3 V, Parallel Input Micropower 10-/12-Bit DACs

FEATURES

Micropower: $100 \mu \mathrm{~A}$

$0.1 \mu \mathrm{~A}$ typical power shutdown
Single-supply 2.7 V to 5.5 V operation
AD7392: 12-bit resolution
AD7393: 10-bit resolution
0.9 LSB differential nonlinearity error

APPLICATIONS

Automotive 0.5 V to 4.5 V output span voltage
Portable communications
Digitally controlled calibration
PC peripherals

GENERAL DESCRIPTION

The AD7392/AD7393 comprise a set of pin-compatible 10-/12-bit voltage output, digital-to-analog converters. The parts are designed to operate from a single 3 V supply. Built using a CBCMOS process, these monolithic DACs offer low cost and ease of use in single-supply 3 V systems. Operation is guaranteed over the supply voltage range of 2.7 V to 5.5 V , making this device ideal for battery-operated applications.
The full-scale voltage output is determined by the external reference input voltage applied. The rail-to-rail REF $_{\text {IN }}$ to DACout allows a full-scale voltage equal to the positive supply V_{DD} or any value in between. The voltage outputs are capable of sourcing 5 mA .

A data latch load of 12 bits with a 45 ns write time eliminates wait states when interfacing to the fastest processors. Additionally, an asynchronous $\overline{\mathrm{RS}}$ input sets the output to a zero scale at power-on or upon user demand.

FUNCTIONAL BLOCK DIAGRAM

Both parts are offered with similar pinouts, which allows users to select the amount of resolution appropriate for their applications without changing the circuit card.

The AD7392/AD7393 are specified for operation over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The AD7393AR is specified for the automotive temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The AD7392/AD7393 are available in 20-lead PDIP and 20-lead SOIC packages.

For serial data input, 8-lead packaged versions, see the AD7390 and AD7391.

Rev. C

AD7392/AD7393

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Electrical Characteristics 3
Timing Diagram 5
Absolute Maximum Ratings 6
ESD Caution6
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 8
Theory of Operation 12
REVISION HISTORY
8/07—Rev. B to Rev. C
Changes to Specifications Section 3
Changes to Table 3 6
Changes to Theory of Operation Section. 12
Changes to Figure 29 13
Changes to Figure 32 14
Changes to Figure 33 15
Updated Outline Dimensions 16
Changes to Ordering Guide 17
6/04—Changed from Rev. A to Rev. B
Removed TSSOP

\qquad
Changes to Ordering Guide 17
3/99—Changed from Rev. 0 to Rev. A
11/96—Revision 0: Initial Version
Digital-to-Analog Converters 12
Amplifier Section 12
Reference Input. 12
Power Supply 13
Input Logic Levels 13
Digital Interface 13
Reset Pin ($\overline{\mathrm{RS}}$) 14
Power Shutdown ($\overline{\mathrm{SHDN}}$) 14
Unipolar Output Operation 14
Bipolar Output Operation 15
Outline Dimensions 16
Ordering Guide 17

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

At $\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1. AD7392

Parameter	Symbol	Conditions	$3 \mathrm{~V} \pm 10 \%$	$5 \mathrm{~V} \pm 10 \%$	Unit
STATIC PERFORMANCE Resolution ${ }^{1}$ Relative Accuracy ${ }^{2}$ Differential Nonlinearity ${ }^{2}$ Zero-Scale Error Full-Scale Voltage Error Full-Scale Temperature Coefficient ${ }^{3}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{INL} \\ & \mathrm{DNL} \\ & \mathrm{~V}_{\mathrm{ZSE}} \\ & \mathrm{~V}_{\mathrm{FSE}} \\ & \mathrm{TCV}_{\mathrm{FS}} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text {, monotonic } \\ & \text { MonotoniC } \\ & \text { Data }=0 \times 000, T_{A}=+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C} \\ & \text { Data }=0 \times 000, T_{A}=-40^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}, \text { data }=0 \times \mathrm{xFF} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}, \text { data }=0 \times \mathrm{xFF} \end{aligned}$	$\begin{aligned} & 12 \\ & \pm 1.8 \\ & \pm 3 \\ & \pm 0.9 \\ & \pm 1 \\ & 4.0 \\ & 8.0 \\ & \pm 8 \\ & \pm 20 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & \pm 1.8 \\ & \pm 3 \\ & \pm 0.9 \\ & \pm 1 \\ & 4.0 \\ & 8.0 \\ & \pm 8 \\ & \pm 20 \\ & 28 \\ & \hline \end{aligned}$	Bits LSB max LSB max LSB max LSB max mV max $m V$ max $m V$ max mV max ppm $/{ }^{\circ} \mathrm{C}$ typ
REFERENCE INPUT $V_{\text {ReF }}$ Range Input Resistance Input Capacitance ${ }^{3}$	$\begin{aligned} & V_{\text {REF }} \\ & R_{\text {REF }} \\ & C_{\text {REF }} \end{aligned}$		$\begin{aligned} & 0 / V_{\mathrm{DD}} \\ & 2.5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 / V_{\mathrm{DD}} \\ & 2.5 \\ & 5 \end{aligned}$	V min/max $M \Omega$ typ ${ }^{4}$ pF typ
ANALOG OUTPUT Current (Source) Output Current (Sink) Capacitive Load ${ }^{3}$	Iout lout CL	$\begin{aligned} & \text { Data }=0 \times 800, \Delta \mathrm{~V}_{\text {out }}=5 \mathrm{LSB} \\ & \text { Data }=0 \times 800, \Delta \mathrm{~V}_{\text {out }}=5 \mathrm{LSB} \\ & \text { No oscillation } \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 100 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 100 \\ & \hline \end{aligned}$	mA typ mA typ pF typ
LOGIC INPUTS Logic Input Low Voltage Logic Input High Voltage Input Leakage Current Input Capacitance ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{C}_{\mathrm{IL}} \end{aligned}$		$\begin{aligned} & 0.5 \\ & V_{D D}-0.6 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.8 \\ & V_{D D}-0.6 \\ & 10 \\ & 10 \end{aligned}$	\checkmark max \checkmark min $\mu \mathrm{A}$ max pF max
INTERFACE TIMING ${ }^{3,5}$ Chip Select Write Width Data Setup Data Hold Reset Pulse Width	$\begin{aligned} & \mathrm{t}_{\mathrm{CS}} \\ & \mathrm{t}_{\mathrm{DS}} \\ & \mathrm{t}_{\mathrm{DH}} \\ & \mathrm{t}_{\mathrm{RS}} \end{aligned}$		$\begin{aligned} & 45 \\ & 30 \\ & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & 45 \\ & 15 \\ & 5 \\ & 30 \end{aligned}$	ns min ns min ns min ns min
AC CHARACTERISTICS Output Slew Rate Settling Time ${ }^{6}$ Shutdown Recovery Time DAC Glitch Digital Feedthrough Feedthrough	SR ts $\mathrm{t}_{\text {SOR }}$ $V_{\text {out }} / V_{\text {ReF }}$	Data $=0 \times 000$ to 0xFFF to 0×000 To $\pm 0.1 \%$ of full scale Code 0x7FF to Code 0x800 to Code 0x7FF $\begin{aligned} & V_{\text {REF }}=1.5 \mathrm{~V} \mathrm{dc}+1 \mathrm{Vp}-\mathrm{p}, \text { data }=0 \times 000, \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0.05 \\ & 70 \\ & \\ & 65 \\ & 15 \\ & -63 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 60 \\ & 80 \\ & 65 \\ & 15 \\ & -63 \end{aligned}$	V/us typ $\mu \mathrm{styp}$ $\mu \mathrm{styp}$ nV / s typ nV/s typ dB typ
SUPPLY CHARACTERISTICS Power Supply Range Positive Supply Current Shutdown Supply Current Power Dissipation Power Supply Sensitivity	Vdd bange lod IDD-SD PDISS PSS	$\begin{aligned} & \mathrm{DNL}< \pm 1 \mathrm{LSB} \\ & \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \text {, no load } \\ & \mathrm{SHDN}=0, \mathrm{~V}_{\mathrm{LL}}=0 \mathrm{~V} \text {, no load } \\ & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \text {, no load } \\ & \Delta \mathrm{V}_{\mathrm{DD}}= \pm 5 \% \end{aligned}$	$\begin{aligned} & 2.7 / 5.5 \\ & 55 / 100 \\ & 0.1 / 1.5 \\ & 300 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 2.7 / 5.5 \\ & 55 / 100 \\ & 0.1 / 1.5 \\ & 500 \\ & 0.006 \end{aligned}$	V min/max $\mu \mathrm{A}$ typ/max $\mu \mathrm{A}$ typ/max $\mu \mathrm{W}$ max \%/\% max

[^0]
AD7392/AD7393

At $\mathrm{V}_{\text {ref }}=2.5 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2. AD7393

Parameter	Symbol	Conditions	$3 \mathrm{~V} \pm 10 \%$	$5 \mathrm{~V} \pm 10 \%$	Unit
STATIC PERFORMANCE Resolution ${ }^{1}$ Relative Accuracy ${ }^{2}$ Differential Nonlinearity ${ }^{2}$ Zero-Scale Error Full-Scale Voltage Error Full-Scale Temperature Coefficient ${ }^{3}$	N INL DNL V ZSE $V_{\text {FSE }}$ $\mathrm{TCV}_{\mathrm{Fs}}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C},+125^{\circ} \mathrm{C} \\ & \text { Monotonic } \\ & \text { Data }=0 \times 000 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}, \text { data }=0 \times 3 \mathrm{FF} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}, \text { data }=0 \times 3 \mathrm{FF} \end{aligned}$	$\begin{aligned} & 10 \\ & \pm 1.75 \\ & \pm 2.0 \\ & \pm 0.8 \\ & 9.0 \\ & \pm 32 \\ & \pm 42 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & \pm 1.75 \\ & \pm 2.0 \\ & \pm 0.8 \\ & 9.0 \\ & \pm 32 \\ & \pm 42 \\ & 28 \\ & \hline \end{aligned}$	Bits LSB max LSB max LSB max mV max $m V$ max $m V$ max ppm $/{ }^{\circ} \mathrm{C}$ typ
REFERENCE INPUT $V_{\text {Ref in }}$ Range Input Resistance Input Capacitance ${ }^{3}$	$\begin{aligned} & V_{\text {REF }} \\ & R_{\text {REF }} \\ & C_{\text {REF }} \end{aligned}$		$\begin{aligned} & 0 / V_{D D} \\ & 2.5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 / V_{\mathrm{DD}} \\ & 2.5 \\ & 5 \end{aligned}$	V min/max $M \Omega \operatorname{typ}^{4}$ pF typ
ANALOG OUTPUT Output Current (Source) Output Current (Sink) Capacitive Load ${ }^{3}$	lout lout C	$\begin{aligned} & \text { Data }=0 \times 200, \Delta \mathrm{~V}_{\text {out }}=5 \mathrm{LSB} \\ & \text { Data }=0 \times 200, \Delta \mathrm{~V}_{\text {out }}=5 \mathrm{LSB} \\ & \text { No oscillation } \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 100 \end{aligned}$	mA typ mA typ pF typ
LOGIC INPUTS Logic Input Low Voltage Logic Input High Voltage Input Leakage Current Input Capacitance ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{LL}} \\ & \mathrm{C}_{\mathrm{IL}} \end{aligned}$		$\begin{aligned} & 0.5 \\ & V_{D D}-0.6 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.8 \\ & V_{D D}-0.6 \\ & 10 \\ & 10 \end{aligned}$	\checkmark max \vee min $\mu \mathrm{A}$ max pF max
INTERFACE TIMING ${ }^{3,5}$ Chip Select Write Width Data Setup Data Hold Reset Pulse Width	tcs tDs toh trs		$\begin{aligned} & 45 \\ & 30 \\ & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & 45 \\ & 15 \\ & 5 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
AC CHARACTERISTICS Output Slew Rate Settling Time ${ }^{6}$ Shutdown Recovery Time DAC Glitch Digital Feedthrough Feedthrough	SR ts tsor $V_{\text {out }} / V_{\text {ReF }}$	Data $=0 \times 000$ to 0×3 FF to 0×000 To $\pm 0.1 \%$ of full scale Code 0x7FF to Code 0x800 to Code 0x7FF $V_{\text {REF }}=1.5 \mathrm{Vdc} 11 \mathrm{Vp}-\mathrm{p}$, data $=0 \times 000, \mathrm{f}=100 \mathrm{kHz}$	$\begin{aligned} & 0.05 \\ & 70 \\ & \\ & 65 \\ & 15 \\ & -63 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 60 \\ & 80 \\ & 65 \\ & 15 \\ & -63 \end{aligned}$	V/us typ $\mu \mathrm{styp}$ $\mu \mathrm{styp}$ nV/s typ nV/styp dB typ
SUPPLY CHARACTERISTICS Power Supply Range Positive Supply Current Shutdown Supply Current Power Dissipation Power Supply Sensitivity	$V_{\text {do range }}$ lod IDD-SD PoIss PSS	$\begin{aligned} & \mathrm{DNL}< \pm 1 \mathrm{LSB} \\ & \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \text { no load, } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \text {, no load } \\ & \mathrm{SHDN}=0, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \text {, no load } \\ & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \text {, no load } \\ & \Delta \mathrm{V}_{\mathrm{DD}}= \pm 5 \% \end{aligned}$	$\begin{aligned} & 2.7 / 5.5 \\ & 55 \\ & 100 \\ & 0.1 / 1.5 \\ & 300 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 2.7 / 5.5 \\ & 55 \\ & 100 \\ & 0.1 / 1.5 \\ & 500 \\ & 0.006 \end{aligned}$	V min/max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ/max $\mu \mathrm{W}$ max \%/\% max

${ }^{1}$ One LSB $=V_{\text {REF }} / 1024 \mathrm{~V}$ for the 10-bit AD7393.
${ }^{2}$ The first two codes ($0 \times 000,0 \times 001$) are excluded from the linearity error measurement.
${ }^{3}$ These parameters are guaranteed by design and not subject to production testing.
${ }^{4}$ Typicals represent average readings measured at $+25^{\circ} \mathrm{C}$.
${ }^{5}$ All input control signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}(10 \%$ to 90% of 13 V$)$ and timed from a voltage level of 1.6 V .
${ }^{6}$ The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.

TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V, +8V
$V_{\text {REF }}$ to GND	-0.3 V, V $\mathrm{VD}^{\text {d }}$
Logic Inputs to GND	$-0.3 \mathrm{~V}, \mathrm{VDD}+0.3 \mathrm{~V}$
Vout to GND	$-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
lout Short Circuit to GND	50 mA
DGND to AGND	$-0.3 \mathrm{~V},+2 \mathrm{~V}$
Package Power Dissipation	$\left(\mathrm{T}_{\prime} \max -\mathrm{T}_{\mathrm{A}}\right) / \theta_{\text {JA }}$
Thermal Resistance ($\theta_{\text {JA }}$)	
20-Lead PDIP (N 20)	$57^{\circ} \mathrm{C} / \mathrm{W}$
20-Lead SOIC (R-20)	$60^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature (T, max)	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AD7393AR	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
Reflow Soldering Peak Temperature	
SnPb	$240^{\circ} \mathrm{C}$
Pb -Free	$260^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. AD7392 Pin Configuration

Figure 4. AD7393 Pin Configuration

Table 4. AD7392 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VDD	Positive Power Supply Input. The specified range of operation is 2.7 V to 5.5 V .
2	$\overline{\text { SHDN }}$	Power Shutdown Active Low Input. DAC register contents are saved as long as power stays on the $V_{D D}$ pin. When $\overline{\mathrm{SHDN}}=0, \overline{\mathrm{CS}}$ strobes write new data into the DAC register.
3	$\overline{C S}$	Chip Select Latch Enable, Active Low.
4	$\overline{\mathrm{RS}}$	Asynchronous Active Low Input. Resets the DAC register to 0 .
5 to 16	D0 to D11	Parallel Input Data Bits. D11 is the MSB; D0 is the LSB.
17	DGND	Digital Ground.
18	AGND	Analog Ground.
19	$V_{\text {OUt }}$	DAC Voltage Output.
20	$V_{\text {ReF }}$	DAC Reference Input. Establishes the DAC full-scale voltage.

Table 5. AD7393 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VDD	Positive Power Supply Input. The specified range of operation is 2.7 V to 5.5 V .
2	$\overline{\text { SHDN }}$	Power Shutdown Active Low Input. DAC register contents are saved as long as power stays on the $V_{D D}$ pin. When $\overline{S H D N}=0, \overline{C S}$ strobes write new data into the DAC register.
3	$\overline{\mathrm{CS}}$	Chip Select Latch Enable, Active Low.
4	$\overline{\mathrm{RS}}$	Asynchronous Active Low Input. Resets the DAC register to 0.
5,6	NC	No Connect.
7 to 16	D0 to D9	Parallel Input Data Bits. D9 is the MSB; D0 is the LSB.
17	DGND	Digital Ground.
18	AGND	Analog Ground.
19	$V_{\text {out }}$	DAC Voltage Output.
20	$V_{\text {ReF }}$	DAC Reference Input. Establishes the DAC full-scale voltage.

AD7392/AD7393

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. AD7392 Integral Nonlinearity Error vs. Code

Figure 6. AD7393 Integral Nonlinearity Error vs. Code

Figure 7. AD7392 Total Unadjusted Error Histogram

Figure 8. AD7393 Total Unadjusted Error Histogram

Figure 9. AD7393 Full-Scale Output Temperature Coefficient Histogram

Figure 10. Voltage Noise Density vs. Frequency

Figure 11. Supply Current vs. Logic Input Voltage

Figure 12. Logic Threshold vs. Supply Voltage

Figure 13. Supply Current vs. Temperature

Figure 14. Supply Current vs. Clock Frequency

Figure 15. Power Supply Rejection Ratio vs. Frequency

Figure 16. Iout at Zero Scale vs. Vout

Figure 17. Midscale Transition Performance

TIME ($5 \mu \mathrm{~s} / \mathrm{DIV}$)
Figure 18. Digital Feedthrough

TIME (100 $\mu \mathrm{s} / \mathrm{DIV})$
Figure 19. Large Signal Settling Time

Figure 20. Reference Multiplying Bandwidth

Figure 21. Integral Nonlinearity Error vs. Reference Voltage

Figure 22. Long-Term Drift Accelerated by Burn-In

TIME ($\mathbf{1 0 0 \mu \mathrm { s } / \mathrm { DIV })}$
Figure 23. Shutdown Recovery Time

Figure 24. Shutdown Current vs. Temperature

Figure 25. AD7392 Differential Nonlinearity Error vs. Code

Figure 26. AD7393 Differential Nonlinearity Error vs. Code

THEORY OF OPERATION

The AD7392/AD7393 comprise a set of pin-compatible, 12-/10bit digital-to-analog converters (DACs). These single-supply operation devices consume less than $100 \mu \mathrm{~A}$ of current while operating from 2.7 V to 5.5 V power supplies, making them ideal for battery-operated applications. They contain a voltageswitched, 12-/10-bit, laser-trimmed DAC; rail-to-rail output op amps; and a parallel input DAC register. The external reference input has constant input resistance independent of the digital code setting of the DAC. In addition, the reference input can be tied to the same supply voltage as $V_{D D}$, resulting in a maximum output voltage span of 0 V to V_{DD}. The parallel data interface consists of a $\overline{\mathrm{CS}}$ write strobe and 12 data bits (D0 to D11) if utilizing the AD7392 or 10 data bits (D0 to D9) if utilizing the AD7393. An $\overline{\mathrm{RS}}$ pin is available to reset the DAC register to zero scale. This function is useful for power-on reset or system failure recovery to a known state. Additional power savings are accomplished by activating the $\overline{\text { SHDN }}$ pin, resulting in a $1.5 \mu \mathrm{~A}$ maximum consumption sleep mode. While the supply voltage is on, data is retained in the DAC register to reset the DAC output when the part is taken out of shutdown ($\overline{\mathrm{SHDN}}=1$).

DIGITAL-TO-ANALOG CONVERTERS

The voltage switched R-2R DAC generates an output voltage that depends on the external reference voltage connected to the Vref pin according to Equation 1.

$$
\begin{equation*}
V_{O U T}=V_{R E F} \times \frac{D}{2^{N}} \tag{1}
\end{equation*}
$$

where:
D is the decimal data-word loaded into the DAC register. N is the number of bits of DAC resolution.
If the 10 -bit AD7393 uses a 2.5 V reference, Equation 1 becomes

$$
\begin{equation*}
V_{\text {OUT }}=2.5 \times \frac{D}{1024} \tag{2}
\end{equation*}
$$

Using Equation 2, the nominal midscale voltage at $V_{\text {out }}$ is 1.25 V , for $D=512$; full-scale voltage is 2.497 V . The LSB step size is $2.5 \times 1 / 1024=0.0024 \mathrm{~V}$.
If the 12 -bit AD7392 uses a 5.0 V reference, Equation 1 becomes

$$
\begin{equation*}
V_{O U T}=V_{R E F} \times \frac{D}{4096} \tag{3}
\end{equation*}
$$

Using Equation 3, the AD7392 provides a nominal midscale voltage of 2.50 V (for $D=2048$) and a full-scale $\mathrm{V}_{\text {out }}$ of 4.998 V . The LSB step size is $5.0 \times 1 / 4096=0.0012 \mathrm{~V}$.

AMPLIFIER SECTION

The internal DACs output is buffered by a low power consumption precision amplifier. The op amp has a 60μ s typical settling time to 0.1% of full scale. There are slight differences in settling time for negative slew signals vs. positive. Also, negative transition settling time to within the last 6 LSBs of 0 V has an extended settling time. The rail-to-rail output stage of this amplifier has been designed to provide precision performance while operating near either power supply. Figure 27 shows an equivalent output schematic of the rail-to-rail amplifier with its N -channel pulldown FETs that pull an output load directly to GND. The output sourcing current is provided by a P-channel, pull-up device that can source current-to-GND terminated loads.

Figure 27. Equivalent Analog Output Circuit
The rail-to-rail output stage provides $\pm 1 \mathrm{~mA}$ of output current. The N-channel output pull-down MOSFET, shown in Figure 27, has a 35Ω on resistance that sets the sink current capability near ground. In addition to resistive load driving capability, the amplifier also has been carefully designed and characterized for up to 100 pF capacitive load driving capability.

REFERENCE INPUT

The reference input terminal has a constant input resistance independent of digital code, which results in reduced glitches on the external reference voltage source. The high $2.5 \mathrm{M} \Omega$ input resistance minimizes power dissipation within the AD7392/ AD7393 DACs. The $V_{\text {ref }}$ input accepts input voltages ranging from ground to the positive supply voltage $V_{D D}$. One of the simplest applications for saving an external reference voltage source is connecting the REF terminal to the positive $V_{D D}$ supply. This connection results in a rail-to-rail voltage output span maximizing the programmed range. The reference input accepts ac signals as long as they stay within the $0 \mathrm{~V}<\mathrm{V}_{\mathrm{REF}}<$ V_{DD} supply voltage range. The reference bandwidth and integral nonlinearity error performance are plotted in Figure 20 and Figure 21. The ratiometric reference feature makes the AD7392/ AD7393 an ideal companion to ratiometric analog-to-digital converters (ADCs) such as the AD7896.

POWER SUPPLY

The very low power consumption of the AD7392/AD7393 is a direct result of a circuit design that optimizes the CBCMOS process. By using the low power characteristics of CMOS for the logic and the low noise, tight-matching of the complementary bipolar transistors, excellent analog accuracy is achieved. One advantage of the rail-to-rail output amplifiers used in the AD7392/ AD7393 is the wide range of usable supply voltage. The part is fully specified and tested for operation from 2.7 V to 5.5 V .

Figure 28. Use Separate Traces to Reduce Power Supply Noise
Whether or not a separate power supply trace is available, generous supply bypassing reduces supply line induced errors. Local supply bypassing, consisting of a $10 \mu \mathrm{~F}$ tantalum electrolytic in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor, is recommended for all applications (see Figure 29).

Figure 29. Recommended Supply Bypassing for the AD7392/AD7393

INPUT LOGIC LEVELS

All digital inputs are protected with a Zener-type ESD protection structure that allows logic input voltages to exceed the $V_{D D}$ supply voltage (see Figure 30). This feature is useful if the user is driving one or more of the digital inputs with a 5 V CMOS logic input voltage level while operating the AD7392/AD7393 on a 3 V power supply. If this interface is used, make sure that the Vol of the 5 V CMOS meets the V_{II} input requirement of the AD7392/ AD7393 operating at 3 V . See Figure 12 for a graph of digital logic input threshold vs. operating $V_{D D}$ supply voltage.

Figure 30. Equivalent Digital Input ESD Protection

To minimize power dissipation from input logic levels that are near the V_{IH} and $\mathrm{V}_{\text {IL }}$ logic input voltage specifications, a Schmitt-trigger design was used that minimizes the input buffer current consumption compared to traditional CMOS input stages. Figure 11 is a plot of supply current vs. incremental input voltage, showing that negligible current consumption takes place when logic levels are in their quiescent state. The normal crossover current still occurs during logic transitions. A secondary advantage of this Schmitt trigger is the prevention of false triggers that would occur with slow moving logic transitions when a standard CMOS logic interface or opto-isolators are used. Logic inputs D11 to D0, $\overline{\mathrm{CS}}, \overline{\mathrm{RS}}$, and $\overline{\mathrm{SHDN}}$ all contain the Schmitt-trigger circuits.

DIGITAL INTERFACE

The AD7392/AD7393 have a parallel data input. A functional block diagram of the digital section is shown in Figure 31, while Table 6 contains the truth table for the logic control inputs. The chip select pin $(\overline{\mathrm{CS}})$ controls loading of data from the data inputs on Pin D11 to Pin D0. This active low input places the input register into a transparent state allowing the data inputs to directly change the DAC ladder values. When $\overline{\mathrm{CS}}$ returns to logic high within the data setup-and-hold time specifications, the new value of data in the input register are latched. See Table 6 for a complete listing of conditions.

Figure 31. Digital Control Logic
Table 6. Control Logic Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{R S}}$	DAC Register Function
H	H	Latched
L	H	Transparent
\uparrow^{1}	H	Latched with new data
X 2	L	Loaded with all zeros
H	\uparrow^{1}	Latched all zeros

[^1]
AD7392/AD7393

RESET PIN ($\overline{\mathbf{R S}})$

Forcing the asynchronous $\overline{\mathrm{RS}}$ pin low sets the DAC register to all 0 s, so the DAC output voltage is 0 V . The reset function is useful for setting the DAC outputs to 0 at power-up or after a power supply interruption. Test systems and motor controllers are two of many applications that benefit from powering up to a known state. The external reset pulse can be generated by three methods:

- The microprocessor's power-on RESET signal
- An output from the microprocessor
- An external resistor and capacitor

RESET has a Schmitt-trigger input, which results in a clean reset function when using external resistor-/capacitor-generated pulses (see Table 6).

POWER SHUTDOWN ($\overline{\text { SHDN }}$)

Maximum power savings can be achieved by using the power shutdown control function. This hardware-activated feature is controlled by the active low input $\overline{\text { SHDN }}$ pin. This pin has a Schmitt-trigger input that helps desensitize it to slowly changing inputs. Setting this pin to logic low reduces the internal consumption of the AD7392/AD7393 to nanoamp levels, guaranteed to $1.5 \mu \mathrm{~A}$ maximum over the operating temperature range. If power is present at all times on the $V_{\text {DD }}$ pin while in shutdown mode, the internal DAC register retains the last programmed data value. The digital interface is still active in shutdown so that code changes can be made that produce new DAC settings when the device is taken out of shutdown. This data is used when the part is returned to the normal active state by placing the DAC back to its programmed voltage setting. Figure 23 shows a plot of shutdown recovery time with both IdD and Vout displayed. In the shutdown state, the DAC output amplifier exhibits an open-circuit high resistance state. Any load that is connected stabilizes at its termination voltage. If the power shutdown feature is not needed, the user should tie the $\overline{\text { SHDN }}$ pin to the $V_{D D}$ voltage to disable this function.

UNIPOLAR OUTPUT OPERATION

This is the basic mode of operation for the AD7392. The AD7392 is designed to drive loads as low as $5 \mathrm{k} \Omega$ in parallel with 100 pF (see Figure 32). The code table for this operation is shown in Table 7.

The circuit can be configured with an external reference plus power supply or powered from a single dedicated regulator or reference depending on the application performance requirements.

1. DIGITAL INTERFACE CIRCUITRY OMITTED FOR CLARITY

Figure 32. AD7392 Unipolar Output Operation
Table 7. Unipolar Code Table

DAC Register No.		
Hexadecimal	Decimal	Output Voltage (V), $\mathbf{V}_{\text {REF }}=\mathbf{2 . 5}$ V
0xFFF	4095	2.4994
0×801	2049	1.2506
0×800	2048	1.2500
$0 \times 7 \mathrm{FF}$	2047	1.2494
0×000	0	0

BIPOLAR OUTPUT OPERATION

Although the AD7393 is designed for single-supply operation, the output can be easily configured for bipolar operation. A typical circuit is shown in Figure 33. This circuit uses a clean, regulated 5 V supply for power, which also provides the circuit's reference voltage. Since the AD7393 output span swings from ground to very near 5 V , it is necessary to choose an external amplifier with a common-mode input voltage range that extends to its positive supply rail. The micropower consumption OP196 is designed just for this purpose and results in only $50 \mu \mathrm{~A}$ of maximum current consumption. Connecting the two $470 \mathrm{k} \Omega$ resistors results in a differential amplifier mode of operation with a voltage gain of 2 , which produces a circuit output span of 10 V , that is, -5 V to +5 V . As the DAC is programmed from zero-code 0×000 to midscale 0×200 to full scale 0×3 FF, the circuit output voltage, V_{O}, is set at $-5 \mathrm{~V}, 0 \mathrm{~V}$, and +5 V (minus 1 LSB). The output voltage, V_{O}, is coded in offset binary according to Equation 4.

$$
\begin{equation*}
V_{O}=\left[\frac{D}{512}-1\right] \times 5 \tag{4}
\end{equation*}
$$

where D is the decimal code loaded in the AD7393 DAC register.

Note that the LSB step size is $10 / 1024=10 \mathrm{mV}$. This circuit is optimized for micropower consumption including the $470 \mathrm{k} \Omega$ gain setting resistors, which should have low temperature coefficients to maintain accuracy and matching (preferably the same resistor material, such as metal film).
If better stability is required, the power supply may be substituted with a precision reference voltage such as the low dropout REF195, which can easily supply the circuit's $162 \mu \mathrm{~A}$ of current, and still provide additional power for the load connected to V_{O}. The micropower REF195 is guaranteed to source 10 mA output drive current, but consumes only $50 \mu \mathrm{~A}$ internally.

If higher resolution is required, the AD7392 can be used with two additional bits of data inserted into the software coding, which results in a 2.5 mV LSB step size. Table 8 shows examples of nominal output voltages $\left(\mathrm{V}_{\mathrm{O}}\right)$ provided by the bipolar operation circuit application.

Table 8. Bipolar Code Table

DAC Register No.		
Hexadecimal	Decimal	Analog Output Voltage (V)
0×3 FF	1023	+4.9902
0×201	513	+0.0097
0×200	512	0.0000
0×1 FF	511	-0.0097
0×000	0	-5.0000

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 34. 20-Lead Plastic Dual In-Line Package [PDIP]
(N -20)
Dimensions shown in inches and (millimeters)

AD7392/AD7393

ORDERING GUIDE

Model	Resolution (Bits)	Temperature Range	Package Description	Package Option
AD7392AN	12	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead PDIP	N-20
AD7392ANZ ${ }^{1}$	12	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead PDIP	N-20
AD7392AR	12	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead SOIC_W	RW-20
AD7392AR-REEL	12	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead SOIC_W	RW-20
AD7392ARZ ${ }^{1}$	12	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead SOIC_W	RW-20
AD7392ARZ-REEL ${ }^{1}$	12	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead SOIC_W	RW-20
AD7393AN	10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead PDIP	N-20
AD7393AR	10	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead SOIC_W	RW-20
AD7393ARZ ${ }^{1}$	10	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead SOIC_W	RW-20

[^2]
AD7392/AD7393

NOTES

NOTES

AD7392/AD7393

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
5962-8871903MYA 5962-8876601LA AD5311BRMZ-REEL7 AD664AJ AD7534JPZ TCC-103A-RT 057536E 5962-89657023A
702423BB TCC-202A-RT AD664BE TCC-303A-RT TCC-206A-RT AD5770RBCBZ-RL7 DAC8229FSZ-REEL AD5673RBCPZ-2
MCP48FVB24-20E/ST MCP48FVB28-E/MQ MCP48FEB18-20E/ST MCP48FEB18-E/MQ MCP48FEB24-E/MQ MCP47FVB04-20E/ST MCP48FEB28T-20E/ST MCP47FVB04T-E/MQ MCP48FEB28T-E/MQ MCP48FVB28T-20E/ST MCP47FVB28T-20E/ST MCP47FEB24TE/MQ MCP48FVB24T-E/MQ MCP48FVB18T-20E/ST MCP47FEB14T-E/MQ MCP48FVB14T-20E/ST MCP48FEB08T-E/MQ MCP47FEB08T-E/MQ MCP48FVB08T-20E/ST MCP48FEB04T-20E/ST MCP47FEB04T-E/MQ MCP48FVB04T-20E/ST MCP47FVB04T20E/ST MCP48CVB18-E/ML MCP48CVB08-E/ML MCP47CMB28-E/ML MCP48CMB18-E/ML MCP48CVB14-E/ML MCP48CMB04E/ML MCP48CMB08-E/ML MCP47CVB04-E/ML MCP47CMB14-E/ML MCP48CMB14-E/ML MCP48CVB28-20E/ST

[^0]: ${ }^{1}$ One LSB = V ${ }_{\text {REF }} / 4096$ V for the 12-bit AD7392.
 ${ }^{2}$ The first two codes ($0 \times 000,0 \times 001$) are excluded from the linearity error measurement.
 ${ }^{3}$ These parameters are guaranteed by design and not subject to production testing.
 ${ }^{4}$ Typicals represent average readings measured at $+25^{\circ} \mathrm{C}$.
 ${ }^{5}$ All input control signals are specified with $t_{R}=t_{F}=2 \mathrm{~ns}(10 \%$ to 90% of 13 V) and timed from a voltage level of 1.6 V .
 ${ }^{6}$ The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.

[^1]: ${ }^{1} \uparrow=$ Positive logic transition.
 ${ }^{2} \mathrm{X}=$ Don't care.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

