LC² MOS LOGDAC Logarithmic D/A Converter

FEATURES

Dynamic Range: 88.5 dB
Resolution: $\mathbf{0 . 3 7 5 ~ d B}$
On-Chip Data Latches
+5 V Operation
AD7111A Pin Compatible with AD7524
Low Power

APPLICATIONS

Audio Attenuators
Sonar Systems
Function Generators
Digitally Controlled AGC System

GENERAL DESCRIPTION

The LOGDAC ${ }^{\circledR}$ AD 7111/AD 7111A are monolithic multiplying D/A converters featuring wide dynamic range in a small package. Both D AC s can attenuate an analog input signal over the range 0 dB to 88.5 dB in 0.375 dB steps. They are available in 16 -pin DIPs and SOIC packages. The AD 7111 is also available in a 20 -terminal LCCC package.
The degree of attenuation across the DAC is determined by an 8 -bit word applied to the onboard decode logic. This 8-bit word is decoded into a 17-bit word which is then applied to a 17-bit R-2R ladder. The very fine step resolution, which is available over the entire dynamic range, is due to the use of this 17-bit DAC.
The AD 7111/AD 7111A are easily interfaced to a standard 8-bit M PU bus via an 8-bit data port and standard microprocessor control lines. The AD $7111 \overline{\mathrm{WR}}$ input is edge triggered and requires a rising edge to load new data to the DAC. The AD 7111A $\overline{\mathrm{WR}}$ is level triggered to allow transparent operation of the latches, if required. It should also be noted that the AD 7111A is exactly pin and function-compatible with the AD 7524, an industry standard 8 -bit multiplying DAC. This allows an easy upgrading of existing AD 7524 designs which would benefit both from the wider dynamic range and the finer step resolution offered by the AD 7111A.
The AD 7111/AD 7111A are fabricated in Linear C ompatible CM OS ($\mathrm{LC}^{2} \mathrm{MOS}$), an advanced, mixed technology process that combines precision bipolar circuits with low power CM OS logic.
LOGDAC is a registered trademark of Analog D evices, Inc.

REV. 0

[^0]FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Wide Dynamic Range: 0 dB to 88.5 dB attenuation range in 0.375 dB steps.
2. Small Package: T he AD 7111/AD 7111A are available in 16-pin DIPs and SOIC packages.
3. T ransparent L atch Operation: By tying the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ inputs low, the DAC latches in the AD 7111A can be made transparent.
4. F ast M icroprocessor Interface: D ata setup times of 25 ns and write pulse width of 57 ns make the AD 7111A compatible with modern microprocessors.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

AD7111/AD7111A- SPECIFICATONS
 AD711 except where noted)

Parameter	AD7111L/C/U Grades		AD7111K/B/T Grades		Units	Conditions/Comments
NOMINAL RESOLUTION	0.375	0.375	0.375	0.375	dB	
ACCURACY RELATIVE TO 0 dB ATTENUATION 0.375 dB Steps: Accuracy $\leq \pm 0.17 \mathrm{~dB}$ M onotonic 0.75 dB Steps: Accuracy $\leq \pm 0.35 \mathrm{~dB}$ M onotonic 1.5 dB Steps: Accuracy $\leq \pm 0.7 \mathrm{~dB}$ M onotonic 3.0 dB Steps: Accuracy $\leq \pm 1.4 \mathrm{~dB}$ M onotonic 6.0 dB Steps: Accuracy $\leq \pm 2.7 \mathrm{~dB}$ M onotonic	0 to 36 0 to 54 0 to 48 0 to 72 0 to 54 Full Range 0 to 66 Full Range 0 to 72 Full Range	0 to 36 0 to 54 0 to 42 0 to 66 0 to 48 0 to 78 0 to 54 Full Range 0 to 60 Full Range	0 to 30 0 to 48 0 to 42 0 to 72 0 to 42 0 to 85.5 0 to 60 Full Range 0 to 60 Full Range	0 to 30 0 to 48 0 to 36 0 to 60 0 to 42 0 to 72 0 to 48 Full Range 0 to 48 Full Range	dB min dB min dB min $d B \min$ dB min dB min dB min dB min dB min dB min	Guaranteed Attenuation Ranges for Specified Step Sizes Full Range Is from 0 dB to 88.5 dB
GAIN ERROR	± 0.1	± 0.15	± 0.15	± 0.20	dB max	
$\mathrm{V}_{\text {IN }}$ INPUT RESISTANC	9/11/15	9/11/15	7/11/18	7/11/18	k Ω min/typ/max	
$\mathrm{R}_{\text {FB }}$ INPUT RESISTANCE	9.3/11.5/15.7	9.3/11.5/15.7	7.3/11.5/18.8	7.3/11.5/18.8	k Ω min/typ/max	
DIGITAL INPUTS $\mathrm{V}_{\text {IH }}$ (Input High Voltage) VIL (Input Low Voltage) Input Leakage C urrent	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 2.4 \\ 0.8 \\ \pm 1 \\ \hline \end{array}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 10 \end{aligned}$	V min V max $\mu \mathrm{A}$ max	Digital Inputs $=V_{\text {D }}$
```SWITCHING CHARACTERISTICS \({ }^{1}\) \(\mathrm{t}_{\mathrm{CS}}\) \(\mathrm{t}_{\mathrm{CH}}\) \(t_{\text {wR }}\) \(t_{D S}\) \(t_{D H}\) \(\mathrm{t}_{\text {RFSH }}\)```	$\begin{aligned} & 0 \\ & 0 \\ & 350 \\ & 175 \\ & 10 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 500 \\ & 250 \\ & 10 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l} 0 \\ 0 \\ 350 \\ 175 \\ 10 \\ 3 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 500 \\ & 250 \\ & 10 \\ & 4.5 \end{aligned}$	ns min ns min ns min ns min ns min $\mu \mathrm{s}$ min	Chip Select to Write Setup Time Chip Select to Write H old T ime Write Pulse Width D ata Valid to Write Setup T ime D ata Valid to W rite H old T ime Refresh Time
$\begin{aligned} & \text { POWER SUPPLY } \\ & V_{D D} \\ & I_{D D} \end{aligned}$	$\begin{aligned} & +5 \\ & 1 \\ & 500 \end{aligned}$	$\begin{aligned} & +5 \\ & 4 \\ & 1000 \end{aligned}$	$\begin{array}{\|l} +5 \\ 1 \\ 500 \end{array}$	$\begin{aligned} & +5 \\ & 4 \\ & 1000 \end{aligned}$	V   mA max   $\mu \mathrm{A}$ max	D igital Inputs $=V_{I L}$ or $V_{I H}$   Digital Inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$;   See Figure 6

NOTE
${ }^{1}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance.
Specifications subject to change without notice.

AC PERFORMANCE CHARACTERISTCS These characteristics are included for design guidance only and are not subject to test. $V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{I N}=-10 \mathrm{~V}$ dc except where noted, $I_{0 U T}=A G N D=D G N D=0 \mathrm{~V}$, output amplifier AD711 except where noted.

Parameter	AD7111/C/U Grades		AD7111K/B/T Grades		Units	Conditions/Comments
DC Supply Rejection, $\Delta \mathrm{G}$ ain/ $\Delta \mathrm{V}_{\text {D }}$	0.001	0.005	0.001	0.005	dB per \% max	$\Delta V_{D D}= \pm 10 \%$, Input Code $=00000000$
Propagation D elay	3.0	4.5	3.0	4.5	$\mu \mathrm{S}$ max	Full-Scale C hange $M$ easured from $\overline{\mathrm{WR}}$ Going High, $\overline{\mathrm{CS}}=0 \mathrm{~V}$
D igital-to-A nalog G litch Impulse	100		100		$n \mathrm{~V}$ secs typ	M easured with AD 843 as Output Amplifier for Code T ransition 10000000 to 00000000 C 1 of Figure 1 is 0 pF
Output C apacitance, Pin 1	185	185	185	185	pF max	
Input Capacitance, Pin 15 and Pin 16	7	7	7	7	pF max	
F eedthrough at 1 kHz	-94	-72	-94	-68	dB max	
T otal H armonic D istortion	-91	-91	-91	-91	dB typ	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ rms at 1 kHz
Output N oise Voltage D ensity	70	70	70	70	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ max	Includes AD 711 Amplifier N oise
Digital Input C apacitance	7	7	7	7	pF max	

Specifications subject to change without notice.

AD7111A- ELECTRICAL CHARACTERISTICS ${ }^{\left(V_{00}\right.}=+5 \mathrm{~V}, \mathrm{~V}_{\mathbb{I}}=-10 \mathrm{Vdc}$, lour $=\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$ output amplifier AD711 except where noted)

Parameter	$\begin{gathered} \text { AD 7111 } \\ \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{gathered}$	1AC Grade $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\mathrm{MAX}}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1AB Grade $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}, \mathrm{~T}_{\mathrm{MAX}}$	Units	Conditions/Comments
NOMINAL RESOLUTION	0.375	0.375	0.375	0.375	dB	
ACCURACY RELATIVE TO   0 dB ATTENUATION 0.375 dB Steps:   Accuracy $\leq \pm 0.17 \mathrm{~dB}$   M onotonic   0.75 dB Steps:   Accuracy $\leq \pm 0.35 \mathrm{~dB}$   M onotonic   1.5 dB Steps:   Accuracy $\leq \pm 0.7 \mathrm{~dB}$   M onotonic   3.0 dB Steps:   Accuracy $\leq \pm 1.4 \mathrm{~dB}$   M onotonic   6.0 dB Steps:   Accuracy $\leq \pm 2.7 \mathrm{~dB}$ M onotonic	0 to 36   0 to 54   0 to 48   0 to 72   0 to 54   Full Range   0 to 66   Full Range   0 to 72   Full Range	0 to 36   0 to 54   0 to 42   0 to 66   0 to 48   0 to 78   0 to 54   Full Range   0 to 60   Full Range	0 to 30   0 to 48   0 to 42   0 to 72   0 to 48   0 to 85.5   0 to 60   Full Range   0 to 60   Full Range	0 to 30   0 to 48   0 to 36   0 to 60   0 to 42   0 to 72   0 to 48   Full Range   0 to 48   Full Range	dB min dB min   dB min $d B$ min   dB min $d B$ min   dB min dB min   dB min dB min	Guaranteed Attenuation Ranges for Specified Step Sizes   Full Range Is from 0 dB to 88.5 dB
GAIN ERROR	$\pm 0.1$	$\pm 0.15$	$\pm 0.15$	$\pm 0.20$	dB max	
$\mathrm{V}_{\text {IN }}$ INPUT RESISTANCE	9/11/15	9/11/15	7/11/18	7/11/18	k $\Omega$ min/typ/max	
R ${ }_{\text {FB }}$ INPUT RESISTANCE	9.3/11.5/15.7	9.3/11.5/15.7	7.3/11.5/18.8	7.3/11.5/18.8	k $\Omega$ min/typ/max	
DIGITAL INPUTS   $\mathrm{V}_{\text {IH }}$ (Input High Voltage)   $\mathrm{V}_{\text {IL }}$ (Input High Voltage)   Input Leakage C urrent	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 2.4 \\ 0.8 \\ \pm 1 \\ \hline \end{array}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 10 \\ & \hline \end{aligned}$	$V$ min   $V$ max $\mu \mathrm{A}$ max	Digital $\operatorname{Inputs}=\mathrm{V}_{\mathrm{DD}}$
```SWITCHING CHARACTERISTICS }\mp@subsup{}{}{1 t tcH tw t tDH```	$\begin{aligned} & 0 \\ & 0 \\ & 57 \\ & 25 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 57 \\ & 25 \\ & 10 \end{aligned}$	$\begin{array}{\|l} 0 \\ 0 \\ 57 \\ 25 \\ 10 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 57 \\ & 25 \\ & 10 \end{aligned}$	ns min ns min ns min ns min ns min	Chip Select to W rite Setup Time Chip Select to W rite H old T ime Write Pulse Width D ata Valid to W rite Setup Time D ata Valid to Write H old T ime
POWER SUPPLY $V_{D D}$ IDD	$\begin{aligned} & +5 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & +5 \\ & 2 \\ & 1 \end{aligned}$	$\begin{array}{\|l} +5 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & +5 \\ & 2 \\ & 1 \end{aligned}$	V mA max mA max	$\begin{aligned} & \text { Digital Inputs }=V_{I L} \text { or } V_{I H} \\ & \overline{\mathrm{CS}}=\overline{\mathrm{WR}}=0 \mathrm{~V} \\ & \mathrm{D} \text { igital Inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} ; \\ & \text { See Figure } 6 \end{aligned}$

NOTE
${ }^{1}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance.
Specifications subject to change without notice.

AC PERFORMANCE CHARACTERISTICS These characteristics are included for design guidance only and are not subject $^{\text {P }}$

 to test. $V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{I N}=-10 \mathrm{~V}$ dc except where noted, $\mathrm{I}_{\text {OUT }}=A G N D=\operatorname{DGND}=0 \mathrm{~V}$, output amplifier AD711 except where noted.| Parameter | $T_{A}=+25^{\circ} \mathrm{C}$ | AC Grade $\mathbf{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\mathrm{MAX}}$ | $\begin{array}{r} \text { AD } 711 \\ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{array}$ | AB Grade $T_{A}=T_{\text {MIN }}, T_{\text {MAX }}$ | Units | Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC Supply Rejection, $\Delta \mathrm{G}$ ain/ $\Delta \mathrm{V}_{\mathrm{DD}}$ | 0.001 | 0.005 | 0.001 | 0.005 | dB per \% max | $\Delta V_{D D}= \pm 10 \%$, Input Code $=00000000$ |
| Propagation D elay | 1 | 1.5 | 1 | 1.5 | $\mu \mathrm{S}$ max | Full-Scale C hange M easured from $\overline{\mathrm{WR}}$ Going H igh, $\overline{\mathrm{CS}}=0 \mathrm{~V}$ |
| Digital-to-A nalog G litch Impulse | 10 | 20 | 10 | 20 | $n \mathrm{~V}$ secs typ | M easured with AD 843 as Output Amplifier for Code T ransition 10000000 to 00000000 C 1 of F igure 1 is 0 pF |
| Output C apacitance, Pin 1 | 50 | 50 | 50 | 50 | pF max | |
| Input C apacitance, Pin 15 and Pin 16 | 7 | 7 | 7 | 7 | pF max | |
| F eedthrough at 1 kHz | -94 | -90 | -92 | -90 | dB max | |
| T otal H armonic D istortion | -91 | -91 | -91 | -91 | dB typ | $\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ rms at 1 kHz |
| Output N oise Voltage D ensity | 70 | 70 | 70 | 70 | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ max | Includes AD 711 Amplifier N oise |
| Digital Input C apacitance | 7 | 7 | 7 | 7 | pF max | |

Specifications subject to change without notice.

AD7111/AD7111A

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$V_{D D}$ (to DGND) . +7 V
$V_{\text {IN }}$ (to AGND) . ± 35 V
Digital Input Voltage to DGND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
I Iout to AGND . -0.3 V to $\mathrm{V}_{\text {DD }}$
VRFB to AGND . ± 35 V
AGND to DGND . 0 to V $_{\text {DD }}$

Power Dissipation, DIP . 1 W
$\theta_{\text {JA }}$, T hermal Impedance . $117^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature (Soldering, 10 secs) $+300^{\circ} \mathrm{C}$
Power Dissipation, SOIC . 1 W
$\theta_{\text {JA }}$, T hermal Impedance . $75^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature (Soldering)
Vapor Phase (60 secs) $.215^{\circ} \mathrm{C}$

Infrared (15 secs) . $220^{\circ} \mathrm{C}$
Power Dissipation, LCCC 1 W
$\theta_{\mathrm{JA}}, \mathrm{T}$ hermal Impedance $76^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature (Soldering, 10 secs) $+300^{\circ} \mathrm{C}$
O perating T emperature Range
Commercial (K, L Versions) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (B, C Versions) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T, U Versions) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage T emperature Range*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7111/AD7111A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of
 functionality.

ORDERING GUIDES

AD 7111A ORDERING GUIDE

Model	Temperature Range	Specified Accuracy Range	Package Option
AD 7111ABN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 dB to 60 dB	$\mathrm{~N}-16$
AD 7111ACN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 dB to 72 dB	$\mathrm{~N}-16$
AD 7111ABR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 dB to 60 dB	$\mathrm{R}-16$
AD 7111ACR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 dB to 72 dB	$\mathrm{R}-16$

NOTE
${ }^{1} \mathrm{~N}=$ Plastic DIP; R $=$ SOIC.

TERMINOLOGY

RESOLUTION: Nominal change in attenuation when moving between two adjacent codes.
MONOTONICITY: T he device is monotonic if the analog output decreases (or remains constant) as the digital code increases.
FEEDTHROUGH ERROR: T hat portion of the input signal which reaches the output when all digital inputs are high. See section on A pplications.
OUTPUT LEAKAGE CURRENT: Current which appears on the I OUT terminal with all digital inputs high.
TOTAL HARMONIC DISTORTION: A measure of the harmonics introduced by the circuit when a pure sinusoid is applied to the input. It is expressed as the harmonic energy divided by the fundamental energy at the output.

AD7111 ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Specified Accuracy Range	Package Option ${ }^{2}$
AD 7111K N	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 dB to 60 dB	N-16
AD 7111BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 dB to 60 dB	Q-16
AD 7111LN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 dB to 72 dB	N-16
AD 7111CQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 dB to 72 dB	Q-16
AD $7111 \mathrm{Q} / 883 \mathrm{~B}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0 dB to 72 dB	Q-16
AD 7111TE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0 dB to 60 dB	E-20A
NOTES			
${ }^{1}$ T o order M IL-ST D -883B, C lass B processed parts, add /883B to part number. C ontact local sales office for military data sheet and availability. ${ }^{2} \mathrm{~N}=$ Plastic DIP; $\mathrm{Q}=$ Cerdip; $\mathrm{E}=\mathrm{LCCC} ; \mathrm{R}=\mathrm{SOIC}$.			

ACCURACY: The difference (measured in dB) between the ideal transfer function as listed in T able I and the actual transfer function as measured with the device.
OUTPUT CAPACITANCE: Capacitance from $I_{\text {OUT }}$ to ground.
DIGITAL-TO-ANALOG GLITCH IMPULSE: The amount of charge injected from the digital inputs to the analog output when the inputs change state. This is normally specified as the area of the glitch in either pA-secs or nV-secs depending upon whether the glitch is measured as a current or voltage signal. G litch impulse is measured with $\mathrm{V}_{\text {IN }}=A G N D$.
PROPAGATION DELAY: This is a measure of the internal delays of the circuit and is defined as the time from a digital input change to the analog output current reaching 90% of its final value.

Write Cycle Timing Diagram

CIRCUIT DESCRIPTION

GENERAL CIRCUIT DESCRIPTION

T he AD 7111/AD 7111A consists of a 17-bit R-2R CM OS multiplying D/A converter with extensive digital logic. The logic translates the 8 -bit binary input into a 17-bit word which is used to drive the D/A converter. Input data on the D 7-D 0 bus is loaded into the input data latches using $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ control signals. When using the AD 7111, the rising edge of $\overline{\mathrm{WR}}$ latches the input data and initiates the internal data transfer to the decoder. A minimum time $t_{\text {RFSH }}$, the refresh time, is required for the data to propagate through the decoder before a new data write is attempted.
In contrast, the AD 7111A $\overline{\mathrm{WR}}$ input is level triggered to allow transparent operation of the latches if required.
The transfer function for the circuit of Figure 1 is given by:

$$
\begin{gathered}
V_{0}=-V_{\text {IN }} 10 \exp -\frac{0.375 \mathrm{~N}}{20} \\
\text { or }\left|\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\text {IN }}}\right| \mathrm{dB}=-0.375 \mathrm{~N}
\end{gathered}
$$

PIN CONFIGURATIONS

NC $=$ NOCONNECT
where 0.375 is the step size (resolution) in dB and N is the input code in decimal for values 0 to 239 . For $240 \leq N \leq 255$ the output is zero. Table I gives the output attenuation relative to 0 dB for all possible input codes.

Figure 1. Typical Circuit Configuration
The graphs on the last page give a pictorial representation of the specified accuracy and monotonic ranges for all grades of the AD 7111/AD 7111A. H igh attenuation levels are specified with less accuracy than low attenuation levels. T he range of monotonic behavior depends upon the attenuation step size used.

Table I. Ideal Attenuation in dB vs. Input C ode

D7-D4	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	0.0	0.375	0.75	1.125	1.5	1.875	2.25	2.625	3.0	3.375	3.75	4.125	4.5	4.875	5.25	5.625
0001	6.0	6.375	6.75	7.125	7.5	7.875	8.25	8.625	9.0	9.375	9.75	10.125	10.5	10.875	11.25	11.625
0010	12.0	12.375	12.75	13.125	13.5	13.875	14.25	14.625	15.0	15.375	15.75	16.125	16.5	16.875	17.25	17.625
0011	18.0	18.375	18.75	19.125	19.5	19.875	20.25	20.625	21.0	21.375	21.75	22.125	22.5	22.875	23.25	23.625
0100	24.0	24.375	24.75	25.125	25.5	25.875	26.25	26.625	27.0	27.375	27.75	28.125	28.5	28.875	29.25	29.625
0101	30.0	30.375	30.75	31.125	31.5	31.875	32.25	32.625	33.0	33.375	33.75	34.125	34.5	34.875	35.25	35.625
0110	36.0	36.375	36.75	37.125	37.5	37.875	38.25	38.625	39.0	39.375	39.75	40.125	40.5	40.875	41.25	41.625
0111	42.0	42.375	42.75	43.125	43.5	43.875	44.25	44.625	45.0	45.375	45.75	46.125	46.5	46.875	47.25	47.625
1000	48.0	48.375	48.75	49.125	49.5	49.875	50.25	50.625	51.0	51.375	51.75	52.125	52.5	52.875	53.25	53.625
1001	54.0	54.375	54.75	55.125	55.5	55.875	56.25	56.625	57.0	57.375	57.75	58.125	58.5	58.875	59.25	59.625
1010	60.0	60.375	60.75	61.125	61.5	61.875	62.25	62.625	63.0	63.375	63.75	64.125	64.5	64.875	65.25	65.625
1011	66.0	66.375	66.75	67.125	67.5	67.875	68.25	68.625	69.0	69.375	69.75	70.125	70.5	70.875	71.25	71.625
1100	72.0	72.375	72.75	73.125	73.5	73.875	74.25	74.625	75.0	75.375	75.75	76.125	76.5	76.875	77.25	77.625
1101	78.0	78.375	78.75	79.125	79.5	79.875	80.25	80.625	81.0	81.375	81.75	82.125	82.5	82.875	83.25	83.625
1110	84.0	84.375	84.75	85.125	85.5	85.875	86.25	86.625	87.0	87.375	87.75	88.125	88.5	88.875	89.25	89.625
1111	MUTE															

AD7111/AD7111A

For example, the AD 7111L is guaranteed monotonic in 0.375 dB steps from 0 dB to -54 dB inclusive and in 0.75 dB steps from 0 dB to -72 dB inclusive. To achieve monotonic operation over the entire 88.5 dB range it is necessary to select input codes so that the attenuation step size at any point is consistent with the step size guaranteed for monotonic operation at that point.

EQUIVALENT CIRCUIT ANALYSIS

Figure 2 shows a simplified circuit of the D / A converter section of the AD 7111/AD 7111A, and Figure 3 gives an approximate equivalent circuit.
The current source $I_{\text {LEAKAGE }}$ is composed of surface and junction leakages. The resistor R_{0} as shown in Figure 3 is the equivalent output resistance of the device which varies with input code (excluding all 0 s code) from $0.8 R$ to $2 R$. R is typically $12 \mathrm{k} \Omega$. $\mathrm{C}_{\text {out }}$ is the capacitance due to the N channel switches and varies from about 20 pF to 50 pF depending upon the digital input. For further information on CMOS multiplying D/A converters, refer to "CM OS D AC Application Guide" which is available from A nalog D evices, Publication N umber G 872b-8-1/89.

Figure 2. Simplified D/A Circuit of AD7111/AD7111A

Figure 3. Equivalent Analog Output Circuit of AD7111/AD7111A

DYNAMIC PERFORMANCE

The dynamic performance of the AD 7111/AD 7111A will depend upon the gain and phase characteristics of the output amplifier, together with the optimum choice of PC board layout and decoupling components. Circuit layout is most important if the optimum performance of the AD 7111/AD 7111A is to be achieved. M ost application problems stem from either poor layout, grounding errors, or inappropriate choice of amplifier.
It is recommended that when using thc AD 7111/AD 7111A with a high speed amplifier, a capacitor (C1) he connected in the feedback path as shown in Figure 1. This capacitor, which should be between 10 pF and 30 pF , compensates for the phase lag introduced by the output capacitance of the D/A converter. Figures 4 and 5 show the performance of the AD 7111/AD 7111A using the AD 711, a high speed, low cost BiFET amplifier, and the OP275, a dual, bipolar/JF ET, audio amplifier. The performance without C1 is shown in the middle trace and the response with C1 in circuit shown in the bottom trace.

DATA CHANGE FROM 80 H TO $\mathbf{0 0 H}$.
Figure 4. Response of AD7111/AD7111A with AD711

Figure 5. Response of AD7111/AD7111A with 1/2 OP275
In conventional CM OS D/A converter design, parasitic capacitance in N -channel D / A converter switches can give rise to glitches on the D/A converter output. T hese glitches result from digital feedthrough. The AD 7111/AD 7111A has been designed to minimize these glitches as much as possible.
For operation beyond 250 kH z, capacitor C 1 may be reduced in value. This gives an increase in bandwidth at the expense of a poorer transient response as shown in Figures 5 and 11. In circuits where C 1 is not included, the high frequency roll-off point is primarily determined by the characteristics of the output amplifier and not the AD 7111/AD 7111A.
F eedthrough and absolute accuracy are sensitive to output leakage current effects. For this reason it is recommended that the operating temperature of the AD 7111/AD 7111A be kept as close to $25^{\circ} \mathrm{C}$ as is practically possible, particularly where the device's performance at high attenuation levels is important. A typical plot of leakage current vs. temperature is shown in Figure 10.
Some solder fluxes and cleaning materials can form slightly conductive films which cause leakage effects between analog input and output. The user is cautioned to ensure that the manufacturing process for circuits using thc AD 7111/AD 7111A does not allow such films to form. Otherwise the feedthrough, accuracy and maximum usable range will be affected.

STATIC ACCURACY PERFORMANCE

T he D/A converter section of the AD 7111/AD 7111A consists of a 17-bit R-2R type converter. T o obtain optimum static performance at this level of resolution it is necessary to pay great attention to amplifier selection, circuit grounding, etc.
A mplifier input has current results in a dc offset at the output of the amplifier due to the current flowing through the feedback resistor $R_{F B}$. It is recommended that an amplifier with an input bias current of less than 10 nA be used (e.g., AD 711) to minimize this offset.

Another error arises from the output amplifier s input offset voltage. The amplifier is operated with a fixed feedback resistance, but the equivalent source impedance (the AD 7111/ AD 7111A output impedance) varies as a function of attenuation level. This has the effect of varying thc "noise" gain of the amplifier, thus creating a varying error due to amplifier offset voltage. It is recommended that an amplifier with less than $50 \mu \mathrm{~V}$ of input offset be used (such as the AD OP07 in dc applications. A mplifiers with higher offset voltage may cause audible "thumps" in ac applications due to dc output changes.
The AD 7111/AD 7111A accuracy is specified and tested using only the internal feedback resistor. Any gain error (i.e., mismatch of $R_{F B}$ to the $R-2 R$ ladder) that may exist in the

Typical Performance Characteristics

Figure 6. Typical Supply Current vs. Logic Input Level

Figure 7. Typical Attenuation Error for 0.75 dB Steps

AD 7111/AD 7111A D/A converter circuit results in a constant attenuation error over the whole range. The AD 7111/AD 7111A accuracy is specified relative to 0 dB attenuation, hence " G ain" trim resistors-R1 and R2 in Figure 1-can be used to adjust $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }}$ precisely (i.e., 0 dB attenuation) with input code 00000000 . The accuracy and monotonic range specifications of the AD 7111/AD 7111A are not affected in any way by this gain trim procedure. For the AD 7111/AD 7111A L/C/U grades, suitable values for R 1 and R 2 of F igure 1 are $\mathrm{R} 1=500 \Omega, \mathrm{R} 2=$ 180Ω; for the $K / B / T$ grades, suitable value are $R 1=1000 \Omega$, $R 2=270 \Omega$. For additional information on gain error the reader is referred to the "CM OS DAC Application Guide," available from Analog D evices, Inc., Publication N umber G872b-8-1/89.

Figure 8. Typical Attenuation Error for 3 dB Steps vs. Temperature

Figure 9. Accuracy Specification for K/B/T Grade Devices at $T_{A}=+25^{\circ} \mathrm{C}$

AD7111/AD7111A- Typical Performance Characteristics

Figure 10. Output Leakage Current vs. Temperature

Figure 11. Frequency Response with 1/2 OP275 and AD711 Amplifiers

Figure 12. Distortion vs. Frequency

Figure 13. Accuracy Specification for L/C/U Grade Devices at $T_{A}=+25^{\circ} \mathrm{C}$

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

Cerdip (Q-16)

SOIC (R-16)

LCCC (E-2OA)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
5962-8871903MYA 5962-8876601LA 5962-89697013A 5962-89932012A PM7545FPCZ AD664TE/883B AD9162BBCA AD5449YRUZ-
REEL7 AD664AJ AD664BJ AD7534JPZ TCC-103A-RT 057536E 5962-87700012A 5962-89657023A 702423BB AD664BE
MAX5801AUB+ AD9121BCPZRL MAX5110GTJ+ MAX5702BAUB+ DS4412U+T\&R MAX5364EUT+T MAX5858AECM+D AD5821ABCBZ-REEL7 MX7528KP+ MAX5858ECM+D MAX5138BGTE+T MAX5856AECM+D MX7528JP+ TCC-303A-RT MAX5139GTE+T MAX5112GTJ+ DS3911T+T MAX5805BAUB+T MAX5705BAUB+T MAX5715BAUD+T MAX5825AWP+T MAX5105EEP+T AD5413BCPZ AD5721BRUZ-RL7 DAC8229FSZ-REEL MCP47FEB08-20E/ST MCP47FVB28-20E/ST AD5677RBCPZ-1 AD5677RBCPZ-2 MCP48FVB04-20E/ST MCP48FEB24-20E/ST MCP48FVB08-20E/ST MCP48FEB28-20E/ST

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

