which equals $2 \mathrm{I}_{4}$. Iout can be used directly or can be converted to a voltage with R2 and buffered by A4 to provide a low impedance voltage output. The transfer function of the AD536A results in the following:

$$
V_{\text {OUT }}=2 R 2 \times I \mathrm{rms}=V_{\text {IN }} \mathrm{rms}
$$

The dB output is derived from the emitter of Q3 because the voltage at this point is proportional to $-\log \mathrm{V}_{\text {IN }}$. The emitter follower, Q5, buffers and level shifts this voltage so that the dB output voltage is zero when the externally supplied emitter current ($\mathrm{I}_{\text {ref }}$) to Q5 approximates I_{3}.

CONNECTIONS FOR dB OPERATION

The logarithmic (or decibel) output of the AD536A is one of its most powerful features. The internal circuit computing dB works accurately over a 60 dB range. The connections for dB measurements are shown in Figure 7.
Select the 0 dB level by adjusting R 1 for the proper 0 dB reference current (which is set to cancel the log output current from the squarer/divider at the desired 0 dB point). The external op amp provides a more convenient scale and allows compensation of the $+0.33 \% /{ }^{\circ} \mathrm{C}$ scale factor drift of the dB output pin.

The temperature-compensating resistor, R 2 , is available online in several styles from Precision Resistor Company, Inc., (Part Number AT35 and Part Number ST35). The average temperature coefficients of R2 and R3 result in the +3300 ppm required to compensate for the dB output. The linear rms output is available at Pin 8 on the DIP or Pin 10 on the header device with an output impedance of $25 \mathrm{k} \Omega$. Some applications require an additional buffer amplifier if this output is desired.

For dB calibration,

1. Set $\mathrm{V}_{\mathrm{IN}}=1.00 \mathrm{~V}$ dc or 1.00 V rms.
2. Adjust R1 for dB output $=0.00 \mathrm{~V}$.
3. Set $\mathrm{V}_{\text {IN }}=+0.1 \mathrm{~V}$ dc or 0.10 V rms.
4. Adjust R5 for dB output $=-2.00 \mathrm{~V}$.

Any other desired 0 dB reference level can be used by setting $\mathrm{V}_{\text {IN }}$ and adjusting R1 accordingly. Note that adjusting R5 for the proper gain automatically provides the correct temperature compensation.

${ }^{1}$ SPECIAL TC COMPENSATION RESISTOR, $+3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, PRECISION RESISTOR COMPANY PART NUMBER AT 35 OR PART NUMBER ST35.

FREQUENCY RESPONSE

The AD536A utilizes a logarithmic circuit in performing the implicit rms computation. As with any log circuit, bandwidth is proportional to signal level. The solid lines in the graph of Figure 8 represent the frequency response of the AD536A at input levels from 10 mV rms to 7 V rms . The dashed lines indicate the upper frequency limits for $1 \%, 10 \%$, and $\pm 3 \mathrm{~dB}$ of reading additional error. For example, note that a 1 V rms signal produces less than 1% of reading additional error up to 120 kHz . A 10 mV signal can be measured with 1% of reading additional error $(100 \mu \mathrm{~V})$ up to only 5 kHz .

Figure 8. High Frequency Response

AC MEASUREMENT ACCURACY AND CREST FACTOR

Crest factor is often overlooked when determining the accuracy of an ac measurement. The definition of crest factor is the ratio of the peak signal amplitude to the rms value of the signal ($\mathrm{CF}=\mathrm{V}_{\mathrm{P}} / \mathrm{Vrms}$). Most common waveforms, such as sine and triangle waves, have relatively low crest factors (<2). Waveforms that resemble low duty cycle pulse trains, such as those occurring in switching power supplies and SCR circuits, have high crest factors. For example, a rectangular pulse train with a 1% duty cycle has a crest factor of $10(\mathrm{CF}=1 \sqrt{ } \mathrm{n})$.

Figure 9 illustrates a curve of reading error for the AD536A for a 1 V rms input signal with crest factors from 1 to 11 . A rectangular pulse train (pulse width $=100 \mu \mathrm{~s}$) was used for this test because it is the worst-case waveform for rms measurement (all of the energy is contained in the peaks). The duty cycle and peak amplitude were varied to produce crest factors from 1 to 11 while maintaining a constant 1 V rms input amplitude.

Figure 9. Error vs. Crest Factor

Figure 10. Error vs. Pulse Width Rectangular Pulse

Figure 11. Input and Output Voltage Ranges vs. Dual Supply

Figure 12. Input and Output Voltage Ranges vs. Single Supply

APPLICATIONS INFORMATION

TYPICAL CONNECTIONS

The AD536A is simple to connect to for the majority of high accuracy rms measurements, requiring only an external capacitor to set the averaging time constant. The standard connection is shown in Figure 13 through Figure 15. In this configuration, the AD536A measures the rms of the ac and dc levels present at the input, but shows an error for low frequency input as a function of the filter capacitor, C_{AV}, as shown in Figure 19. Thus, if a $4 \mu \mathrm{~F}$ capacitor is used, the additional average error at 10 Hz is 0.1%; at 3 Hz , the additional average error is 1%.
The accuracy at higher frequencies is according to specification. To reject the dc input, add a capacitor in series with the input, as shown in Figure 17. Note that the capacitor must be nonpolar. If the AD536A supply rails contain a considerable amount of high frequency ripple, it is advisable to bypass both supply pins to ground with $0.1 \mu \mathrm{~F}$ ceramic capacitors, located as close to the device as possible.

Figure 13. 14-Lead Standard RMS Connection

Figure 14. 10-Pin Standard RMS Connection

Figure 15. 20-Terminal Standard RMS Connection
The input and output signal ranges are a function of the supply voltages; these ranges are shown in Figure 11 and Figure 12. The AD536A can also be used in an unbuffered voltage output mode by disconnecting the input to the buffer. The output then appears unbuffered across the $25 \mathrm{k} \Omega$ resistor. The buffer amplifier can then be used for other purposes. Further, the AD536A can be used in a current output mode by disconnecting the $25 \mathrm{k} \Omega$ resistor from ground. The output current is available at Pin 8 (Iout, Pin 10 on the H-10 package) with a nominal scale of $40 \mu \mathrm{~A}$ per V rms input positive output.

OPTIONAL EXTERNAL TRIMS FOR HIGH ACCURACY

The accuracy and offset voltage of the AD536A is adjustable with external trims, as shown in Figure 16. R4 trims the offset. Note that the offset trim circuit adds 365Ω in series with the internal $25 \mathrm{k} \Omega$ resistor. This causes a 1.5% increase in scale factor, which is compensated for by R1. The scale factor adjustment range is $\pm 1.5 \%$.
The trimming procedure is as follows:

1. Ground the input signal, V_{IN}, and adjust R 4 to provide 0 V output from Pin 6. Alternatively, adjust R4 to provide the correct output with the lowest expected value of V_{IN}.
2. Connect the desired full-scale input level to V_{IN}, either dc or a calibrated ac signal (1 kHz is the optimum frequency).
3. Trim R1 to provide the correct output at Pin 6. For example, 1.000 V dc input provides 1.000 V dc output. $\mathrm{A} \pm 1.000 \mathrm{~V}$ peak-to-peak sine wave should provide a 0.707 V dc output. Any residual errors are caused by device nonlinearity.

The major advantage of external trimming is to optimize device performance for a reduced signal range; the AD536A is internally trimmed for a 7 V rms full-scale range.

Figure 16. Optional External Gain and Output Offset Trims

SINGLE-SUPPLY OPERATION

Refer to Figure 17 for single supply-rail configurations between 5 V and 36 V . When powered from a single supply, the input stage (VIN pin) is internally biased at a voltage between ground and the supply, and the input signal ac coupled. Biasing the device between the supply and ground is simply a matter of connecting the COM pin to an external resistor divider and bypassing to ground. The resistor values are large, minimizing power consumption, as the COM pin current is only $5 \mu \mathrm{~A}$.

Note that the $10 \mathrm{k} \Omega$ and $20 \mathrm{k} \Omega$ resistors connected to the COM pin (Figure 17) are asymmetrical, that is, the voltage at the COM pin is $1 / 3$ of the supply. This ratio of input bias to supply is optimum for the precision rectifier (aka absolute value circuit) input circuit employed for rectifying ac input waveforms and ensures full input symmetry for low signal voltages.

Capacitor C 2 is required for AC input coupling, however an external dc return is unnecessary because biasing occurs internally. SelectC2 for the desired low frequency breakpoint using an input resistance of $16.7 \mathrm{k} \Omega$ for the $1 / \omega \mathrm{RC}$ calculation; $\mathrm{C} 2=1 \mu \mathrm{~F}$ for a cutoff at 10 Hz . Figure 11 and Figure 12 show the input and output signal ranges for dual and single supply configurations, respectively. The load resistor, RL, provides a path to sink output sink current when an input signal is disconnected.

CHOOSING THE AVERAGING TIME CONSTANT

The AD536A computes the rms of both ac and dc signals. If the input is a slowly varying dc signal, the output of the AD536A tracks the input exactly.
At higher frequencies, the average output of the AD536A approaches the rms value of the input signal. The actual output of the AD536A differs from the ideal output by a dc (or average) error and some amount of ripple, as shown in Figure 18.

Figure 18. Typical Output Waveform for Sinusoidal Input
The dc error is dependent on the input signal frequency and the value of $C_{A V}$. Use Figure 19 to determine the minimum value of $C_{A V}$, which yields a given percentage of dc error above a given frequency using the standard rms connection.
The ac component of the output signal is the ripple. There are two ways to reduce the ripple. The first method involves using a large value of C_{Av}. Because the ripple is inversely proportional to C_{AV}, a tenfold increase in this capacitance affects a tenfold reduction in ripple.
When measuring waveforms with high crest factors, such as low duty cycle pulse trains, the averaging time constant should be at least 10 times the signal period. For example, a 100 Hz pulse rate requires a 100 ms time constant, which corresponds to a $4 \mu \mathrm{~F}$ capacitor (time constant $=25 \mathrm{~ms}$ per $\mu \mathrm{F}$).

The primary disadvantage in using a large $C_{A V}$ to remove ripple is that the settling time for a step change in input level is increased proportionately. Figure 19 illustrates that the relationship between C_{AV} and 1% settling time is 115 ms for each microfarad of C_{AV}. The settling time is twice as great for decreasing signals as it is for increasing signals. The values in Figure 19 are for decreasing signals. Settling time also increases for low signal levels, as shown in Figure 20.

${ }^{1}$ PERCENT DC ERROR AND PERCENT RIPPLE (PEAK)
Figure 19. Error/Settling Time Graph for Use with the Standard RMS Connection (See Figure 13 Through Figure 15)

Figure 20. Settling Time vs. Input Level
A better method to reduce output ripple is the use of a postfilter. Figure 21 shows a suggested circuit. If a single-pole filter is used (C 3 removed, R_{x} shorted) and C 2 is approximately twice the value of C_{Av}, the ripple is reduced, as shown in Figure 22, and settling time is increased. For example, with $\mathrm{C}_{\mathrm{AV}}=1 \mu \mathrm{~F}$ and $\mathrm{C} 2=2.2 \mu \mathrm{~F}$, the ripple for a 60 Hz input is reduced from 10% of reading to approximately 0.3% of reading.

The settling time, however, is increased by approximately a factor of 3. Therefore, the values of C_{AV} and C 2 can be reduced to permit faster settling times while still providing substantial ripple reduction.

The two-pole postfilter uses an active filter stage to provide even greater ripple reduction without substantially increasing the settling times over a circuit with a one-pole filter. The values of $\mathrm{C}_{\mathrm{AV}}, \mathrm{C} 2$, and C 3 can then be reduced to allow extremely fast settling times for a constant amount of ripple. Caution should be exercised in choosing the value of C_{AV}, because the dc error is dependent on this value and is independent of the postfilter.

For a more detailed explanation of these topics, refer to the RMS to DC Conversion Application Guide, 2nd Edition.

Figure 21. Two-Pole Postfilter

Figure 22. Performance Features of Various Filter Types (See Figure 13 to Figure 15 for Standard RMS Connection)

OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 23. 14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP] (D-14)
Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 24. 20-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-20-1)
Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF INCRHEQ ONLY ANE ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 25. 14-Lead Ceramic Dual In-Line Package [CERDIP] (Q-14)
Dimensions shown in inches and (millimeters)

Figure 26. 10-Pin Metal Header Package [TO-100]
(H-10)
Dimensions shown in inches and (millimeters)
ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Package Option
AD536AJD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD536AJDZ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD536AKDZ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD536AJH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	10-Pin Metal Header Package [TO-100]	H-10
AD536AJHZ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	10-Pin Metal Header Package [TO-100]	H-10
AD536AKHZ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	10-Pin Metal Header Package [TO-100]	H-10
AD536AJQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Lead Ceramic Dual In Line Package [CERDIP]	Q-14
AD536ASD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD536ASD/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
AD536ASE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Terminal Ceramic Leadless Chip Carrier [LCC]	E-20-1
AD536ASH	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Pin Metal Header Package [TO-100]	H-10
AD536ASH/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Pin Metal Header Package [TO-100]	H-10
AD536ASCHIPS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Die	
5962-89805012A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Terminal Ceramic Leadless Chip Carrier [LCC]	E-20-1
5962-8980501CA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]	D-14
5962-89805011A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Pin Metal Header Package [TO-100]	H-10

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Voltage Regulators - Switching Regulators category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
LX7186A 622616F 632259F FAN53610AUC33X MP2148GQD-33-P MP2374DS-LF-Z EN6310QA NCP81108MNTXG NCP81109BMNTXG L79M05TL-E FAN48610BUC45X R3 LV5710GP-TE-L-H 430464BB 455605G AZ7500BMTR-E1 MIC23156-0YML-T5 MIC4930YFL-T5 MP8763GLE-P KE177614 418569H 455596X 511087D 030908C 063375FB 067501FB 099508GB EP5358LUA NCP81102MNTXG 715715H FAN48611UC53X FAN53611AUC12X MAX809TTR MAX77596ETBC+T MAX77596ETBB+T MAX16905AUE/V+ NCP6332CMTAATBG NCV890203MWTXG LX7176A ISL8018IRAJZ MP2162AGQH-Z MAX17544ATP+T EN6360QI MCP1623T-IMC MCP1642B-18IMC MCP1642BT-30I/MS MCP1642D-50IMC MCP1642D-50IMS MCP1642D-ADJIMC MC34063LBBGEVB

