FEATURES
Latch-Proof
Overvoltage-Proof: $\pm \mathbf{2 5 V}$
Low Ron: 75Ω
Low Dissipation: 3mW
TTLCMOS Direct Interface
Silicon-Nitride Passivated
Monolithic Dielectrically-Isolated CMOS
Standard 14-16-Pin DIPs and
20-Terminal Surface Mount Packages
AD7510 and AD7512 are obsolete

DIP FUNCTIONAL DIAGRAMS

GENERAL DESCRIPTION

The AD7510DI, AD7511DI and AD7512DI are a family of latch proof dielectrically isolated CMOS switches featuring overvoltage protection up to $\pm 25 \mathrm{~V}$ above the power supplies. These benefits are obtained without sacrificing the low "ON" resistance (75Ω) or low leakage current (500 pA), the main features of an analog switch.
The AD7510DI and AD7511DI consist of four independent SPST analog switches packaged in either a 16 -pin DIP or a $20-$ terminal surface mount package. They differ only in that the digital control logic is inverted. The AD7512DI has two independent SPDT switches packaged either in a 14 -pin DIP or a 20-terminal surface mount package.
Very low power dissipation, overvoltage protection and TTL/ CMOS direct interfacing are achieved by combining a unique circuit design and a dielectrically isolated CMOS process. Silicon nitride passivation ensures long term stability while monolithic construction provides reliability.
The AD7510 and AD7512 are no longer available.

CONTROL LOGIC

AD7510DI: Switch "ON" for Address "HIGH"
AD7511DI: Switch "ON" for Address "LOW"
AD7512DI: Address "HIGH" makes S1 to Out 1 and S3 to Out 2

REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700
Fax: 617/326-8703 Twx: 710/394-6577
Telex: 924491
Cable: ANALOG NORWOODMASS
$\left(V_{D D}=+15 V, V_{S S}=-15 V\right.$, unless otherwise noted. $)$

INDUSTRIAL VERSION (K)

PARAMETER	MODEL	VERSION	$\begin{gathered} +25^{\circ} \mathrm{C} \\ (\mathrm{~N}, \mathrm{P}, \mathrm{Q}) \end{gathered}$	$\begin{array}{r} 0 \text { to }+70^{\circ} \mathrm{C}(\mathrm{~N}, \mathrm{P}) \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}(\mathrm{Q}) \end{array}$	TEST CONDITIONS
$\begin{aligned} & \text { ANALOG SWITCH } \\ & R_{\text {ON }} 1 \\ & R_{\mathrm{ON}} \text { vs } \mathrm{V}_{\mathrm{D}}\left(\mathrm{~V}_{\mathrm{S}}\right) \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	75Ω typ, $100 \Omega \max$ 20\% typ	175Ω max	$\begin{aligned} & -10 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{D}} \leqslant+10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{DS}}=1.0 \mathrm{~mA} \end{aligned}$
$\mathbf{R}_{\text {ON }}$ Drift $\mathbf{R}_{\text {ON }}$ Match $R_{0 N}$ Drift Match	All All All	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & +0.5 \% \%^{\circ} \mathrm{C} \text { typ } \\ & 1 \% \text { typ } \\ & 0.01 \%{ }^{\circ} \mathrm{C} \text { typ } \end{aligned}$		$\mathrm{V}_{\mathrm{D}}=0, \mathrm{I}_{\mathrm{DS}}=1.0 \mathrm{~mA}$
I_{D} ($\left.\mathrm{I}_{\text {S }}\right)_{\text {OFF }}{ }^{\text {1 }}$	All	K	$0.5 n A$ typ, $5 \mathrm{nA} \max$	500nA max	$\begin{aligned} & V_{D}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \text { and } \\ & \mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V} \end{aligned}$
I_{D} ($\mathrm{IS}^{\text {S }}$ ON ${ }^{\text {l }}$	All	K	10 nA max		$\begin{aligned} & V_{S}=V_{D}=+10 V \\ & V_{S}=V_{D}=-10 V \end{aligned}$
but ${ }^{1}$	AD7512DI	K	$15 n A \max$	1500nA max	$\begin{aligned} & V_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 2}=\mp 10 \mathrm{~V} \\ & \text { and } \mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1}=\mp 10 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { DIGITAL CONTROL } \\ & \mathrm{V}_{\mathbb{N L}^{1}} \mathrm{~V}_{\mathbb{N H}^{1}} \end{aligned}$	All	K		$\begin{aligned} & 0.8 \mathrm{~V} \max \\ & 2.4 \mathrm{~V} \min \end{aligned}$	
$\mathrm{C}_{\text {d }}$	All	K	7pF ryp		
$\begin{aligned} & \mathrm{I}_{\mathrm{NH}^{\prime}}{ }_{1}^{1} \\ & \mathrm{I}_{\mathbf{N} L} \end{aligned}$	All	K	$10 n A \max$ 10nA max		$\begin{aligned} & V_{\mathbf{D N}}=V_{D D} \\ & V_{\mathbf{D N}}=0 \end{aligned}$
DYNAMIC CHARACTERISTICS					
${ }^{t_{O N}}$ ${ }^{t}$ OFF	AD7510DI AD7511DI AD7510DI AD7511DI AD7512DI	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \\ & \mathbf{K} \\ & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	180ns typ 350ns typ 350ns typ 180ns typ 300ns typ		$\mathrm{V}_{\mathbf{N N}}=0$ to +3.0 V
TRANSITION	AD7512DI	K	300ns typ		
$\begin{aligned} & C_{S}\left(C_{D}\right) O F F \\ & C_{S}\left(C_{D}\right) O N \\ & C_{D S}\left(C_{S-O U T}\right) \\ & C_{D D}\left(C_{S S}\right) \\ & C_{\text {OUT }} \end{aligned}$	All All All All AD7512DI	$\begin{aligned} & \hline \mathbf{K} \\ & \mathbf{K} \\ & \mathbf{K} \\ & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & 8 \mathrm{pF} \text { typ } \\ & 17 \mathrm{pF} \text { typ } \\ & 1 \mathrm{pF} \text { typ } \\ & 0.5 \mathrm{pF} \text { typ } \\ & 17 \mathrm{pF} \text { typ } \end{aligned}$		$V_{D}\left(V_{S}\right)=0 \mathrm{~V}$
$Q_{\text {dJ }}$	All	\mathbf{K}	30pC typ		Measured at S or D terminal. $\begin{aligned} & C_{L}=1000 \mathrm{pF}, V_{\mathrm{IN}}=0 \text { to } 3 \mathrm{~V}, \\ & V_{\mathrm{D}}\left(V_{\mathrm{S}}\right)=+10 \mathrm{~V} \text { to }-10 \mathrm{~V} \end{aligned}$
POWER SUPPLY $\begin{aligned} & \mathrm{I}_{\mathrm{DD}}{ }^{1} \\ & \mathrm{~L}_{\mathrm{ss}}^{1} \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$800 \mu \mathrm{~A}$ max $800 \mu \mathrm{~A}$ max	$800 \mu \mathrm{~A}$ max $800 \mu \mathrm{~A}$ max	All digital inputs $=\mathbf{V}_{\mathbf{I N H}}$
$\begin{aligned} & \mathrm{I}_{\mathrm{DD}}^{1} \\ & \mathrm{I}_{\mathrm{SS}}{ }^{1} \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$500 \mu \mathrm{~A}$ max $500 \mu A \max$	$500 \mu \mathrm{~A}$ max $500 \mu \mathrm{~A}$ max	All digital inputs $=\mathbf{V}_{\mathbf{N N L}}$

NOTES
' 100% tested.
Specifications subject to change without notice.

PIN CONFIGURATIONS

EXTENDED VERSIONS (S, T)

PARAMETER	MODEL	VERSION	$+25^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TEST CONDITIONS
$\begin{aligned} & \text { ANALOG SWITCH } \\ & \mathrm{R}_{\mathrm{ON}}{ }^{1} \end{aligned}$	All	S, T	$100 \Omega \max$	175Ω max	$\begin{gathered} -10 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{D}} \leqslant+10 \mathrm{~V} \\ \mathrm{I}_{\mathrm{DS}}=1 \mathrm{~mA} \end{gathered}$
$\mathrm{I}_{\mathrm{D}}\left(\mathrm{I}_{\mathrm{S}}\right)_{\text {OFF }}{ }^{1}$	All	S, T	3 nA max	200nA max	$\begin{gathered} \mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \text { and } \\ \mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V} \end{gathered}$
$\mathrm{I}_{\mathrm{D}}\left(\mathrm{I}_{\mathrm{S}}\right) \mathrm{ON}^{1}$	All	S, T	10		$\begin{gathered} \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V} \text { and } \\ \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V} \end{gathered}$
$\mathrm{I}_{\text {OUT }}{ }^{1}$	AD7512DI	S, T	9 nA max	600 nA max	$\begin{aligned} & \mathrm{v}_{\mathrm{S} 1}=\mathrm{v}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S} 2}=\mp 10 \mathrm{~V} \text { and } \\ & \mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mp 10 \mathrm{~V} \\ & \hline \end{aligned}$
DIGITAL CONTROL $\mathrm{V}_{\mathrm{INL}}{ }^{1}$	All	S, T		0.8 V max	
$\mathrm{V}_{\mathrm{INH}}{ }^{1,2}$	AD7510DI AD7511DI AD7512DI AD7511DI AD7512DI	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~T} \\ & \mathrm{~T} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \hline \end{aligned}$		2.4 V min 2.4 V min 2.4 V min 3.0 V min 3.0 V min	.
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{NHH}}^{1} \\ & \mathrm{I}_{\mathrm{INL}} \end{aligned}$	All	S, T S, T	10nA max 10nA max		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \end{aligned}$

DYNAMIC
CHARACTERISTICS

tON^{3}	AD7510DI	S,	$1.0 \mu \mathrm{~s} \max$		$\mathrm{V}_{\mathrm{IN}}=0$ to +3 V
	AD7511DI	S, T	$1.0 \mu \mathrm{~s}$ max		
toFF 3	AD7510DI	S, T	$1.0 \mu \mathrm{~s} \max$		
	AD7511DI	S, T	$1.0 \mu \mathrm{~s} \max$		
$\mathrm{t}_{\text {TRANSITION }}{ }^{3}$	AD7512DI	S, T	$1.0 \mu \mathrm{~s} \max$		
POWER SUPPLY					
$\mathrm{I}_{\mathrm{DD}}{ }^{1}$	All	S, T		$800 \mu \mathrm{~A}$ max	All digital inputs $=\mathrm{V}_{\mathrm{INH}}$
$\mathrm{I}_{\mathrm{SS}}{ }^{1}$	All	S, T		$800 \mu \mathrm{~A}$ max	
	All	$\mathrm{S}, \mathrm{~T}$		$500 \mu \mathrm{~A} \max$	All digital inputs $=\mathrm{V}_{\mathrm{INL}}$
$\mathrm{I}_{\mathrm{SS}}{ }^{1}$	All	S, T		$500 \mu \mathrm{~A} \max$	

NOTES

${ }^{1} 100 \%$ tested.
${ }^{2}$ A pullup resistor, typically $1-2 \mathrm{k} \Omega$ is required to make AD7511DISQ and AD7512DISQ TTL compatible.
${ }^{3}$ Guaranteed, not production tested.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

V ${ }_{\text {DD }}$ to GND . +17 V
V ${ }_{\text {SS }}$ to GND . - 17V
Overvoltage at $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$
(1 second surge) $V_{D D}+25 V$ or $\mathrm{V}_{\mathrm{SS}}-25 \mathrm{~V}$
(Continuous) V $V_{D D}+20 \mathrm{~V}$ or $\mathrm{V}_{\text {SS }}-20 \mathrm{~V}$ or 20 mA , Whichever Occurs First
Switch Current (I_{DS}, Continuous) 50 mA
Switch Current (I_{DS}, Surge)
1ms Duration, 10\% Duty Cycle 150 mA
Digital Input Voltage Range 0 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation (Any Package)
Up to $+75^{\circ} \mathrm{C}$. 450 mW
Derates above $+75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature
Commercial (KN, KP Versions) 0 to $+70^{\circ} \mathrm{C}$ Industrial (KQ Versions) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Extended (SQ, TQ, SE, TE Versions) . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

Figure 1. Typical Output Switch Circuitry of AD7510DI Series

CIRCUIT DESCRIPTION

CMOS devices make excellent analog switches; however, problems with overvoltage and latch-up phenomenon necessitated protection circuitry. These protection circuits, however, either caused degradation of important switch parameters such as R_{ON} or leakage, or provided only limited protection in the event of overvoltage.
The AD7510DI series switches utilize a dielectrically isolated CMOS fabrication process to eliminate the four-layer substrate found in junction-isolated CMOS, thus providing latch-free operation.
A typical switch channel is shown in Figure 2. The output switching element is comprised of device numbers 4 and 5. Operation is as follows: for an "ON" switch, (in +) is $V_{D D}$ and (in -) is $V_{\text {SS }}$ from the driver circuits. Device numbers 1 and 2 are "OFF" and number 3 in "ON". Hence, the backgates of the P - and N-channel output devices (numbers 4 and 5) are tied together and floating. The circled devices are located in separate dielectrically isolated pockets. Floating the output switch backgates with the signal input increases the effective threshold voltage for an applied analog signal, thus providing a flatter $R_{o N}$ versus $\mathrm{V}_{\mathbf{S}}$ response.
For an "OFF" switch, device number 3 is "OFF," and the backgates of devices 4 and 5 are tied through $1 \mathrm{k} \Omega$ resistors (R1 and R2) to the respective supply voltages through the "ON" devices 1 and 2.
If a voltage is applied to the S or D (OUT) terminal which exceeds $V_{D D}$ or $V_{S S}$, the S - or D-to-backgate diode is forward biased; however, R1 and R2 provide current limiting action to the supplies.
An equivalent circuit of the output switch element in Figure 3 shows that, indeed, the $1 \mathrm{k} \Omega$ limiting resistors are in series with the backgates of the P- and N-channel output devices - not in series with the signal path between the S and D terminals.

It is possible to turn on an "OFF" switch by applying a voltage in excess of $V_{D D}$ or $V_{S S}$ to the S or D terminal. If a positive stress voltage is applied to the S or D terminal which exceeds V_{DD} by a threshold, then the P-channel (device 5) will turn on creating a low impedance path between the S and D terminals. A similar situation exists for negative stress voltages which exceed $V_{\text {SS }}$. In this case the N -channel provides the low impedance path between the S and D terminals. The limiting factor on the overvoltage protection is the power dissipation of the package and is $\pm 20 \mathrm{~V}$ continuous (or 20 mA whichever occurs first) above the supply voltages.

Figure 2. AD7510DI Series Output Switch Diode Equivalent Circuit

RON as a Function of $V_{D}\left(V_{S}\right)$

RON as a Function of $V_{D}\left(V_{S}\right)$

Is. (ID)OFF vs V_{S}

${ }^{\text {t }}$ transition as a Function of Digital Input Voltage

ton, toff as a Function of Temperature

tTRANSITION as a Function of Temperature

AD7510DI, AD7511DI TEST CIRCUIT

Switching Waveforms for
$V_{S 1}=-10 \mathrm{~V}, V_{S 2}=+10 \mathrm{~V}, R_{L}=1 \mathrm{k}$

$0.5 \mu \mathrm{~s} / \mathrm{DIV}$

Switching Waveforms for
$V_{S 1}$ and $V_{S 2}=O V, R_{L}=\infty$
$0.5 \mu \mathrm{~s} / \mathrm{DIV}$

Switching Waveforms for
$V_{S 1}=+10 \mathrm{~V}, V_{S 2}=-10 \mathrm{~V}, R_{L}=\infty$
$0.5 \mu \mathrm{~s} / \mathrm{DIV}$

Switching Waveforms for
$V_{S 1}$ and $V_{S 2}=$ Open, $R_{L}=1 k$

AD7512DI TEST CIRCUIT

TERMINOLOGY

RoN	Ohmic resistance between terminals D and S .	$\mathrm{C}_{\mathrm{DD}}\left(\mathrm{C}_{s s}\right)$
R_{ON} Drift Match	Difference between the R $_{\text {ON }}$ drift of any two switches.	
$\mathrm{R}_{\text {ON }}$ Match	Difference between the R_{ON} of any two switches.	$t_{\text {ON }}$
$\mathrm{I}_{\mathrm{D}}\left(\mathrm{I}_{\text {S }}\right)_{\text {OFF }}$	Current at terminals D or S. This is a leakage current when the switch is "OFF".	toff
$\mathrm{I}_{\mathrm{D}}\left(\mathrm{I}_{\text {S }}\right)_{\text {ON }}$	Leakage current that flows from the closed switch into the body. (This leakage will show up as the difference between the current I_{D} going into the switch and the outgoing current I_{S}.)	transition $\mathrm{V}_{\text {INL }}$ $\mathrm{V}_{\text {INH }}$ $\mathrm{I}_{\mathrm{INL}}\left(\mathrm{I}_{\mathrm{INH}}\right)$
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminal D(S).	$\mathrm{C}_{\text {IN }}$
$\mathrm{C}_{S}\left(\mathrm{C}_{\mathrm{D}}\right)$	Capacitance between terminal $S(D)$ and ground. (This capacitance is specified for the switch open and closed.)	V_{DD}
$C_{\text {DS }}$	Capacitance between terminals D and S . (This will determine the switch isolation over frequency.)	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{SS}} \end{aligned}$

$\mathrm{C}_{\text {DD }}\left(\mathrm{C}_{S S}\right)$	Capacitance between terminals $D(S)$ of any two switches. (This will determine the cross coupling between switches vs. frequency.)
ton	Delay time between the 50% points of the digital input and switch "ON" condition.
toff	Delay time between the 50% points of the digital input and switch "OFF" condition.
trransition	Delay time when switching from one address state to another.
$\mathrm{V}_{\text {INL }}$	Maximum input voltage for a logic low.
$\mathrm{V}_{\text {INH }}$	Minimum input voltage for a logic high.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$	Input current of the digital input.
C_{IN}	Input capacitance to ground of the digital input.
$\mathrm{V}_{\text {DD }}$	Most positive voltage supply.
$\mathrm{V}_{\text {SS }}$	Most negative voltage supply.
I_{DD}	Positive supply current.
$\mathrm{I}_{\text {SS }}$	Negative supply current.

OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 3. 16-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-16)
Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-001-BB
Figure 4. 16-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
(N -16)
Dimensions shown in inches
ORDERING GUIDE

Model ${ }^{1,2}$	Temperature Range	Package Description	Package Option
AD7511DIJN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 -Lead Plastic Dual In-Line Package [PDIP]	$\mathrm{N}-16$
AD7511DIJNZ	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package [PDIP]	$\mathrm{N}-16$
AD7511DIKNZ	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package [PDIP]	$\mathrm{N}-16$
AD7511DIKQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Ceramic Dual In-Line Package [CERDIP]	$\mathrm{Q}-16$
AD7511DISQ/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Ceramic Dual In-Line Package [CERDIP]	$\mathrm{Q}-16$

AD7511

REVISION HISTORY

12/2016-Rev. A to Rev. B
Added AD7510 and AD7512 Obsolete Note 1
Updated Outline Dimensions ... 9
Changes to Ordering Guide... 9

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

