AD7568

FEATURES

Eight 12-Bit DACs in One Package
4-Quadrant Multiplication
Separate References
Single +5 V Supply
Low Power: 1 mW
Versatile Serial Interface
Simultaneous Update Capability
Reset Function
44-Pin PQFP and PLCC

APPLICATIONS
 Process Control
 Automatic Test Equipment
 General Purpose Instrumentation

GENERAL DESCRIPTION

The AD 7568 contains eight 12-bit DACs in one monolithic device. The DACs are standard current output with separate $\mathrm{V}_{\mathrm{REF}}$, $I_{\text {OUT } 1}, I_{\text {OUT } 2}$ and $R_{\text {FB }}$ terminals.
The AD 7568 is a serial input device. D ata is loaded using FSIN, CLKIN and SDIN. One address pin, A0, sets up a device address, and this feature may be used to simplify device loading in a multi-D AC environment.
All D ACs can be simultaneously updated using the asynchronous $\overline{\text { LDAC }}$ input and they can be cleared by asserting the asynchronous $\overline{\mathrm{CLR}}$ input.
The AD 7568 is housed in a space-saving 44-pin plastic quad flatpack and 44-lead PLCC.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

REV. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Plastic Leaded Chip Carrier

AD7568-SPECIFICATIONS1 ${ }^{\left(V_{D D}=+4.75 \mathrm{~V} \text { to }+5.25 \mathrm{~V} ; \mathrm{I}_{\text {OUT1 }}=I_{\text {OUT2 }}=0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=+5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }}, ~(1)\right.}$ unless otherwise noted)

Parameter	AD7568B ${ }^{2}$	Units	Test Conditions/Comments
```ACCURACY Resolution Relative A ccuracy Differential Nonlinearity Gain Error \(+25^{\circ} \mathrm{C}\) \(T_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\) G ain Temperature Coefficient Output Leakage Current lout 1 @ \(+25^{\circ} \mathrm{C}\) \(\mathrm{T}_{\text {MIN }}\) to \(\mathrm{T}_{\text {max }}\)```	$\begin{aligned} & 12 \\ & \pm 0.5 \\ & \pm 0.9 \\ & \pm 4 \\ & \pm 4 \\ & \pm 5 \\ & 2 \\ & 5 \\ & \\ & 10 \\ & 200 \end{aligned}$	Bits   LSB max   LSB max   LSBs max LSBs max ppm FSR $/{ }^{\circ} \mathrm{C}$ typ ppm FSR/ ${ }^{\circ} \mathrm{C}$ max   nA max nA max	$1 \mathrm{LSB}=\mathrm{V}_{\text {REF }} / 2^{12}=1.22 \mathrm{mV} \text { when } \mathrm{V}_{\text {REF }}=5 \mathrm{~V}$   All G rades G uaranteed M onotonic over T emperature   See Terminology Section
REFERENCE INPUT   Input Resistance Ladder Resistance M ismatch	$\begin{aligned} & 9 \\ & 2 \end{aligned}$	$k \Omega$ min   $k \Omega$ max   \% max	Typical Input Resistance $=7 \mathrm{k} \Omega$ T ypically $0.6 \%$
DIGITAL INPUTS   $V_{\text {INH }}$, Input High Voltage   $V_{\text {INL }}$, Input Low Voltage   $I_{\text {INH }}$, Input Current   $\mathrm{C}_{\text {IN }}$, Input C apacitance	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & 10 \end{aligned}$	$V$ min   $\checkmark$ max   $\mu \mathrm{A}$ max   pF max	
POWER REQUIREMENTS   $V_{D D}$ Range Power Supply Sensitivity $\Delta G$ ain $/ \Delta V_{D D}$ $I_{D D}$	$\begin{aligned} & 4.75 / 5.25 \\ & -75 \\ & 300 \\ & 3.5 \end{aligned}$	$\mathrm{V} \min / \mathrm{V}$ max   dB typ   $\mu \mathrm{A}$ max   mA max	$\begin{aligned} & \mathrm{V}_{\text {INH }}=4.0 \mathrm{~V} \text { min, } \mathrm{V}_{\text {INL }}=0.4 \mathrm{~V} \text { max } \\ & \mathrm{V}_{\text {INH }}=2.4 \mathrm{Vmin}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V} \text { max } \end{aligned}$

## AC PERFORMANCE CHARACTERISTICS ${ }_{\text {(these characteristics are included for Design Guidance and are not subject }}$

Parameter	AD7568B ${ }^{\text {2 }}$	Units	Test Conditions/Comments
DYNAMIC PERFORMANCE   Output Voltage Settling Time	500	ns typ	To $0.01 \%$ of Full-Scale Range. DAC Latch Alternately Loaded with All 0 s and All 1s.
D igital to Analog G litch Impulse	40	nV -s typ	$M$ easured with $\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$. DAC Register Alternately Loaded with All 0 s and All 1 s .
M ultiplying F eedthrough Error	-66	dB max	$\mathrm{V}_{\text {Ref }}=20 \mathrm{~V} \mathrm{pk}-\mathrm{pk}, 10 \mathrm{kHz}$ Sine Wave. DAC Latch Loaded with All 0s.
Output C apacitance	60	pF max	All 1s Loaded to DAC
	30	pF max	All 0 s Loaded to DAC.
Channel-to-Channel Isolation	-76	dB typ	Feedthrough from Any One Reference to the Others with $20 \mathrm{~V} \mathrm{pk}-\mathrm{pk}, 10 \mathrm{kHz}$ Sine W ave Applied.
Digital Crosstalk	40	nV-s typ	Effect of all 0 s to all 1s Code T ransition on N onselected DACs.
D igital F eedthrough	40	nV -s typ	Feedthrough to Any DAC Output with $\overline{\text { FSIN }} \mathrm{H}$ igh and Square Wave Applied to SDIN and SCLK.
T otal H armonic Distortion	-83	dB typ	$\mathrm{V}_{\text {REF }}=6 \mathrm{~V} \mathrm{rms}, 1 \mathrm{kHz}$ Sine Wave.
Output Noise Spectral Density $\text { @ } 1 \text { kH z }$	20	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	All 1s Loaded to the DAC. $\mathrm{V}_{\text {ReF }}=0 \mathrm{~V}$. Output Op Amp is AD OP07.

## NOTES

${ }^{1} \mathrm{~T}$ emperature range as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ All specifications also apply for $\mathrm{V}_{\text {REF }}=+10 \mathrm{~V}$, except relative accuracy which degrades to $\pm 1 \mathrm{LSB}$.
Specifications subject to change without notice.

TIMING SPECIFICATIONS $V_{\text {vo }}=+5 v \pm 5 \% ; l_{\text {lown }}=l_{\text {our }}=0 V_{i} T_{A}=T_{\text {mun }}$ o $0 T_{\text {mex }}$ unless otherwise noted)

Parameter	Limit at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Limit at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	Units	Description
$\mathrm{t}_{1}$	100	100	ns min	CLKIN Cycle Time
$\mathrm{t}_{2}$	40	40	$n s$ min	CLKIN High Time
$\mathrm{t}_{3}$	40	40	$n s$ min	CLKIN Low Time
$\mathrm{t}_{4}$	30	30	$n s$ min	$\overline{\text { FSIN Setup Time }}$
$\mathrm{t}_{5}$	30	30	$n s$ min	D ata Setup Time
$\mathrm{t}_{6}$	5	5	$n s$ min	D ata H old T ime
$\mathrm{t}_{7}$	90	90	$n s$ min	$\overline{\text { FSIN }} \mathrm{H}$ old T ime
$\mathrm{t}_{8}{ }^{2}$	70	70	ns max	SDOUT Valid After CLKIN Falling Edge
$\mathrm{t}_{9}$	40	40	ns min	$\overline{\text { LDAC, }}$ CLR Pulse Width

## NOTES

${ }^{1}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance. All input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}(10 \%$ to $90 \%$ of 5 V$)$ and timed from a voltage level of 1.6 V .
${ }^{2} \mathrm{t}_{8}$ is measured with the load circuit of Figure 2 and defined as the time required for the output to cross 0.8 V or 2.4 V .


Figure 1. Timing Diagram


Figure 2. Load Circuit for Digital Output Timing Specifications

## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Parameter	Rating
$V_{D D}$ to DGND	-0.3 V to +6 V
louti to DGND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
lout2 to DGND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Input Voltage to DGND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {RFB, }} \mathrm{V}_{\text {REF }}$ to DGND	$\pm 15 \mathrm{~V}$
Input Current to Any Pin Except Supplies ${ }^{1}$	$\pm 10 \mathrm{~mA}$
Operating Temperature Range	
Commercial Plastic (B Versions)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )	$300^{\circ} \mathrm{C}$
Power Dissipation (Any Package) to $75^{\circ} \mathrm{C}$	250 mW
Derates above $75^{\circ} \mathrm{C}$ by	$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

${ }^{1}$ Transient currents of up to 100 mA will not cause SCR latch-up.

## PIN DESCRIPTION

Mnemonic	Description
$V_{D D}$	Positive Power Supply. This is $5 \mathrm{~V} \pm 5 \%$.
DGND	Digital Ground.
AGND	Analog Ground
$\mathrm{V}_{\text {ReFA }}$ to $\mathrm{V}_{\text {ReF }}$	DAC Reference Inputs.
Rfba to Rfbr	DAC Feedback Resistor Pins.
louta to louth	DAC Current Output Terminals.
AGND	This pin connects to the back gates of the current steering switches. It should be connected to the signal ground of the system.
CLKIN	Clock Input. Data is clocked into the input shift register on the falling edges of CLKIN. Add a pull-down resistor on the clock line to avoid timing issues.
$\overline{\text { FSIN }}$	Level-Triggered Control Input (Active Low). This is the frame synchronization signal for the input data. When $\overline{\text { FSIN }}$ goes low, it enables the input shift register, and data is transferred on the falling edges of CLKIN. If the address bit is valid, the 12-bit DAC data is transferred to the appropriate input latch on the sixteenth falling edge after $\overline{\mathrm{FSIN}}$ goes low.
SDIN	Serial Data Input. The device accepts a 16 -bit word. The first bit (DB15) is the DAC MSB, with the remaining bits following. Next comes the device address bit, A0. If this does not correspond to the logic level on Pin A0, the data is ignored. Finally comes the three DAC select bits. These determine which DAC in the device is selected for loading.
SDOUT	This shift register output allows multiple devices to be connected in a daisy-chain configuration.
A0	Device Address Pin. This input gives the device an address. If DB3 of the serial input stream does not correspond to this, the data that follows is ignored and not loaded to any input latch. However, it will appear at SDOUT irrespective of this.
$\overline{\text { LDAC }}$	Asynchronous $\overline{\text { LDAC }}$ Input. When this input is taken low, all DAC latches are simultaneously updated with the contents of the input latches.
$\overline{\mathrm{CLR}}$	Asynchronous $\overline{\mathrm{CLR}}$ Input. When this input is taken low, all DAC latch outputs go to zero.

## TERMINOLOGY

## Relative Accuracy

Relative Accuracy or endpoint linearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero error and full-scale error and is normally expressed in Least Significant Bits or as a percentage or full-scale reading.

## Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of 1 LSB maximum ensures monotonicity.

## Gain Error

G ain Error is a measure of the output error between an ideal DAC and the actual device output. It is measured with all 1 s in the DAC after offset error has been adjusted out and is expressed in Least Significant Bits. G ain error is adjustable to zero with an external potentiometer.

## Output Leakage Current

O utput leakage current is current which flows in the DAC ladder switches when these are turned off. F or the I lout 1 terminal, it can be measured by loading all 0 s to the D AC and measuring the $I_{\text {OUT } 1}$ current. M inimum current will flow in the I OUT2 line when the DAC is loaded with all 1s. This is a combination of the switch leakage current and the ladder termination resistor current. The lout2 leakage current is typically equal to that in lout 1.

## Output Capacitance

This is the capacitance from the $\mathrm{I}_{\text {OUT } 1}$ pin to $A G N D$.

## Output Voltage Settling Time

This is the amount of time it takes for the output to settle to a specified level for a full-scale input change. For the AD 7568, it is specified with the AD843 as the output op amp.

## Digital to Analog Glitch Impulse

This is the amount of charge injected into the analog output when the inputs change state. It is normally specified as the area of the glitch in either pA -secs or nV -secs, depending upon whether the glitch is measured as a current or voltage signal. It is measured with the reference input connected to AGND and the digital inputs toggled between all 1 s and all 0 s .

## AC Feedthrough Error

This is the error due to capacitive feedthrough from the DAC reference input to the DAC IOUT terminal, when all Os are loaded in the DAC.

## Channel-to-C hannel Isolation

Channel-to-channel isolation refers to the proportion of input signal from one DAC's reference input which appears at the output of any other DAC in the device and is expressed in dBs.

## Digital Crosstalk

The glitch impulse transferred to the output of one converter due to a change in digital input code to the other converter is defined as the Digital C rosstalk and is specified in nV-secs.

## Digital Feedthrough

When the device is not selected, high frequency logic activity on the device digital inputs is capacitively coupled through the device to show up as noise on the $I_{\text {Out }}$ pin and subsequently on the op amp output. This noise is digital feedthrough.

Table I. AD7568 Loading Sequence
DB 15
DBO

D B11	D B10	D B 9	D B 8	D B 7	D B6	D B5	D B4	D B3	D B2	D B1	D B0	A0	D S2	D S1	D S0

Table II. DAC Selection

DS2	DS1	DS0	Function
0	0	0	DAC A Selected
0	0	1	DAC B Selected
0	1	0	D AC C Selected
0	1	1	D AC D Selected
1	0	0	D AC E Sclected
1	0	1	DAC F Selected
1	1	0	DAC G Sclected
1	1	1	DAC H Selected



Figure 3. Supply Current vs. Logic Input Voltage


Figure 6. Integral Nonlinearity Error vs. $V_{\text {REF }}$


Figure 9. Digital-to-Analog Glitch Impulse


Figure 4. Supply Current vs. Temperature


Figure 7. Typical DAC to DAC Linearity Matching


Figure 10. Channel-to-Channel Isolation (1 DAC to 1 DAC)


Figure 5. Differential Nonlinearity Error vs. VREF


Figure 8. Total Harmonic Distortion vs. Frequency


Figure 11. Channel-to-Channel Isolation (1 DAC to All Other DACs)


Figure 12. Multiplying Frequency Response vs. Digital Code

## GENERAL DESCRIPTION

## D/A Section

The AD 7568 contains eight 12-bit current-output D/A converters. A simplified circuit diagram for one of the $D / A$ converters is shown in Figure 13.
A segmented scheme is used whereby the 2 M SBs of the 12-bit data word are decoded to drive the three switches A, B and C. The remaining 10 bits of the data word drive the switches SO to S9 in a standard R-2R ladder configuration.
E ach of the switches $A$ to $C$ steers $1 / 4$ of the total reference current with the remaining current passing through the $R-2 R$ section.
Each DAC in the device has separate $\mathrm{V}_{\text {REF }}, I_{\text {OUT } 1}, I_{\text {OUT } 2}$ and $R_{F B}$ pins. This makes the device extremely versatile and allows DAC s in the same device to be configured differently.
When an output amplifier is connected in the standard configuration of Figure 15, the output voltage is given by:

$$
V_{\text {OUT }}=-D \cdot V_{\text {REF }}
$$

where $D$ is the fractional representation of the digital word loaded to the DAC. Thus, in the AD 7568, D can be set from 0 to 4095/4096.


Figure 13. Simplified D/A Circuit Diagram

## Interface Section

The AD 7568 is a serial input device. T hree lines control the serial interface, $\overline{\text { FSIN }}$, CLKIN and SDIN. T he timing diagram is shown in Figure 1.
When the $\overline{\text { FSIN }}$ input goes low, data appearing on the SDIN line is clocked into the input shift register on each falling edge of CLKIN. When sixteen bits have been received, the register loading is automatically disabled until the next falling edge of $\overline{\text { FSIN }}$ detected. Also, the received data is clocked out on the next rising edge of CLKIN and appears on the SD OUT pin. This feature allows several devices to be connected together in a daisy chain fashion.
When the sixteen bits have been received in the input shift register, DB3 (A0) is checked to see if it corresponds to the state of pin A0. If it does, then the word is accepted. Otherwise, it is disregarded. This allows the user to address one of two AD 7568s in a very simple fashion. D B0 to D B2 of the 16-bit word determine which of the eight $D A C$ input latches is to be loaded. When the $\overline{\text { LDAC }}$ line goes low, all eight D AC latches in the device are simultaneously loaded with the contents of their respective input latches, and the outputs change accordingly.
Bringing the $\overline{C L R}$ line low resets the DAC latches to all Os. The input latches are not affected, so that the user can revert to the previous analog output if desired.


Figure 14. Input Logic

## AD7568

## UNIPOLAR BINARY OPERATION

## (2-Quadrant Multiplication)

Figure 15 shows the standard unipolar binary connection diagram for one of the DAC s in the AD 7568. When $\mathrm{V}_{\text {IN }}$ is an ac signal, the circuit performs 2-quadrant multiplication. Resistors R1 and R2 allow the user to adjust the D AC gain error. Offset can be removed by adjusting the output amplifier offset voltage.
A1 should be chosen to suit the application. For example, the AD OP07 or OP177 are ideal for very low bandwidth applications while the AD 843 and AD 845 offer very fast settling time in wide bandwidth applications. Appropriate multiple versions of these amplifiers can be used with the AD 7568 to reduce board space requirements.
The code table for Figure 15 is shown in T able III.


Figure 15. Unipolar Binary Operation
Table III. Unipolar Binary Code Table

Digital Input   MSB........LSB	Analog Output   (V ${ }_{\text {OUT }}$ As Shown in Figure 15)
111111111111	$-V_{\text {REF }}(4095 / 4096)$
100000000001	$-V_{\text {REF }}(2049 / 4096)$
100000000000	$-V_{\text {REF }}(2048 / 4096)$
011111111111	$-V_{\text {REF }}(2047 / 4096)$
000000000001	$-V_{\text {REF }}(1 / 4096)$
000000000000	$-V_{\text {REF }}(0 / 4096)=0$

## NOTE

N ominal LSB size for the circuit of Figure 15 is given by:
$V_{\text {Ref }}(1 / 4096)$.

## BIPOLAR OPERATION

## (4-Quadrant Multiplication)

Figure 16 shows the standard connection diagram for bipolar operation of any one of the DACs in the AD 7568. The coding is offset binary as shown in T able IV. When $\mathrm{V}_{\text {IN }}$ is an ac signal, the circuit performs 4-quadrant multiplication. To maintain the gain error specifications, resistors R 3, R4 and R5 should be ratio matched to $0.01 \%$.


1. ONLY ONE DAC IS SHOWN FOR CLARITY.
2. DIGITAL INPUT CONNECTIONS ARE OMITTED.
3. C1 PHASE COMPENSATION ( $5-15 p F$ ) MAY BE REQUIRED WHEN USING HIGH SPEED AMPLIFIER, A1.

Figure 16. Bipolar Operation (4-Quadrant Multiplication)
Table IV. Bipolar (Offset Binary) Code Table

Digital Input   MSB $\ldots .$.	Analog Output   (V
111111111111	$+V_{\text {REF }}(2047 / 2048)$
100000000001	$+V_{\text {REF }}(1 / 2048)$
100000000000	$+V_{\text {REF }}(0 / 2048)=0$
011111111111	$-V_{\text {REF }}(1 / 2048)$
000000000001	$-V_{\text {REF }}(2047 / 2048)$
000000000000	$-V_{\text {REF }}(2048 / 2048)=-V_{\text {REF }}$

## NOTE

N ominal LSB size for the circuit of Figure 16 is given by: $V_{\text {Ref }}(1 / 2048)$.

## SINGLE SUPPLY CIRCUITS

The AD 7568 operates from a single +5 V supply, and this makes it ideal for single supply systems. When operating in such a system, it is not possible to use the standard circuits of Figures 15 and 16 since these invert the analog input, $\mathrm{V}_{\text {IN }}$. T here are two alternatives. One of these continues to operate the DAC as a current-mode device, while the other uses the voltage switching mode.


1. ONLY ONE DAC IS SHOWN FOR CLARITY. 2. DIGITAL INPUT CONNECTIONS ARE OMITTED.
2. C1 PHASE COMPENSATION (5-15pF) MAY BE REQUIRED WHEN USING HIGH SPEED AMPLIFIER, A1.

Figure 17. Single Supply Current-Mode Operation

## Current Mode Circuit

In the current mode circuit of Figure $17, I_{\text {OUT } 2}$, and hence Iout 1, is biased positive by an amount $\mathrm{V}_{\text {BIAS. }}$. For the circuit to operate correctly, the DAC Iadder termination resistor must be connected internally to $\mathrm{I}_{\text {OUT2 }}$. This is the case with the AD 7568. The output voltage is given by:

$$
\mathrm{V}_{\text {OUT }}=\left\{\mathrm{D} \frac{\mathrm{R}_{\mathrm{FB}}}{\mathrm{R}_{\mathrm{DAC}}}\left(\mathrm{~V}_{\text {BIAS }}-\mathrm{V}_{\text {IN }}\right)\right\}+\mathrm{V}_{\text {BIAS }}
$$

As D varies from 0 to 4095/4096, the output voltage varies from $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {BIAS }}$ to $\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {BIAS }}-\mathrm{V}_{\text {IN }}$. $\mathrm{V}_{\text {BIAS }}$ should be a low impedance source capable of sinking and sourcing all possible variations in current at the I IUT 2 terminal without any problems.

## Voltage Mode Circuit

Figure 18 shows D AC A of the AD 7568 operating in the voltage-switching mode. The reference voltage, $\mathrm{V}_{\text {IN }}$ is applied to the $I_{\text {OUT1 }}$ pin, $I_{\text {OUT2 }}$ is connected to AGND and the output voltage is available at the $\mathrm{V}_{\text {REF }}$ terminal. In this configuration, a positive reference voltage results in a positive output voltage making single supply operation possible. The output from the DAC is a voltage at a constant impedance (the D AC ladder resistance). Thus, an op amp is necessary to buffer the output voltage. T he reference voltage input no longer sees a constant input impedance, but one which varies with code. So, the voltage input should be driven from a low impedance source.
It is important to note that $\mathrm{V}_{\text {IN }}$ is limited to low voltages because the switches in the DAC no longer have the same sourcedrain voltage. As a result, their on-resistance differs and this degrades the integral linearity of the DAC. Also, $\mathrm{V}_{\text {IN }}$ must not go negative by more than 0.3 volts or an internal diode will turn on, causing possible damage to the device. This means that the full-range multiplying capability of the DAC is lost.


NOTES

1) ONLY ONE DAC IS SHOWN FOR CLARITY. 2) DIGITAL INPUT CONNECTIONS ARE OMITTED.
2) C1 PHASE COMPENSATION (5-15pF) MAY BE

REQUIRED WHEN USING HIGH SPEED AMPLIFIER, A1.
Figure 18. Single Supply Voltage Switching Mode Operation

## APPLICATIONS

## Programmable State Variable Filter

The AD 7568 with its multiplying capability and fast settling time is ideal for many types of signal conditioning applications. The circuit of Figure 19 shows its use in a state variable filter design. This type of filter has three outputs: low pass, high pass and bandpass. The particular version shown in F igure 19 uses one half of an AD 7568 to control the critical parameters $f_{0}, Q$ and $A_{0}$. Instead of several fixed resistors, the circuit uses the DAC equivalent resistances as circuit elements. Thus, R1 in Figure 19 is controlled by the 12-bit digital word loaded to DAC A of the AD 7568. This is also the case with R2, R3 and $R 4$. The fixed resistor $R 5$ is the feedback resistor, $R_{F B} B$.

$$
\text { DAC Equivalent Resistance, } R_{E Q}=\left(R_{\text {LADDER }} \times 4096\right) / \mathrm{N}
$$

where:
$\mathrm{R}_{\text {LADDER }}$ is the DAC ladder resistance.
$N$ is the DAC Digital Code in Decimal ( $0<N<4096$ ).


Figure 19. Programmable 2nd Order State Variable Filter

In the circuit of $F$ igure 19:
$C 1=C 2, R 7=R 8, R 3=R 4$ (i.e., the same code is loaded to each DAC).
Resonant frequency, $f_{0}=1 /(2 \pi R 3 C 1)$.
Quality F actor, $Q=(R 6 / R 8) \cdot(R 2 / R 5)$.
Bandpass Gain, A0 $=-R 2 / R 1$.
$U$ sing the values shown in Figure 19, the Q range is 0.3 to 5 , and the $\mathrm{f}_{0}$ range is 0 to 12 kHz .

## APPLICATION HINTS

## Output Offset

CM OS D/A converters in circuits such as Figures 15, 16 and 17 exhibit a code dependent output resistance which in turn can cause a code dependent error voltage at the output of the amplifier. T he maximum amplitude of this error, which adds to the $D / A$ converter nonlinearity, depends on $V_{O S}$, where $V_{O S}$ is the amplifier input offset voltage. F or the AD 7568 to maintain specified accuracy with $\mathrm{V}_{\text {REF }}$ at 10 V , it is recommended that $\mathrm{V}_{\text {OS }}$ be no greater than $500 \mu \mathrm{~V}$, or $\left(50 \times 10^{-6}\right) \cdot\left(\mathrm{V}_{\text {REF }}\right)$, over the temperature range of operation. Suitable amplifiers include the AD OP07, AD OP27, OP177, AD 711, AD 845 or multiple versions of these.

## Temperature Coefficients

The gain temperature coefficient of the AD 7568 has a maximum value of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and a typical value of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. T his corresponds to gain shifts of 2 LSBs and 0.8 LSBs respectively over a $100^{\circ} \mathrm{C}$ temperature range. When trim resistors R1 and R2 are used to adjust full-scale in Figures 15 and 16, their temperature coefficients should be taken into account. F or further information see "G ain Error and G ain T emperature C oefficient of CM OS M ultiplying DAC s," Application N ote, Publication N umber E630c-5-3/86, available from Analog D evices.

## High Frequency Considerations

The output capacitances of the AD 7568 DAC s work in conjunction with the amplifier feedback resistance to add a pole to the open loop response. This can cause ringing or oscillation. Stability can be restored by adding a phase compensation capacitor in parallel with the feedback resistor. T his is shown as C1 in Figures 15, 16 and 17.

## MICROPROCESSOR INTERFACING AD 7568-80C51 Interface

A serial interface between the AD 7568 and the 80C 51 microcontroller is shown in Figure 20. TXD of the 80C 51 drives SCLK of the AD 7568 while RXD drives the serial data line of the part. The $\overline{F S I N}$ signal is derived from the port line P3.3.
The 80C 51 provides the LSB of its SBU F register as the first bit in the serial data stream. T herefore, the user will have to ensure that the data in the SBU F register is arranged correctly so that
the data word transmitted to the AD 7568 corresponds to the loading sequence shown in T able I. When data is to be transmitted to the part, P3.3 is taken low. D ata on RXD is valid on the falling edge of TXD. The 80C 51 transmits its serial data in 8 -bit bytes with only eight falling clock edges occurring in the transmit cycle. To load data to the AD 7568, P3.3 is left low after the first eight bits are transferred, and a second byte of data is then transferred serially to the AD 7568. When the second serial transfer is complete, the P 3.3 line is taken high. N ote that the 80C 51 outputs the serial data byte in a format which has the LSB first. T he AD 7568 expects the M SB first. T he 80C 51 transmit routine should take this into account.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 20. AD7568 to 80C51 Interface
$\overline{\mathrm{LDAC}}$ and $\overline{\mathrm{CLR}}$ on the AD 7568 are also controlled by 80C 51 port outputs. The user can bring $\overline{\text { LDAC }}$ low after every two bytes have been transmitted to update the DAC which has been programmed. Alternatively, it is possible to wait until all the input registers have been loaded (sixteen byte transmits) and then update the DAC outputs.

## AD 7568-68HC 11 Interface

Figure 21 shows a serial interface between the AD 7568 and the 68 H C 11 microcontroller. SCK of the 68 H C 11 drives SCLK of the AD 7568, while the M OSI output drives the serial data line of the AD 7568. The $\overline{\text { FSIN }}$ signal is derived from a port line (PC7 shown).
F or correct operation of this interface, the 68 HC 11 should be configured such that its CPOL bit is a 0 and its CPHA bit is a 1. When data is to be transmitted to the part, PC7 is taken low. When the 68 HC 11 is configured like this, data on M OSI is valid on the falling edge of SCK. T he 68 HC 11 transmits its serial data in 8-bit bytes (M SB first), with only eight falling clock edges occurring in the transmit cycle. To load data to the AD 7568, PC 7 is left low after the first eight bits are transferred, and a second byte of data is then transferred serially to the AD 7568. When the second serial transfer is complete, the PC 7 line is taken high.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 21. AD7568 to 68HC11 Interface
In Figure 21, $\overline{\mathrm{LDAC}}$ and $\overline{\mathrm{CLR}}$ are controlled by the PC 6 and PC5 port outputs. As with the 80 C 51 , each DAC of the AD 7568 can be updated after each two-byte transfer, or else all DAC $s$ can be simultaneously updated.

## AD7568-ADSP-2101 Interface

Figure 22 shows a serial interface between the AD 7568 and the ADSP-2101 digital signal processor. The ADSP-2101 may be set up to operate in the SPORT T ransmit N ormal Internal Framing M ode. The following ADSP-2101 conditions are recommended: Internal SCLK ; Active High F raming Signal; 16-bit word length. T ransmission is initiated by writing a word to the TX register after the SPORT has been enabled. The data is then clocked out on every rising edge of SCLK after TFS goes low. TFS stays low until the next data transfer.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 22. AD7568 to ADSP-2101 Interface

## AD7568-TMS320C 25 Interface

Figure 23 shows an interface circuit for the TM S320C 25 digital signal processor. The data on the DX pin is clocked out of the processor's T ransmit Shift Register by the CLKX signal. Sixteen-bit transmit format should be chosen by setting the FO bit in the ST 1 register to 0 . The transmit operation begins when data is written into the data transmit register of the TM S320C 25. T his data will be transmitted when the FSX line goes low while CLKX is high or going high. The data, starting

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 23. AD7568 to TMS320C25 Interface
with the MSB, is then shifted out to the $D X$ pin on the rising edge of CLKX. When all bits have been transmitted, the user can update the DAC outputs by bringing the XF output flag low.

## Multiple DAC Systems

If there are only two AD 7568s in a system, there is a simple way of programming each. This is shown in Figure 24. If the user wishes to program one of the DACs in the first AD 7568 , then DB3 of the serial bit stream should be set to 0 , to correspond to the state of the AO pin on that device. If the user wishes to program a DAC in the second AD 7568, then DB3 should be set to 1 , to correspond to AO on that device.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 24. Interfacing ADSP-2101 to Two AD7568s

## AD7568

For systems which contain larger numbers of AD 7568s and where the user also wishes to read back the DAC contents for diagnostic purposes, the SDOUT pin may be used to daisy chain several devices together and provide the necessary serial readback. An example with the 68HC 11 is shown in Figure 25. The routine below shows how four AD 7568s would be programmed in such a system. D ata is transmitted at the M OSI pin of the 68 H C 11. It flows through the input shift registers of the AD 7568s and finally appears at the SDOUT pin of DAC N. So, the readback routine can be invoked any time after the first four words have been transmitted (the four input shift registers in the chain will now be filled up and further activity on the CLKIN pin will result in data being read back to the microcomputer through the M ISO pin). System connectivity can be verified in this manner. For a four-device system (32 DACs) a two-line to four-line decoder is necessary.
N ote that to program the 32 DAC s, 35 transmit operations are needed. In the routine, three words must be retransmitted. The first word for DACs \#3, \#2 and \#1 must be transmitted twice in order to synchronize their arrival at the SDIN pin with AO going low.

## Table V. Routine for Loading 4 AD 7568s Connected As in Figure 25

## Bring PC7 ( $\overline{\mathrm{FSIN}}$ ) low to allow writing to the AD 7568 s .

E nable AD 7568 \#4 (Bring A0 low). Disable the others. T ransmit 1st 16-bit word: D ata for DAC H, \#4
....
T ransmit 9th 16-bit word: D ata for DAC H, \#3
Transmit 9th 16-bit word again: D ata for DAC H, \#3
T ransmit 10th 16-bit word: D ata for DAC G, \#3
T ransmit 11th 16-bit word: D ata for DAC F, \#3
Enable AD 7568 \#3, D isable the others.
T ransmit 12th 16-bit word: D ata for DAC E, \#3
....
T ransmit 17th 16-bit word: D ata for DAC H, \#2
T ransmit 17th 16-bit word again: D ata for DAC H, \#2
T ransmit 18th 16-bit word: D ata for DAC G, \#2
Enable AD 7568 \#2, D isable the others.
T ransmit 19th 16-bit word: D ata for DAC F, \#2

T ransmit 25th word: D ata for DAC H, \#1
Enable AD 7568 \#1, D isable the others.
T ransmit 25th word again: D ata for DAC H, \#1
T ransmit 26th word: D ata for DAC G, \#1
....
....
Transmit 32nd word: D ata for DAC A, \#1
Bring PC 7 ( $\overline{\text { FSIN }}$ ) high to disable writing to the AD 7568s.


Figure 25. Multi-DAC System

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MO-047-AC CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 26. 44-Lead Plastic Leaded Chip Carrier [PLCC]
(P-44)
Dimensions shown in inches and (millimeters)


Figure 27. 44-Lead Metric Quad Flat Package [MQFP] (S-44-2)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Linearity Error (LSBs)	Package Description	Package Option
AD7568BP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	44 -Lead Plastic Leaded Chip Carrier [PLCC]	P-44
AD7568BP-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	44 -Lead Plastic Leaded Chip Carrier [PLCC]	P-44
AD7568BPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	44 -Lead Plastic Leaded Chip Carrier [PLCC]	P-44
AD7568BPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	44 -Lead Plastic Leaded Chip Carrier [PLCC]	P-44
AD7568BSZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	44 -Lead Metric Quad Flat Package [MQFP]	S-44-2
AD7568BSZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	44 -Lead Metric Quad Flat Package [MQFP]	S-44-2

[^0]AD7568
REVISION HISTORY
2/12—Rev. B to Rev. C
Changes to CLR Description, Pin Description Table .....  4
Updated Outline Dimensions ..... 13
Changes to Ordering Guide ..... 13
Added Revision History Section ..... 14

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
5962-8871903MYA 5962-8876601LA AD5311BRMZ-REEL7 AD664AJ AD7534JPZ TCC-103A-RT 057536E 5962-89657023A
702423BB TCC-202A-RT AD664BE TCC-303A-RT TCC-206A-RT AD5770RBCBZ-RL7 DAC8229FSZ-REEL AD5673RBCPZ-2 MCP48FVB28-E/MQ MCP48FEB18-20E/ST MCP48FEB18-E/MQ MCP48FEB24-E/MQ MCP48FEB28T-20E/ST MCP47FVB04T-E/MQ MCP48FEB28T-E/MQ MCP48FVB28T-20E/ST MCP47FVB28T-20E/ST MCP47FEB24T-E/MQ MCP48FVB24T-E/MQ MCP48FVB18T20E/ST MCP47FEB14T-E/MQ MCP48FVB14T-20E/ST MCP48FEB08T-E/MQ MCP47FEB08T-E/MQ MCP48FVB08T-20E/ST MCP48FEB04T-20E/ST MCP47FEB04T-E/MQ MCP48FVB04T-20E/ST MCP47FVB04T-20E/ST AD7524JRZ-REEL LTC1664CGN MCP47DA1T-A1E/OT UC3910D DAC39J84IAAV DAC8218SPAG DAC8562TDGSR MAX545BCPD+ MAX531BCPD+ $\underline{\text { DAC7641YB/250 DAC7611PB DAC1282IPWR DAC0800LCM }}$


[^0]:    ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part

