FEATURES

Up to 23 effective bits
RMS noise: $\mathbf{4 0}$ nV @ $4.17 \mathrm{~Hz}, \mathbf{8 5}$ nV @ $\mathbf{1 6 . 7} \mathbf{~ H z}$
Current: $\mathbf{4 0 0} \mu \mathrm{A}$ typical
Power-down: 1μ A maximum
Low noise, programmable gain, instrumentation amp
Band gap reference with 4 ppm $/{ }^{\circ} \mathrm{C}$ drift typical
Update rate: 4.17 Hz to 470 Hz
Six differential analog inputs
Internal clock oscillator
Simultaneous 50 Hz/60 Hz rejection
Reference detect
Programmable current sources
On-chip bias voltage generator
Burnout currents
Low-side power switch
Power supply: 2.7 V to 5.25 V
Temperature range:
B grade: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
C grade: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Independent interface power supply
24-lead TSSOP
3-wire serial interface
SPI ${ }^{\oplus}$, QSPI ${ }^{\text {™ }}$, MICROWIRE ${ }^{\text {™ }}$, and DSP compatible
Schmitt trigger on SCLK

APPLICATIONS

Temperature measurement
Pressure measurement
Weigh scales
Strain gage transducers
Gas analysis

Industrial process control Instrumentation
 Blood analysis
 Smart transmitters
 Liquid/gas chromatography
 6-digit DVM
 GENERAL DESCRIPTION

The AD7794/AD7795 are low power, low noise, complete analog front ends for high precision measurement applications. They contain a low noise, 24-/16-bit \sum - Δ ADC with six differential inputs. The on-chip low noise instrumentation amplifier means that signals of small amplitude can be interfaced directly to the ADC.

Each device contains a precision, low noise, low drift internal band gap reference, and can also accept up to two external differential references. Other on-chip features include programmable excitation current sources, burnout currents, and a bias voltage generator that is used to set the commonmode voltage of a channel to $\mathrm{AV} V_{\mathrm{DD}} / 2$. The low-side power switch can be used to power down bridge sensors between conversions, minimizing the system's power consumption. The AD7794/AD7795 can operate with either an internal clock or an external clock. The output data rate from each part can vary from 4.17 Hz to 470 Hz .

Both parts operate with a power supply from 2.7 V to 5.25 V . The B-grade parts (AD7794 and AD7795) are specified for a temperature range of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ while the C-grade part (AD7794) is specified for a temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. They consume a current of $400 \mu \mathrm{~A}$ typical and are housed in a 24 -lead TSSOP.

Figure 1.
Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD7794/AD7795

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Timing Characteristics 8
Timing Diagrams 9
Absolute Maximum Ratings 10
ESD Caution 10
Pin Configuration and Function Descriptions 11
RMS Noise and Resolution Specifications 13
Chop Enabled 13
Chop Disabled 15
Typical Performance Characteristics 16
On-Chip Registers 17
Communications Register 17
Status Register 18
Mode Register 19
Configuration Register 22
Data Register 24
ID Register 24
IO Register 24
Offset Register 25
REVISION HISTORY
3/07—Rev. C to Rev. D
Changes to Specifications Endnote 1 7
Changes to Status Register Section 18
Changes to Ordering Guide 36
10/06-Rev. B to Rev. C
Updated Format Universal
Added AD7794 C-Grade Part Universal
Changes to Specifications 3
Changes to Ordering Guide 36
6/06-Rev. A to Rev. B
Added AD7795 Universal
Changes to Features 1
Changes to Table 1 3
Changes to RMS Noise and Resolution Specifications Section 12
Changes to Table 19 20
Changes to ADC Circuit Information Section 25
Changes to Ordering Guide 35

4/05—Rev. 0 to Rev. A

Changes to Absolute Maximum Ratings 9
Changes to Figure 21.. 25

Changes to Ordering Guide ... 33

10/04—Revision 0: Initial VersionChanges to Figure 215

Changes to Data Output Coding Section.................................. 28

Changes to Calibration Section ... 30
Changes to Calibration Section33
10/04—Revision 0: Initial Version
Full-Scale Register 25
ADC Circuit Information 26
Overview 26
Digital Interface 28
Circuit Description 31
Analog Input Channel 31
Instrumentation Amplifier 31
Bipolar/Unipolar Configuration 31
Data Output Coding 32
Burnout Currents 32
Excitation Currents 32
Bias Voltage Generator 32
Reference 32
Reference Detect 33
Reset 33
AV ${ }_{\text {DD }}$ Monitor 33
Calibration 33
Grounding and Layout 34
Applications Information 35
Flowmeter 35
Outline Dimensions 36
Ordering Guide 36

SPECIFICATIONS

$\mathrm{AV}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{DV} \mathrm{DD}=2.7 \mathrm{~V}$ to 5.25 V , $\mathrm{GND}=0 \mathrm{~V}$, all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 1.

AD7794/AD7795

Parameter ${ }^{1}$	AD7794/AD7795	Unit	Test Conditions/Comments
Normal Mode Rejection ${ }^{2,6}$			
Internal Clock			
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	60	$d B$ min	70 dB typ, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1010$
@ 50 Hz	78	dB min	90 dB typ, $50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1001$
@ 60 Hz	86	dB min	100 dB typ, $60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1000$
External Clock			
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	60	$d B$ min	70 dB typ, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1010$
@ 50 Hz	94	dB min	100 dB typ, $50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1001$
@ 60 Hz	90	$d B$ min	100 dB typ, $60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1000$
Common-Mode Rejection			
AD7794B/AD7795B			
@ DC	100	$d B$ min	AIN $=1 \mathrm{~V} /$ gain, with gain $=4, \mathrm{AMP}-\mathrm{CM}$ Bit $=1$
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	100	$d B$ min	$50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1010$
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	100	$d B$ min	$50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1001 ; 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1000$
AD7794C			
@ DC	97	$d B$ min	AIN $=1 \mathrm{~V} /$ gain, with gain $=4, \mathrm{AMP}-\mathrm{CM}$ Bit $=1$
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	97	$d B$ min	$50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1010$
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	97	$d B$ min	$50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1001 ; 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1000$
CHOP ENABLED or DISABLED			
REFERENCE INPUT			
Internal Reference			
Internal Reference Initial Accuracy	$1.17 \pm 0.01 \%$	V min/max	$A V_{D D}=4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Internal Reference Drift ${ }^{2}$	4	ppm $/{ }^{\circ} \mathrm{C}$ typ	
	15	ppm/ ${ }^{\circ} \mathrm{C}$ max	
Power Supply Rejection	85	dB typ	
External Reference			
External REFIN Voltage	2.5	\checkmark nom	REFIN $=$ REFIN (+) - REFIN(-)
Reference Voltage Range ${ }^{2}$	0.1	\checkmark min	
	AV ${ }_{\text {DD }}$	V max	When $\mathrm{V}_{\text {REF }}=A V_{\text {DD }}$, the differential input must be limited to $0.9 \times \mathrm{V}_{\text {REF }} /$ gain if the in-amp is active
Absolute REFIN Voltage Limits ${ }^{2}$	GND - 30 mV	V min	
	$\mathrm{AV}_{\mathrm{DD}}+30 \mathrm{mV}$	V max	
Average Reference Input Current	Current		
Average Reference Input Current Drift	± 0.03	nA/V/ ${ }^{\circ} \mathrm{C}$ typ	
Normal Mode Rejection ${ }^{2}$			Same as for analog inputs
Common-Mode Rejection	100	dB typ	
Reference Detect Levels	0.3	V min	
	0.65	\checkmark max	NOXREF bit active if $\mathrm{V}_{\text {REF }}<0.3 \mathrm{~V}$
EXCITATION CURRENT SOURCES			
Output Current	10/210/1000	$\mu \mathrm{A}$ nom	
Initial Tolerance at $25^{\circ} \mathrm{C}$	± 5	\% typ	
Drift	200	ppm/ $/{ }^{\circ} \mathrm{C}$ typ	
Current Matching	± 0.5	\% typ	Matching between IEXC1 and IEXC2, Vout $=0 \mathrm{~V}$
Drift Matching	50	ppm/ ${ }^{\circ} \mathrm{C}$ typ	
Line Regulation ($\mathrm{AV}_{\mathrm{DD}}$)	2	\%/V typ	$A V_{D D}=5 \mathrm{~V} \pm 5 \%$
Load Regulation Output Compliance	0.2	\%/V typ	
	AV $\mathrm{DD}^{\text {- }} 0.65$	\checkmark max	Current sources programmed to $10 \mu \mathrm{~A}$ or $210 \mu \mathrm{~A}$
	$\mathrm{AV}_{\mathrm{DD}}-1.1$	V max	Current sources programmed to 1 mA
	GND - 30 mV	V min	

AD7794/AD7795

Parameter ${ }^{1}$	AD7794/AD7795	Unit	Test Conditions/Comments
BIAS VOLTAGE GENERATOR $V_{\text {bias }}$ $V_{\text {BIAS }}$ Generator Start-Up Time	$\mathrm{AV}_{\mathrm{DD}} / 2$	V nom $\mathrm{ms} / \mathrm{nF}$ typ	Dependent on the capacitance connected to AIN; See Figure 11
TEMPERATURE SENSOR Accuracy Sensitivity	$\begin{aligned} & \pm 2 \\ & 0.81 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \text { typ } \\ & \mathrm{mV} /{ }^{\circ} \mathrm{C} \text { typ } \end{aligned}$	Applies if user calibrates the temperature sensor
LOW-SIDE POWER SWITCH Ron Allowable Current ${ }^{2}$	$\begin{aligned} & 7 \\ & 9 \\ & 30 \end{aligned}$	Ω max Ω max mA max	$\begin{aligned} & A V_{D D}=5 \mathrm{~V} \\ & A V_{D D}=3 \mathrm{~V} \\ & \text { Continuous current } \end{aligned}$
DIGITAL OUTPUTS (P1 and P2) Vон, Output High Voltage ${ }^{2}$ Vol, Output Low Voltage ${ }^{2}$ Vон, Output High Voltage ${ }^{2}$ Vol, Output Low Voltage ${ }^{2}$	$\begin{aligned} & \mathrm{AV} \mathrm{~V}_{\mathrm{DD}}-0.6 \\ & 0.4 \\ & 4 \\ & 0.4 \end{aligned}$	V min \checkmark max V min V max	
	$\begin{aligned} & 64 \pm 3 \% \\ & 50: 50 \\ & 64 \\ & 45: 55 \text { to } 55: 45 \end{aligned}$	kHz min/max \% typ kHz nom \% typ	A 128 kHz external clock can be used if the divide-by-2 function is used (Bit CLK1 = CLKO = 1) Applies for external 64 kHz clock, a 128 kHz clock can have a less stringent duty cycle
LOGIC INPUTS $\overline{\mathrm{CS}^{2}}$			
VINL, Input Low Voltage $\mathrm{V}_{\mathbf{I n}}$, Input High Voltage SCLK (Schmitt-Triggered Input), CLK, and DIN ${ }^{2}$ AD7794B/AD7795B	$\begin{aligned} & 0.8 \\ & 0.4 \\ & 2.0 \end{aligned}$	V max \checkmark max V min	$\begin{aligned} & D V_{D D}=5 \mathrm{~V} \\ & D V_{D D}=3 \mathrm{~V} \\ & D V_{D D}=3 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{T}}(+)$	1.4/2	\checkmark min/max	DV $\mathrm{DD}_{\text {d }}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(-)$	0.8/1.7	\checkmark min/max	$D V_{D D}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$ to $\mathrm{V}_{\mathrm{T}}(-)$	0.1/0.17	\checkmark min/max	$D V_{D D}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$	0.9/2	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
$\mathrm{V}_{\text {T }}(-)$	0.4/1.35	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$ to $\mathrm{V}_{\mathrm{T}}(-)$	0.06/0.13	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
AD7794C			
$\mathrm{V}_{\mathrm{T}}(+)$	1.35/2.05	\checkmark min/max	$D V_{D D}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(-)$	0.8/1.9	\checkmark min/max	$D V_{D D}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$ to $\mathrm{V}_{\mathrm{T}}(-)$	0.1/0.19	\checkmark min/max	$D V_{D D}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$	0.9/2	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(-)$	0.4/1.35	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$ to $\mathrm{V}_{\mathrm{T}}(-)$	0.06/0.15	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
Input Currents	± 10	$\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{IN}}=\mathrm{DV} \mathrm{V}_{\text {d }}$ or GND
Input Capacitance	10	pF typ	All digital inputs

Parameter ${ }^{1}$	AD7794/AD7795	Unit	Test Conditions/Comments
LOGIC OUTPUT (INCLUDING CLK) $V_{\text {он, }}$ Output High Voltage ${ }^{2}$ VoL, Output Low Voltage ${ }^{2}$ V $_{\text {он, Output High Voltage }}{ }^{2}$ Vol, Output Low Voltage ${ }^{2}$ Floating-State Leakage Current Floating-State Output Capacitance Data Output Coding	$\begin{aligned} & \text { DV } V_{D D}-0.6 \\ & 0.4 \\ & 4 \\ & 0.4 \\ & \pm 10 \\ & 10 \\ & \text { Offset binary } \\ & \hline \end{aligned}$	\vee min V max V min V max $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{DV}_{\text {DD }}=3 \mathrm{~V}, \mathrm{I}_{\text {SOURCE }}=100 \mu \mathrm{~A} \\ & \mathrm{DV}_{D D}=3 \mathrm{~V}, \mathrm{I}_{\text {IINK }}=100 \mu \mathrm{~A} \\ & D V_{D D}=5 \mathrm{~V} \text { I IOURCE }=200 \mu \mathrm{~A} \\ & D V_{D D}=5 \mathrm{~V}, \mathrm{I}_{\text {SIIKK }}=1.6 \mathrm{~mA}(\mathrm{DOUT} / \overline{\mathrm{RDY}}), 800 \mu \mathrm{~A}(\mathrm{CLK}) \end{aligned}$
SYSTEM CALIBRATION ${ }^{2}$ Full-Scale Calibration Limit Zero-Scale Calibration Limit Input Span	$\begin{aligned} & 1.05 \times \text { FS } \\ & -1.05 \times F S \\ & 0.8 \times \mathrm{FS} \\ & 2.1 \times \mathrm{FS} \end{aligned}$	\checkmark max V min V min V max	
POWER REQUIREMENTS ${ }^{7}$ Power Supply Voltage AV ${ }_{\text {do }}$ to GND DV ${ }_{\text {DD }}$ to GND Power Supply Currents IdD Current IDD (Power-Down Mode)	$\begin{aligned} & 2.7 / 5.25 \\ & 2.7 / 5.25 \\ & 140 \\ & 185 \\ & 400 \\ & 500 \\ & 1 \\ & 2 \end{aligned}$	\checkmark min/max V min/max $\mu \mathrm{A}$ max	$110 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 125 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, unbuffered mode, external reference $130 \mu \mathrm{~A}$ typ @ AV DD $=3 \mathrm{~V}, 165 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, buffered mode, gain $=1$ or 2 , external reference $300 \mu \mathrm{~A}$ typ @ AV DD $=3 \mathrm{~V}, 350 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{DD}_{\mathrm{DD}}=5 \mathrm{~V}$, gain $=4$ to 128 , external reference $400 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{VD}_{\mathrm{DD}}=3 \mathrm{~V}, 450 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{VD}_{\mathrm{DD}}=5 \mathrm{~V}$, gain $=4$ to 128 , internal reference AD7794B, AD7795B AD7794C

[^0]
AD7794/AD7795

TIMING CHARACTERISTICS

$\mathrm{AV}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{DV} \mathrm{DD}=2.7 \mathrm{~V}$ to 5.25 V, $\mathrm{GND}=0 \mathrm{~V}$, Input Logic $0=0 \mathrm{~V}$, Input Logic $1=\mathrm{DV} \mathrm{VD}_{\mathrm{D}}$, unless otherwise noted.
Table 2.

Parameter ${ }^{1,2}$	Limit at $\mathrm{T}_{\text {min }}, \mathrm{T}_{\text {max }}$ (B Version)	Unit	Conditions/Comments
t_{3}	100	ns min	SCLK high pulse width
t_{4}	100	$n \mathrm{n}$ min	SCLK low pulse width
Read Operation			
t_{1}	0	$n \mathrm{n}$ min	CS falling edge to DOUT/RDY active time
	60	ns max	DV $\mathrm{DD}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	$D V_{D D}=2.7 \mathrm{~V}$ to 3.6 V
$\mathrm{t}_{2}{ }^{3}$	0	$n \mathrm{~ns}$ min	SCLK active edge to data valid delay ${ }^{4}$
	60	ns max	$\mathrm{DV}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	$D V_{D D}=2.7 \mathrm{~V}$ to 3.6 V
$t_{5}{ }^{5,6}$	10	$n \mathrm{n}$ min	Bus relinquish time after $\overline{\mathrm{CS}}$ inactive edge
	80	ns max	
t_{6}	0	$n \mathrm{~ns}$ min	SCLK inactive edge to $\overline{C S}$ inactive edge
t_{7}	10	$n \mathrm{~ns}$ min	SCLK inactive edge to DOUT/ $\overline{\text { RDY }}$ high
Write Operation			
t_{8}	0	$n \mathrm{~ns}$ min	$\overline{C S}$ falling edge to SCLK active edge setup time ${ }^{4}$
t_{9}	30	$n \mathrm{~ns}$ min	Data valid to SCLK edge setup time
t_{10}	25	ns min	Data valid to SCLK edge hold time
t_{11}	0	ns min	$\overline{C S}$ rising edge to SCLK edge hold time

${ }^{1}$ Sample tested during initial release to ensure compliance. All input signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=5 \mathrm{~ns}(10 \%$ to 90% of DV VD) and timed from a voltage level of 1.6 V .
${ }^{2}$ See Figure 3 and Figure 4.
${ }^{3}$ These numbers are measured with the load circuit shown in Figure 2 and defined as the time required for the output to cross the Vol or $V_{\text {OH }}$ limits.
${ }^{4}$ SCLK active edge is falling edge of SCLK.
${ }^{5}$ These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit shown in Figure 2 . The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus relinquish times of the part and, therefore, are independent of external bus loading capacitances.
${ }^{6} \overline{\mathrm{RDY}}$ returns high after a read of the ADC. In single conversion mode and continuous conversion mode, the same data can be read again, if required, while $\overline{\mathrm{RDY}}$ is high, although care should be taken to ensure that subsequent reads do not occur close to the next output update. In continuous read mode, the digital word can be read only once.

Figure 2. Load Circuit for Timing Characterization

TIMING DIAGRAMS

Figure 3. Read Cycle Timing Diagram

Figure 4. Write Cycle Timing Diagram

AD7194/AD7795

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
AV ${ }_{D D}$ to GND	-0.3 V to +7 V
DV V_{DD} to GND	-0.3 V to +7 V
Analog Input Voltage to GND	-0.3 V to AV DD +0.3 V
Reference Input Voltage to GND	-0.3 V to $\mathrm{AV} V_{D D}+0.3 \mathrm{~V}$
Digital Input Voltage to GND	-0.3 V to $\mathrm{DV} \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Output Voltage to GND	-0.3 V to $\mathrm{DV}+0.3 \mathrm{~V}$
AIN/Digital Input Current	10 mA
Operating Temperature Range	
B Grade	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
C Grade	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP	
$\quad \theta_{\mathrm{JA}}$ Thermal Impedance	$97.9^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc} Thermal Impedance	$14^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
\quad Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	SCLK	Serial Clock Input. This serial clock input is for data transfers to and from the ADC. The SCLK has a Schmitttriggered input, making the interface suitable for opto-isolated applications. The serial clock can be continuous with all data transmitted in a continuous train of pulses. Alternatively, it can be a noncontinuous clock with the information being transmitted to or from the ADC in smaller batches of data.
2	CLK	Clock In/Clock Out. The internal clock can be made available at this pin. Alternatively, the internal clock can be disabled, and the ADC can be driven by an external clock. This allows several ADCs to be driven from a common clock, allowing simultaneous conversions to be performed.
3	$\overline{C S}$	Chip Select Input. This is an active low logic input used to select the ADC. $\overline{C S}$ can be used to select the ADC in systems with more than one device on the serial bus or as a frame synchronization signal in communicating with the device. $\overline{C S}$ can be hardwired low, allowing the ADC to operate in 3-wire mode with SCLK, DIN, and DOUT used to interface with the device.
4	NC	No Connect.
5	AIN6(+)/P1	Analog Input/Digital Output Pin. AIN6(+) is the positive terminal of the differential analog input pair, AIN6(+)/AIN6(-). This pin can also function as a general-purpose output bit referenced between $A V_{D D}$ and GND.
6	AIN6(-)/P2	Analog Input/Digital Output Pin. AIN6(-) is the negative terminal of the differential analog input pair, AIN6(+)/AIN6(-). This pin can also function as a general-purpose output bit referenced between $\mathrm{AV}_{\mathrm{DD}}$ and $G N D$.
7	AIN1 (+)	Analog Input. AIN1 (+) is the positive terminal of the differential analog input pair, $\operatorname{AIN1} 1+$ //AIN1(-).
8	AIN1(-)	Analog Input. AIN1 (-) is the negative terminal of the differential analog input pair, $\operatorname{AIN1}(+) / \operatorname{AIN} 1(-)$.
9	AIN2(+)	Analog Input. AIN2(+) is the positive terminal of the differential analog input pair, AIN2(+)/AIN2(-).
10	AIN2(-)	Analog Input. AIN2(-) is the negative terminal of the differential analog input pair, AIN2(+)/AIN2(-).
11	AIN3(+)	Analog Input. AIN3(+) is the positive terminal of the differential analog input pair, AIN3(+)/AIN3(-).
12	AIN3(-)	Analog Input. AIN3(-) is the negative terminal of the differential analog input pair, AIN3(+)/AIN3(-).
13	REFIN1(+)	Positive Reference Input. An external reference can be applied between REFIN1(+) and REFIN1(-). REFIN1(+) can lie anywhere between $A V_{D D}$ and GND + 0.1 V. The nominal reference voltage, (REFIN1(+) - REFIN1(-)), is 2.5 V , but the part functions with a reference from 0.1 V to AV D.
14	REFIN1(-)	Negative Reference Input. This reference input can lie anywhere between GND and $A V_{D D}-0.1 \mathrm{~V}$.
15	AIN5(+)/IOUT2	Analog Input/Output of Internal Excitation Current Source. AIN5(+) is the positive terminal of the differential analog input pair AIN5(+)/AIN5(-). Alternatively, the internal excitation current source can be made available at this pin and is programmable so that the current can be $10 \mu \mathrm{~A}, 210 \mu \mathrm{~A}$, or 1 mA . Either IEXC1 or IEXC2 can be switched to this output.
16	AIN5(-)/IOUT1	Analog Input/Output of Internal Excitation Current Source. AIN5(-) is the negative terminal of the differential analog input pair, AIN5(+)/AIN5(-). Alternatively, the internal excitation current source can be made available at this pin and is programmable so that the current can be $10 \mu \mathrm{~A}, 210 \mu \mathrm{~A}$, or 1 mA . Either IEXC1 or IEXC2 can be switched to this output.
17	AIN4(+)/REFIN2(+)	Analog Input/Positive Reference Input. AIN4(+) is the positive terminal of the differential analog input pair AIN4(+)/AIN4(-). This pin also functions as a positive reference input for REFIN2. REFIN2(+) can lie anywhere between $A V_{D D}$ and GND +0.1 V . The nominal reference voltage (REFIN2(+) to REFIN2(-)) is 2.5 V , but the part functions with a reference from 0.1 V to $\mathrm{AV}_{\mathrm{DD}}$.

Pin No.	Mnemonic	Description
18	AIN4(-)/REFIN2(-)	Analog Input/Negative Reference Input. AIN4(-) is the negative terminal of the differential analog input pair AIN4(+)/AIN4(-). This pin also functions as the negative reference input for REFIN2. This reference input can lie anywhere between GND and $A V_{D D}-0.1 \mathrm{~V}$.
19	PSW	Low-Side Power Switch to GND.
20	GND	Ground Reference Point.
21	$\mathrm{AV}_{\mathrm{DD}}$	Supply Voltage, 2.7 V to 5.25V.
22	DV ${ }_{\text {DD }}$	Serial Interface Supply Voltage, 2.7 V to 5.25 V . DV DD is independent of $A V_{D D}$. Therefore, the serial interface operates at 3 V with AV DD at 5 V or vice versa.
23	DOUT/ $\overline{\text { RDY }}$	Serial Data Output/Data Ready Output. DOUT/ $\overline{\operatorname{RDY}}$ serves a dual purpose. It functions as a serial data output pin to access the output shift register of the ADC. The output shift register can contain data from any of the on-chip data or control registers. In addition, DOUT/RDY operates as a data ready pin, going low to indicate the completion of a conversion. If the data is not read after the conversion, the pin goes high before the next update occurs. The DOUT/RDY falling edge can also be used as an interrupt to a processor, indicating that valid data is available. With an external serial clock, the data can be read using the DOUT/RDY pin. With valid on the SCLK rising edge.
24	DIN	Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the control registers within the ADC with the register selection bits of the communications register identifying the appropriate register.

RMS NOISE AND RESOLUTION SPECIFICATIONS

The AD7794/AD7795 can be operated with chop enabled or chop disabled, allowing the ADC to be optimized for switching time or drift performance. With chop enabled, the settling time is two times the conversion time. However, the offset is continuously removed by the ADC leading to low offset and low offset drift. With chop disabled, the allowable update rates are the same as in chop enable mode. However, the settling time now equals the conversion time. With chop disabled, the offset is not removed by the ADC, so periodic offset calibrations can be required to remove offset due to drift.

CHOP ENABLED

 External ReferenceTable 5 shows the AD7794/AD7795 rms noise for some update rates and gain settings. The numbers given are for the bipolar input range with an external 2.5 V reference. These numbers are typical and are generated with a differential input voltage of 0 V .

Table 6 and Table 7 show the effective resolution, while the output peak-to-peak ($\mathrm{p}-\mathrm{p}$) resolution is listed in brackets. It is important to note that the effective resolution is calculated using the rms noise, while the p-p resolution is calculated based on peak-to-peak noise. The p-p resolution represents the resolution for which there is no code flicker. These numbers are typical and are rounded to the nearest LSB.

Table 5. RMS Noise ($\mu \mathrm{V}$) vs. Gain and Output Update Rate Using an External 2.5 V Reference with Chop Enabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	0.64	0.6	0.29	0.22	0.1	0.065	0.039	0.041
8.33	1.04	0.96	0.38	0.26	0.13	0.078	0.057	0.055
16.7	1.55	1.45	0.54	0.36	0.18	0.11	0.087	0.086
33.2	2.3	2.13	0.74	0.5	0.23	0.17	0.124	0.118
62	2.95	2.85	0.92	0.58	0.29	0.2	0.153	0.144
123	4.89	4.74	1.49	1	0.48	0.32	0.265	0.283
242	11.76	9.5	4.02	1.96	0.88	0.45	0.379	0.397
470	11.33	9.44	3.07	1.79	0.99	0.63	0.568	0.593

Table 6.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7794 Using an External 2.5 V Reference with Chop Enabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	$23(20.5)$	$22(19.5)$	$22(19.5)$	$21.5(19)$	$21.5(19)$	$21(18.5)$	$21(18.5)$	$20(17.5)$
8.33	$22(19.5)$	$21.5(19)$	$21.5(19)$	$21(18.5)$	$21(18.5)$	$21(18.5)$	$20.5(18)$	$19.5(17)$
16.7	$21.5(19)$	$20.5(18)$	$21(18.5)$	$20.5(18)$	$20.5(18)$	$20.5(18)$	$20(17.5)$	$19(16.5)$
33.2	$21(18.5)$	$20(17.5)$	$20.5(18)$	$20(17.5)$	$20.5(18)$	$20(17.5)$	$19(16.5)$	$18.5(16)$
62	$20.5(18)$	$19.5(17)$	$20.5(18)$	$20(17.5)$	$20(17.5)$	$19.5(17)$	$19(16.5)$	$18(15.5)$
123	$20(17.5)$	$19(16.5)$	$19.5(17)$	$19(16.5)$	$19.5(17)$	$19(16.5)$	$18(15.5)$	$17(14.5)$
242	$18.5(16)$	$18(15.5)$	$18(15.5)$	$18(15.5)$	$18.5(16)$	$18.5(16)$	$17.5(15)$	$16.5(14)$
470	$18.5(16)$	$18(15.5)$	$18.5(16)$	$18.5(16)$	$18(15.5)$	$18(15.5)$	$17(14.5)$	$16(13.5)$

Table 7.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7795 Using an External 2.5 V Reference with Chop Enabled

Update Rate (Hz)	Gain of $\mathbf{1}$	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
8.33	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
16.7	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
33.2	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
62	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$
123	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$	$16(14.5)$
242	$16(16)$	$16(15.5)$	$16(15.5)$	$16(15.5)$	$16(16)$	$16(16)$	$16(15)$	$16(14)$
470	$16(16)$	$16(15.5)$	$16(16)$	$16(16)$	$16(15.5)$	$16(15.5)$	$16(14.5)$	$16(13.5)$

AD7794/AD7795

Internal Reference

Table 8 shows the AD7794/AD7795 rms noise for some of the update rates and gain settings. The numbers given are for the bipolar input range with the internal 1.17 V reference. These numbers are typical and are generated with a differential input voltage of 0 V . Table 9 and Table 10 show the effective resolution while the output peak-to-peak (p-p) resolution is listed in brackets.

It is important to note that the effective resolution is calculated using the rms noise while the p-p resolution is calculated based on peak-to-peak noise. The p-p resolution represents the resolution for which there is no code flicker. These numbers are typical and rounded to the nearest LSB.

Table 8. RMS Noise ($\mu \mathrm{V}$) vs. Gain and Output Update Rate Using an Internal 1.17 V Reference with Chop Enabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	0.81	0.67	0.32	0.2	0.13	0.065	0.04	0.039
8.33	1.18	1.11	0.41	0.25	0.16	0.078	0.058	0.059
16.7	1.96	1.72	0.55	0.36	0.25	0.11	0.088	0.088
33.2	2.99	2.48	0.83	0.48	0.33	0.17	0.13	0.12
62	3.6	3.25	1.03	0.65	0.46	0.2	0.15	0.15
123	5.83	5.01	1.69	0.96	0.67	0.32	0.25	0.26
242	11.22	8.64	2.69	1.9	1.04	0.45	0.35	0.34
470	12.46	10.58	4.58	2	1.27	0.63	0.50	0.49

Table 9.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7794 Using an Internal 1.17 V Reference with Chop Enabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	$21.5(19)$	$20.5(18)$	$21(18.5)$	$20.5(18)$	$20(17.5)$	$20(17.5)$	$20(17.5)$	$19(16.5)$
8.33	$21(18.5)$	$20(17.5)$	$20.5(18)$	$20(17.5)$	$20(17.5)$	$20(17.5)$	$19(16.5)$	$18(15.5)$
16.7	$20(17.5)$	$19.5(17)$	$20(17.5)$	$19.5(17)$	$19(16.5)$	$19.5(17)$	$18.5(16)$	$17.5(15)$
33.2	$19.5(17)$	$19(16.5)$	$19.5(17)$	$19(16.5)$	$19(16.5)$	$18.5(16)$	$18(15.5)$	$17(14.5)$
62	$19.5(17)$	$18.5(16)$	$19(16.5)$	$19(16.5)$	$18.5(16)$	$18.5(16)$	$18(15.5)$	$17(14.5)$
123	$18.5(16)$	$18(15.5)$	$18.5(16)$	$18(15.5)$	$17.5(15)$	$18(15.5)$	$17(14.5)$	$16(13.5)$
242	$17.5(15)$	$17(14.5)$	$17.5(15)$	$17(14.5)$	$17(14.5)$	$17.5(15)$	$16.5(14)$	$15.5(13)$
470	$17.5(15)$	$17(14.5)$	$17(14.5)$	$17(14.5)$	$17(14.5)$	$17(14.5)$	$16(13.5)$	$15(12.5)$

Table 10.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7795 Using an Internal 1.17 V Reference with Chop Enabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of $\mathbf{1 2 8}$
4.17	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
8.33	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$
16.7	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15)$
33.2	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$	$16(14.5)$
62	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$	$16(14.5)$
123	$16(16)$	$16(15.5)$	$16(16)$	$16(15.5)$	$16(15)$	$16(15.5)$	$16(14.5)$	$16(13.5)$
242	$16(15)$	$16(14.5)$	$16(15)$	$16(14.5)$	$16(14.5)$	$16(15)$	$16(14)$	$15.5(13)$
470	$16(15)$	$16(14.5)$	$16(14.5)$	$16(14.5)$	$16(14.5)$	$16(14.5)$	$16(13.5)$	$15(12.5)$

CHOP DISABLED

With chop disabled, the switching time or settling time is reduced by a factor of two. However, periodic offset calibrations may now be required to remove offset and offset drift. When chop is disabled, the AMP-CM bit in the mode register should be set to 1 . This limits the allowable common-mode voltage that can be used. However, the common-mode rejection degrades if the bit is not set.

Table 11 shows the rms noise of the AD7794/AD7795 for some of the update rates and gain settings with chop disabled.

The numbers given are for the bipolar input range with the internal 1.17 V reference. These numbers are typical and are generated with a differential input voltage of 0 V .
Table 12 and Table 13 show the effective resolution while the output peak-to-peak ($\mathrm{p}-\mathrm{p}$) resolution is listed in brackets. It is important to note that the effective resolution is calculated using the rms noise, while the p-p resolution is calculated based on peak-to-peak noise. The p-p resolution represents the resolution for which there is no code flicker. These numbers are typical and rounded to the nearest LSB.

Table 11. RMS Noise ($\mu \mathrm{V}$) vs. Gain and Output Update Rate Using an Internal 1.17 V Reference with Chop Disabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	1.22	0.98	0.33	0.18	0.13	0.062	0.053	0.051
8.33	1.74	1.53	0.49	0.29	0.21	0.1	0.079	0.07
16.7	2.64	2.44	0.79	0.48	0.33	0.16	0.13	0.12
33.2	4.55	3.52	1.11	0.66	0.46	0.21	0.17	0.16
62	5.03	4.45	1.47	0.81	0.58	0.27	0.2	0.22
123	8.13	7.24	2.27	1.33	0.96	0.48	0.36	0.37
242	15.12	13.18	3.77	2.09	1.45	0.64	0.5	0.47
470	17.18	14.63	8.86	2.96	1.92	0.89	0.69	0.7

Table 12.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7794 Using an Internal 1.17 V Reference with Chop Disabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	$21(18.5)$	$20(17.5)$	$21(18.5)$	$20.5(18)$	$20(17.5)$	$20(17.5)$	$19.5(17)$	$18.5(16)$
8.33	$20.5(18)$	$19.5(17)$	$20(17.5)$	$20(17.5)$	$19.5(17)$	$19.5(17)$	$19(16.5)$	$18(15.5)$
16.7	$20(17.5)$	$19(16.5)$	$19.5(17)$	$19(16.5)$	$19(16.5)$	$19(16.5)$	$18(15.5)$	$17(14.5)$
33.2	$19(16.5)$	$18.5(16)$	$19(16.5)$	$19(16.5)$	$18.5(16)$	$18.5(16)$	$17.5(15)$	$17(14.5)$
62	$19(16.5)$	$18(15.5)$	$18.5(16)$	$18.5(16)$	$18(15.5)$	$18(15.5)$	$17.5(15)$	$16.5(14)$
123	$18(15.5)$	$17.5(15)$	$18(15.5)$	$17.5(15)$	$17(14.5)$	$17(14.5)$	$16.5(14)$	$15.5(13)$
242	$17(14.5)$	$16.5(14)$	$17(14.5)$	$17(14.5)$	$16.5(14)$	$17(14.5)$	$16(13.5)$	$15(12.5)$
470	$17(14.5)$	$16.5(14)$	$16(13.5)$	$16.5(14)$	$16(13.5)$	$16.5(14)$	$15.5(13)$	$14.5(12)$

Table 13.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7795 Using an Internal 1.17 V Reference with Chop Disabled

Update Rate (Hz)	Gain of $\mathbf{1}$	Gain of $\mathbf{2}$	Gain of 4	Gain of $\mathbf{8}$	Gain of $\mathbf{1 6}$	Gain of $\mathbf{3 2}$	Gain of $\mathbf{6 4}$	Gain of $\mathbf{1 2 8}$
4.17	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
8.33	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$
16.7	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$	$16(14.5)$
33.2	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15)$	$16(14.5)$
62	$16(16)$	$16(15.5)$	$16(16)$	$16(16)$	$16(15.5)$	$16(15.5)$	$16(15)$	$16(14)$
123	$16(15.5)$	$16(15)$	$16(15.5)$	$16(15)$	$16(14.5)$	$16(14.5)$	$16(14)$	$15.5(13)$
242	$16(14.5)$	$16(14)$	$16(14.5)$	$16(14.5)$	$16(14)$	$16(14.5)$	$16(13.5)$	$15(12.5)$
470	$16(14.5)$	$16(14)$	$16(13.5)$	$16(14)$	$16(13.5)$	$16(14)$	$15.5(13)$	$14.5(12)$

AD7794/AD7795

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Typical Noise Plot for the AD7794 (Internal Reference, Gain $=64$, Update Rate $=16.7 \mathrm{~Hz}$, Chop Enabled)

Figure 7. Noise Distribution Histogram for the AD7794 (Internal Reference, Gain = 64, Update Rate $=16.7 \mathrm{~Hz}$, Chop Enabled)

Figure 8. Typical Noise Plot for the AD7794 (Internal Reference, Gain = 64, Update Rate $=16.7 \mathrm{~Hz}, A M P-C M=1$, Chop Disabled)

Figure 9. Noise Distribution Histogram for the AD7794 (Internal Reference, Gain = 64, Update Rate $=16.7 \mathrm{~Hz}$, Chop Disabled, $A M P-C M=1$)

Figure 10. Excitation Current Matching $(210 \mu A)$ at Ambient Temperature

Figure 11. Bias Voltage Generator Power-Up Time vs. Load Capacitance

ON-CHIP REGISTERS

The ADC is controlled and configured via a number of on-chip registers that are described in the following sections. In the following descriptions, set implies a Logic 1 state and cleared implies a Logic 0 state, unless otherwise noted.

COMMUNICATIONS REGISTER

RS2, RS1, RSO = 0, 0, 0

The communications register is an 8-bit write-only register. All communications to the part must start with a write operation to the communications register. The data written to the communications register determines whether the next operation is a read or write operation, and to which register this operation takes place. For read or write operations, once the subsequent read or write operation to the selected register is complete, the interface
returns to where it expects a write operation to the communications register. This is the default state of the interface and, on power-up or after a reset, the ADC is in this default state waiting for a write operation to the communications register. In situations where the interface sequence is lost, a write operation of at least 32 serial clock cycles with DIN high returns the ADC to this default state by resetting the entire part. Table 14 outlines the bit designations for the communications register. CR0 through CR7 indicate the bit location, with CR denoting the bits are in the communications register. CR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
$\overline{\mathrm{WEN}}(0)$	$\mathrm{R} / \overline{\mathrm{W}}(0)$	RS2 (0)	$\operatorname{RS1}(0)$	$\operatorname{RSO}(0)$	CREAD (0)	$0(0)$	$0(0)$

Table 14. Communications Register Bit Designations

Bit No.	Mnemonic	Description
CR7	$\overline{\text { WEN }}$	Write Enable Bit. A 0 must be written to this bit so that the write to the communications register actually occurs. If a 1 is the first bit written, the part does not clock on to subsequent bits in the register. It stays at this bit location until a 0 is written to this bit. Once a 0 is written to the $\overline{\text { WEN bit, the next seven bits are loaded to the }}$ communications register. A 0 in this bit location indicates that the next operation is a write to a specified register. A 1 in this position indicates that the next operation is a read from the designated register.
CR6	R/W	
CR5 to CR3 CR2	RS2 to RS0	
thister Address Bits. These address bits are used to select which registers of the ADC are being selected during		
Continuous Read of the Data Register. When this bit is set to 1 (and the data register is selected), the serial		
interface is configured so that the data register can be read continuously, that is, the contents of the data register		
are automatically placed on the DOUT pin when the SCLK pulses are applied after the $\overline{\text { RDY prin goes low to }}$		
indicate that a conversion is complete. The communications register does not have to be written to for data reads.		
To enable continuous read mode, the instruction 01011100 must be written to the communications register. To		
exit the continuous read mode, the instruction 01011000 must be written to the communications register while		
the RDY pin is low. While in continuous read mode, the ADC monitors activity on the DIN line so it can receive the		
instruction to exit continuous read mode. Additionally, a reset occurs if 32 consecutive 1s are seen on DIN.		
Therefore, DIN should be held low in continuous read mode until an instruction is written to the device.		
These bits must be programmed to Logic 0 for correct operation.		

Table 15. Register Selection

RS2	RS1	RS0	Register	Register Size
0	0	0	Communications Register During a Write Operation	8 -bit
0	0	0	Status Register During a Read Operation	8 -bit
0	0	1	Mode Register	16 -bit
0	1	0	Configuration Register	16 -bit
0	1	1	Data Register	24 -bit (AD7794)/16-Bit (AD7795)
1	0	0	ID Register	8 -bit
1	0	1	IO Register	8 -bit
1	1	0	Offset Register	24 -bit (AD7794)/16-Bit (AD7795)
1	1	1	Full-Scale Register	24 -bit (AD7794)/16-Bit (AD7795)

AD7794/AD7795

STATUS REGISTER

RS2, RS1, RS0 = 0, 0, 0; Power-On/Reset $=0 \times 80$ (AD7795)/0x88 (AD7794)

The status register is an 8 -bit read-only register. To access the ADC status register, the user must write to the communications register, select the next operation to be read, and load Bit RS2, Bit RS1, and Bit RS0 with 0.

Table 16 outlines the bit designations for the status register. SR0 through SR7 indicate the bit locations, with SR denoting that the bits are in the status register. SR7 denotes the first bit of the data stream. The number in brackets indicates the poweron/reset default status of that bit.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
$\overline{\operatorname{RDY}}(1)$	$\operatorname{ERR}(0)$	NOXREF (0)	$0(0)$	$0 / 1$	CH2 (0)	CH1 (0)	CH0 (0)

Table 16. Status Register Bit Designations

Bit No.	Mnemonic	Description
SR7	$\overline{\text { RDY }}$	Ready Bit for ADC. Cleared when data is written to the ADC data register. The $\overline{\text { RDY }}$ bit is set automatically after the ADC data register has been read or a period of time before the data register is updated with a new conversion result to indicate to the user not to read the conversion data. It is also set when the part is placed in power-down mode. The end of a conversion is also indicated by the DOUT/RDY pin. This pin can be used as an alternative to the status register for monitoring the ADC for conversion data. ADC Error Bit. This bit is written to at the same time as the $\overline{\text { RDY }}$ bit. Set to indicate that the result written to the ADC data register has been clamped to all Os or all 1s. Error sources include overrange, underrange, or the absence of a reference voltage. Cleared by a write operation to start a conversion. SR6
ERR External Reference Bit. Set to indicate that the selected reference (REFIN1 or REFIN2) is at a voltage that is		
below a specified threshold. When set, conversion results are clamped to all 1s. Cleared to indicate that a valid		
reference is applied to the selected reference pins. The NOXREF bit is enabled by setting the REF_DET bit in the		
configuration register to 1. The ERR bit is also set if the voltage applied to the selected reference input is invalid.		
This bit is automatically cleared.		
This bit is automatically cleared on the AD7795 and is automatically set on the AD7794.		
These bits indicate which channel is being converted by the ADC.		

AD7794/AD7795

MODE REGISTER

RS2, RS1, RSO = 0, 0, 1; Power-On/Reset $=0 \times 000 \mathrm{~A}$
The mode register is a 16 -bit read/write register that is used to select the operating mode, the update rate, and the clock source.
Table 17 outlines the bit designations for the mode register. MR0 through MR15 indicate the bit locations with MR
denoting that the bits are in the mode register. MR15 is the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit. Any write to the setup register resets the modulator and filter, and sets the $\overline{\mathrm{RDY}}$ bit.

MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8
MD2(0)	MD1(0)	MD0(0)	PSW(0)	$0(0)$	$0(0)$	AMP-CM(0)	0(0)
MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
CLK1(0)	CLK0(0)	$0(0)$	CHOP-DIS(0)	FS3(1)	FS2(0)	FS1(1)	FS0(0)

Table 17. Mode Register Bit Designations

Bit No.	Mnemonic	Description		
MR15 to MR13	MD2 to MD0	Mode Select Bits. These bits select the operating mode of the AD7794/AD7795 (see Table 18).		
MR12	PSW	Power Switch Control Bit. Set by user to close the power switch PSW to GND. The power switch can sink up to 30 mA . Cleared by user to open the power switch. When the ADC is placed in power-down mode, the power switch is opened.		
MR11 to MR10	0	These bits must be programmed with a Logic 0 for correct operation.		
MR9	AMP-CM	Instrumentation Amplifier Common-Mode Bit. This bit is used in conjunction with the CHOP-DIS bit. With chop disabled, the user can operate with a wider range of common-mode voltages when AMP-CM is cleared. However, the dc common-mode rejection degrades. With AMP-CM set, the span for the commonmode voltage is reduced (see the Specifications section). However, the dc common-mode rejection is significantly better.		
MR8	0	This bit must be programmed with a Logic 0 for correct operation.		
MR7 to MR6	CLK1 to CLK0	These bits are used to select the clock source for the AD7794/AD7795. Either the on-chip 64 kHz clock can be used or an external clock can be used. The ability to use an external clock allows several AD7794/AD7795 devices to be synchronized. Also, $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection is improved when an accurate external clock drives the AD7794/AD7795.		
		CLK1	CLKO	ADC Clock Source
		0	0	Internal 64 kHz clock. Internal clock is not available at the CLK pin.
		0	1	Internal 64 kHz clock. This clock is made available at the CLK pin.
		1	0	External 64 kHz . The external clock can have a $45: 55$ duty cycle (see the Specifications section for the external clock).
		1	1	External clock. The external clock is divided by 2 within the AD7794/AD7795.
MR5	0	This bit must be programmed with a Logic 0 for correct operation. This bit is used to enable or disable chop. On power-up or following a reset, CHOP-DIS is cleared so chop is enabled. When CHOP-DIS is set, chop is disabled. This bit is used in conjunction with the AMP-CM bit. When chop is disabled, the AMP-CM bit should be set. This limits the common-mode voltage that can be used by the ADC, but the dc common-mode rejection does not degrade. Filter Update Rate Select Bits (see Table 19).		
MR4	CHOP-DIS			
MR3 to MR0	FS3 to FS0			

AD7794/AD7795

Table 18. Operating Modes

MD2	MD1	MD0	Mode
0	0	0	Continuous Conversion Mode (Default). In continuous conversion mode, the ADC continuously performs conversions and places the result in the data register. $\overline{\mathrm{RDY}}$ goes low when a conversion is complete. The user can read these conversions by placing the device in continuous read mode whereby the conversions are automatically placed on the DOUT line when SCLK pulses are applied. Alternatively, the user can instruct the ADC to output the conversion by writing to the communications register. After power-on, the first conversion is available after a period of $2 / f_{A D C}$ when chop is enabled or $1 / f_{A D C}$ when chop is disabled. Subsequent conversions are available at a frequency of $f_{A D C}$ with chop either enabled or disabled.
0	0	1	Single Conversion Mode. When single conversion mode is selected, the ADC powers up and performs a single conversion. The oscillator requires 1 ms to power up and settle. The ADC then performs the conversion, which takes a time of $2 / f_{A D C}$ when chop is enabled, or $1 / f_{A D C}$ when chop is disabled. The conversion result is placed in the data register, $\overline{\mathrm{RDY}}$ goes low, and the ADC returns to power-down mode. The conversion remains in the data register and $\overline{\mathrm{RDY}}$ remains active (low) until the data is read or another conversion is performed.
0	1	0	Idle Mode. In idle mode, the ADC filter and modulator are held in a reset state although the modulator clocks are still provided.
0	1	1	Power-Down Mode. In power-down mode, all the AD7794/AD7795 circuitry is powered down including the current sources, power switch, burnout currents, bias voltage generator, and clock circuitry.
1	0	0	Internal Zero-Scale Calibration. An internal short is automatically connected to the enabled channel. A calibration takes two conversion cycles to complete when chop is enabled and one conversion cycle when chop is disabled. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	0	1	Internal Full-Scale Calibration. A full-scale input voltage is automatically connected to the selected analog input for this calibration. When the gain equals 1 , a calibration takes two conversion cycles to complete when chop is enabled and one conversion cycle when chop is disabled. For higher gains, four conversion cycles are required to perform the full-scale calibration when chop is enabled and 2 conversion cycles when chop is disabled. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale coefficient is placed in the full-scale register of the selected channel. Internal full-scale calibrations cannot be performed when the gain equals 128. With this gain setting, a system full-scale calibration can be performed. A full-scale calibration is required each time the gain of a channel is changed to minimize the full-scale error.
1	1	0	System Zero-Scale Calibration. User should connect the system zero-scale input to the channel input pins as selected by the CH 2 bit, CH 1 bit, and CH 0 bit. A system offset calibration takes two conversion cycles to complete when chop is enabled and one conversion cycle when chop is disabled. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	1	1	System Full-Scale Calibration. User should connect the system full-scale input to the channel input pins as selected by the CH2 bit, CH1 bit, and CHO bit. A calibration takes two conversion cycles to complete when chop is enabled and one conversion cycle when chop is disabled. $\overline{\text { RDY }}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale coefficient is placed in the full-scale register of the selected channel. A full-scale calibration is required each time the gain of a channel is changed.

AD7794/AD7795

Table 19. Update Rates Available (Chop Enabled) ${ }^{1}$

FS3	FS2	FS1	FSO	$\mathrm{f}_{\mathrm{AdC}}(\mathrm{Hz})$	T ${ }_{\text {settie }}(\mathrm{ms}$)	Rejection @ $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ (Internal Clock)
0	0	0	0	x	x	
0	0	0	1	470	4	
0	0	1	0	242	8	
0	0	1	1	123	16	
0	1	0	0	62	32	
0	1	0	1	50	40	
0	1	1	0	39	48	
0	1	1	1	33.2	60	
1	0	0	0	19.6	101	90 dB (60 Hz only)
1	0	0	1	16.7	120	80 dB (50 Hz only)
1	0	1	0	16.7	120	$65 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	0	1	1	12.5	160	$66 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	0	0	10	200	$69 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	0	1	8.33	240	$70 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	1	0	6.25	320	$72 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	1	1	4.17	480	74 dB (50 Hz and 60 Hz)

[^1]
AD7794/AD7795

CONFIGURATION REGISTER

RS2, RS1, RSO = 0, 1, 0; Power-On/Reset $=0 \times 0710$

The configuration register is a 16 -bit read/write register that is used to configure the ADC for unipolar or bipolar mode, enable or disable the buffer, enable or disable the burnout currents, select the gain, and select the analog input channel.

Table 20 outlines the bit designations for the filter register. CON0 through CON15 indicate the bit locations. CON denotes that the bits are in the configuration register. CON15 is the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit.

CON15	CON14	CON13	CON12	CON11	CON10	CON9	CON8
VBIAS1 (0)	VBIAS0(0)	BO(0)	U/ $\overline{\mathrm{B}}(0)$	BOOST(0)	G2(1)	G1(1)	G0(1)
CON7	CON6	CON5	CON4	CON3	CON2	CON1	CON0
REFSEL1 (0)	REFSELO(0)	REF_DET(0)	BUF(1)	CH3(0)	CH2(0)	CH1(0)	CH0(0)

Table 20. Configuration Register Bit Designations

Bit No.	Mnemonic	Description					
CON15 to CON14	VBIAS1 to VBIAS0	Bias Voltage Generator Enable. The negative terminal of the analog inputs can be biased up to $\mathrm{AV}_{\mathrm{DD}} / 2$. These bits are used in conjunction with the BOOST bit.					
		VBIAS1			VBIASO		Bias Voltage
		0			0		Bias voltage generator disabled
		0			1		Bias voltage generator connected to AIN1(-)
		1			0		Bias voltage generator connected to AIN2(-)
		1			1		Bias voltage generator connected to AIN3(-)
CON13	BO	Burnout Current Enable Bit. This bit must be programmed with a Logic 0 for correct operation. When this bit is set to 1 by the user, the 100 nA current sources in the signal path are enabled. When $\mathrm{BO}=0$, the burnout currents are disabled. The burnout currents can be enabled only when the buffer or in-amp is active.					
CON12	U/B	Unipolar/Bipolar Bit. Set by user to enable unipolar coding, that is, zero differential input results in 0×000000 output and a full-scale differential input results in 0xFFFFFF output. Cleared by the user to enable bipolar coding. Negative full-scale differential input results in an output code of 0x000000, zero differential input results in an output code of 0×800000, and positive full-scale differential input results in an output code of 0xFFFFFF.					
CON10 toCON8	G2 to G0	Gain Select Bits. Written by the user to select the ADC input range as follows:					
		G2 ${ }^{\text {G }}$	G1		G0	Gain	ADC Input Range (2.5 V Reference)
		0	0		0	1 (in-amp not used)	2.5 V
		0 0	0		1	2 (in-amp not used)	1.25 V
		0 1	1		0	4	625 mV
		0 1	1		1	8	312.5 mV
		1 0	0		0	16	156.2 mV
		1 0	0		1	32	78.125 mV
		1 1	1		0	64	39.06 mV
		1 1 1	1		1	128	19.53 mV
CON7 to CON6	REFSEL1/REFSEL0	Reference Select Bits. The reference source for the ADC is selected using these bits.					
		REFSEL1	REFSELO			Reference Source	
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	0 1 0 1	0 1 0 1		External referenc External referenc Internal 1.17 V re Reserved	ed between REFIN1(+) and REFIN1(-) ed between REFIN2(+) and REFIN2(-)

AD7794/AD7795

Bit No.	Mnemonic	Description					
CON5	REF_DET	Enables the reference detect function. When set, the NOXREF bit in the status register indicates when the external reference being used by the ADC is open circuit or less than 0.5 V . When cleared, the reference detect function is disabled.					
CON4	BUF	Configures the ADC for buffered or unbuffered mode of operation. If cleared, the ADC operates in unbuffered mode, lowering the power consumption of the device. If set, the ADC operates in buffered mode, allowing the user to place source impedances on the front end without contributing gain errors to the system. For gains of 1 and 2, the buffer can be enabled or disabled. For higher gains, the buffer is automatically enabled. With the buffer disabled, the voltage on the analog input pins can be from 30 mV below $G N D$ to 30 mV above $A V_{D D}$. When the buffer is enabled, it requires some headroom so the voltage on any input pin must be limited to 100 mV within the power supply rails.					
CON3 to CONO	CH 3 to CH 0	Channel Select Bits. Written by the user to select the active analog input channel to the ADC.					
		CH3	CH2	CH1	CH0	Channel	Calibration Pair
		0	0	0	0	AIN1(+)/AIN1(-)	0
		0	0	0	1	AIN2(+)/AIN2(-)	1
		0	0	1	0	AIN3(+)/AIN3(-)	2
		0	0	1	1	AIN4(+)/AIN4(-)	3
		0	1	0	0	AIN5(+)/AIN5(-)	3
		0	1	0	1	AIN6(+)/AIN6(-)	3
		0	1	1	0	Temp Sensor	Automatically selects the internal 1.17 V reference and sets the gain to 1
		0	1	1	1	AV ${ }_{\text {DD }}$ Monitor	Automatically selects the internal 1.17 V reference and sets the gain to $1 / 6$
		1	0	0	0	$\operatorname{AIN1}(-) / \operatorname{AIN} 1(-)$	0
		1	0	0	1	Reserved	
		1	0	1	1	Reserved	
		1	1	0	0	Reserved	
		1	1	0	1	Reserved	
		1	1	1	0	Reserved	
		1	1	1	1	Reserved	

AD7794/AD7795

DATA REGISTER

RS2, RS1, RSO = 0, 1, 1; Power-On/Reset = 0x0000(AD7795), 0x000000 (AD7794)

The conversion result from the ADC is stored in this data register. This is a read-only register. On completion of a read operation from this register, the $\overline{\mathrm{RDY}} \mathrm{bit} / \mathrm{pin}$ is set.

ID REGISTER

RS2, RS1, RS0 = 1, 0, 0; Power-On/Reset = 0xXF
The identification number for the AD7794/AD7795 is stored in the ID register. This is a read-only register.

10 REGISTER

RS2, RS1, RSO = 1, 0, 1; Power-On/Reset = 0x00
The IO register is an 8 -bit read/write register that is used to enable the excitation currents and select the value of the excitation currents.

Table 21 outlines the bit designations for the IO register. IO0 through IO7 indicate the bit locations. IO denotes that the bits are in the IO register. IO7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

$\mathbf{I O 7}$	IO6	IO5	IO4	IO3	IO2	IO1	IO0
$0(0)$	$\operatorname{IOEN}(0)$	IO2DAT (0)	IO1DAT (0)	IEXCDIR1 (0)	IEXCDIRO(0)	IEXCEN1 (0)	IEXCEN0(0)

Table 21. IO Register Bit Designations

Bit No.	Mnemonic	Description		
107	0	This bit must be programmed with a Logic 0 for correct operation.		
106	IOEN	Configures Pin AIN6(+)/P1 and Pin AIN6(-)/P2 as analog input pins or digital output pins. When this bit is set, the pins are configured as Digital Output Pin P1 and Digital Output Pin P2. When this bit is cleared, these pins are configured as Analog Input Pin AIN6(+) and Analog Input Pin AIN6(-).		
IO5 to IO4	IO2DAT/IO1DAT	P2/P1 Data. When IOEN is set, the data for Digital Output Pin P1 and Digital Output Pin P2 is written to Bit IO2DAT and Bit IO1DAT.		
103 to IO2	IEXCDIR1 to IEXCDIR0	Direction of Current Sources Select Bits.		
		IEXCDIR1	IEXCDIRO	Current Source Direction
		0	0	Current Source IEXC1 connected to Pin IOUT1. Current Source IEXC2 connected to Pin IOUT2.
		0	1	Current Source IEXC1 connected to Pin IOUT2. Current Source IEXC2 connected to Pin IOUT1.
		1	0	Both current sources connected to Pin IOUT1. Permitted only when the current sources are set to $10 \mu \mathrm{~A}$ or $210 \mu \mathrm{~A}$.
		1	1	Both current sources connected to Pin IOUT2. Permitted only when the current sources are set to $10 \mu \mathrm{~A}$ or $210 \mu \mathrm{~A}$.
103 to IO2	IEXCEN1 to IEXCEN0	These bits are used to enable and disable the current sources. They also select the value of the excitation currents.		
		IEXCEN1	IEXCENO	Current Source Value
		0	0	Excitation currents disabled
		0	1	$10 \mu \mathrm{~A}$
		1	0	$210 \mu \mathrm{~A}$
		1	1	1 mA

AD7794/AD7795

OFFSET REGISTER

RS2, RS1, RS0 = 1, 1, 0; Power-On/Reset = 0x8000 (AD7795), 0x800000 (AD7794))

The offset register is a 16-bit register on the AD7795 and a 24 -bit register on the AD7794. The offset register holds the offset calibration coefficient for the ADC and its power-on reset value is $0 \times 8000 / 0 \times 800000$, for the AD7794/AD7795, respectively. The AD7794/AD7795 each have four offset registers. Channel AIN1 to Channel AIN3 have dedicated offset registers while the AIN4, AIN5, and AIN6 channels share an offset register. Each of these registers is a read/write register. The register is used in conjunction with its associated full-scale register to form a register pair. The power-on reset value is automatically overwritten if an internal or system zero-scale calibration is initiated by the user. The AD7794/AD7795 must be placed in power-down mode or idle mode when writing to the offset register.

FULL-SCALE REGISTER

RS2, RS1, RSO = 1, 1, 1; Power-On/Reset = 0x5XXX (AD7795), 0x5XXX00 (AD7794)

The full-scale register is a 16-bit register on the AD7795 and a 24-bit register on the AD7794. The full-scale register holds the full-scale calibration coefficient for the ADC. The AD7794/ AD7795 each have four full-scale registers. The AIN1, AIN2, and AIN3 channels have dedicated full-scale registers, while the AIN4, AIN5, and AIN6 channels share a register. The full-scale registers are read/write registers. However, when writing to the full-scale registers, the ADC must be placed in power-down mode or idle mode. These registers are configured on power-on with factory calibrated full-scale calibration coefficients, the calibration being performed at gain $=1$. Therefore, every device has different default coefficients. The coefficients are different, depending on whether the internal reference or an external reference is selected. The default value is automatically overwritten if an internal or system full-scale calibration is initiated by the user or the full-scale register is written to.

AD7194/AD7795

ADC CIRCUIT INFORMATION overview

The AD7794/AD7795 are low power ADCs that incorporate a Σ - Δ modulator, buffer, reference, in-amp, and on-chip digital filtering, which are intended for the measurement of wide dynamic range, low frequency signals (such as those in pressure transducers), weigh scales, and temperature measurement applications.
Each part has six differential inputs that can be buffered or unbuffered. The devices operate with an internal 1.17 V reference or by using an external reference. Figure 12 shows the basic connections required to operate the parts.

The output rate of the AD7794/AD7795 ($\mathrm{f}_{\mathrm{ADC}}$) is user programmable. The allowable update rates, along with the corresponding settling times, are listed in Table 19 for chop enabled. With chop disabled, the allowable update rates remain unchanged, but the settling time equals $1 / \mathrm{f}_{\mathrm{ADC}}$. Normal mode rejection is the major function of the digital filter. Simultaneous

50 Hz and 60 Hz rejection is optimized when the update rate equals 16.7 Hz or less, as notches are placed at both 50 Hz and 60 Hz with these update rates (see Figure 14).
The AD7794/AD7795 use slightly different filter types, depending on the output update rate, so that the rejection of quantization noise and device noise is optimized. When the update rate is 4.17 Hz to 12.5 Hz , a Sinc3 filter along with an averaging filter is used. When the update rate is 16.7 Hz to 39 Hz , a modified Sinc3 filter is used. This filter gives simultaneous $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection when the update rate equals 16.7 Hz . A Sinc4 filter is used when the update rate is 50 Hz to 242 Hz . Finally, an integrate-only filter is used when the update rate equals 470 Hz . Figure 13 to Figure 16 show the frequency response of the different filter types for some of the update rates when chop is enabled. In this mode, the settling time equals twice the update rate. Figure 17 to Figure 20 show the filter response with chop disabled.

Figure 12. Basic Connection Diagram

Figure 13. Filter Response with Update Rate $=4.17 \mathrm{~Hz}$ (Chop Enabled)

Figure 14. Filter Response with Update Rate $=16.7 \mathrm{~Hz}$ (Chop Enabled)

Figure 15. Filter Response with Update Rate $=242 \mathrm{~Hz}$ (Chop Enabled)

Figure 16. Filter Response with Update Rate $=470 \mathrm{~Hz}$ (Chop Enabled)

Figure 17. Filter Response with Update Rate $=4.17$ Hz (Chop Disabled)

Figure 18. Filter Response with Update Rate $=16.7 \mathrm{~Hz}$ (Chop Disabled)

Figure 19. Filter Response at 242 Hz Update Rate (Chop Disabled)

Figure 20. Filter Response at 470 Hz Update Rate (Chop Disabled)

DIGITAL INTERFACE

As previously outlined in the On-Chip Registers section, the programmable functions of the AD7794/AD7795 are controlled using a set of on-chip registers. Data is written to these registers via the serial interface. Read access to the on-chip registers is also provided by this interface. All communications with the parts must start with a write to the communications register. After power-on or reset, each device expects a write to its communications register. The data written to this register determines whether the next operation is a read operation or a write operation, and determines to which register this read or write operation occurs. Therefore, write access to any of the other registers on the parts begins with a write operation to the communications register, followed by a write to the selected register. A read operation from any other register (except when continuous read mode is selected) starts with a write to the communications register, followed by a read operation from the selected register.
The serial interface of the AD7794/AD7795 consists of four signals: $\overline{\mathrm{CS}}$, DIN, SCLK, and DOUT/ $\overline{\mathrm{RDY}}$. The DIN line is used
to transfer data into the on-chip registers, while DOUT/兂DY is used for accessing data from the on-chip registers. SCLK is the serial clock input for the devices, and all data transfers (either on DIN or DOUT/ $\overline{\mathrm{RDY}}$) occur with respect to the SCLK signal. The DOUT/到Y pin also operates as a data ready signal; the line goes low when a new data-word is available in the output register. It is reset high when a read operation from the data register is complete. It also goes high prior to the updating of the data register to indicate when not to read from the device, to ensure that a data read is not attempted while the register is being updated. $\overline{\mathrm{CS}}$ is used to select a device. It can be used to decode the AD7794/AD7795 in systems where several components are connected to the serial bus.
Figure 3 and Figure 4 show timing diagrams for interfacing to the AD7794/AD7795 with $\overline{\mathrm{CS}}$, which is being used to decode the parts. Figure 3 shows the timing for a read operation from the output shift register of the AD7794/AD7795, while Figure 4 shows the timing for a write operation to the input shift register. It is possible to read the same word from the data register several times, even though the DOUT/RDY line returns high after the first read operation. However, care must be taken to ensure that the read operations have been completed before the next output update occurs. In continuous read mode, the data register can be read only once.
The serial interface can operate in 3-wire mode by tying $\overline{\mathrm{CS}}$ low. In this case, the SCLK, DIN, and DOUT/ $\overline{\text { RDY }}$ lines are used to communicate with the AD7794/AD7795. The end of the conversion can be monitored using the $\overline{\mathrm{RDY}}$ bit in the status register. This scheme is suitable for interfacing to microcontrollers. If $\overline{\mathrm{CS}}$ is required as a decoding signal, it can be generated from a port pin. For microcontroller interfaces, it is recommended that SCLK idle high between data transfers.
The AD7794/AD7795 can be operated with $\overline{\mathrm{CS}}$ being used as a frame synchronization signal. This scheme is useful for DSP interfaces. In this case, the first bit (MSB) is effectively clocked out by $\overline{\mathrm{CS}}$, because $\overline{\mathrm{CS}}$ normally occurs after the falling edge of SCLK in DSPs. The SCLK can continue to run between data transfers, provided the timing numbers are obeyed.
The serial interface can be reset by writing a series of 1 s on the DIN input. If a Logic 1 is written to the AD7794/AD7795 line for at least 32 serial clock cycles, the serial interface is reset. This ensures that the interface can be reset to a known state if the interface gets lost due to a software error or some glitch in the system. Reset returns the interface to the state in which it is expecting a write to the communications register. This operation resets the contents of all registers to their power-on values. Following a reset, the user should allow a period of $500 \mu \mathrm{~s}$ before addressing the serial interface.

The AD7794/AD7795 can be configured to continuously convert or perform a single conversion (see Figure 21 through Figure 23).

AD7794/AD7795

Single Conversion Mode

In single conversion mode, the AD7794/AD7795 are placed in shutdown mode between conversions. When a single conversion is initiated by setting MD2 to 0 , MD1 to 0 , and MD0 to 1 in the mode register, the AD7794/AD7795 power up, perform a single conversion, and then return to shutdown mode. The on-chip oscillator requires 1 ms to power up. A conversion requires a time period of $2 \times \mathrm{t}_{\mathrm{ADC}}$. DOUT/RDY goes low to indicate the completion of a conversion. When the dataword has been read from the data register, DOUT/ $\overline{\mathrm{RDY}}$ goes high. If $\overline{\mathrm{CS}}$ is low, DOUT/ $\overline{\mathrm{RDY}}$ remains high until another conversion is initiated and completed. The data register can be read several times, if required, even when DOUT/RDY has gone high.

Continuous Conversion Mode

This is the default power-up mode. The AD7794/AD7795 continuously convert with the $\overline{\mathrm{RDY}}$ pin in the status register going low each time a conversion is complete. If $\overline{\mathrm{CS}}$ is low, the DOUT/ $\overline{\mathrm{RDY}}$ line also goes low when a conversion is complete. To read a conversion, the user writes to the communications register, indicating that the next operation is a read of the data register. The digital conversion is placed on the DOUT/ $\overline{\mathrm{RDY}}$ pin as soon as SCLK pulses are applied to the ADC. DOUT/RDY returns high when the conversion is read. The user can read this register additional times, if required. However, the user must ensure that the data register is not being accessed at the completion of the next conversion, or else the new conversion word is lost.

Continuous Read

Rather than write to the communications register each time a conversion is complete to access the data, the AD7794/AD7795 can be configured so that the conversions are placed on the DOUT/RDY line automatically. By writing 01011100 to the communications register, the user need only apply the appropriate number of SCLK cycles to the ADC. The 24-bit word is automatically placed on the DOUT/RDY line when a conversion is complete. The ADC should be configured for continuous conversion mode.
When DOUT $\overline{\mathrm{RDY}}$ goes low to indicate the end of a conversion, sufficient SCLK cycles must be applied to the ADC, and the data conversion is placed on the DOUT/ $\overline{\mathrm{RDY}}$ line. When the conversion is read, DOUT/ $\overline{\mathrm{RDY}}$ returns high until the next conversion is available.
In this mode, the data can be read only once. Also, the user must ensure that the data-word is read before the next conversion is complete. If the user has not read the conversion before the completion of the next conversion, or if insufficient serial clocks are applied to the AD7794/AD7795 to read the word, the serial output register is reset when the next conversion is complete. The new conversion is then placed in the output serial register.
To exit the continuous read mode, the instruction 01011000 must be written to the communications register while the $\overline{\mathrm{RDY}}$ pin is low. While in the continuous read mode, the ADC monitors activity on the DIN line so that it can receive the instruction to exit the continuous read mode. Additionally, a reset occurs if 32 consecutive 1 s are seen on DIN. Therefore, DIN should be held low in continuous read mode until an instruction is to be written to the device.

CIRCUIT DESCRIPTION

ANALOG INPUT CHANNEL

The AD7794/AD7795 have six differential analog input channels. These are connected to the on-chip buffer amplifier when the devices are operated in buffered mode. When in unbuffered mode, the channels connect directly to the modulator. In buffered mode (the BUF bit in the configuration register is set to 1), the input channel feeds into a high impedance input stage of the buffer amplifier. Therefore, the input can tolerate significant source impedances and is tailored for direct connection to external resistive-type sensors such as strain gages or resistance temperature detectors (RTDs).
When BUF $=0$, the parts operate in unbuffered mode. This results in a higher analog input current. Note that this unbuffered input path provides a dynamic load to the driving source. Therefore, resistor/capacitor combinations on the input pins can cause gain errors, depending on the output impedance of the source that is driving the ADC input. Table 22 shows the allowable external resistance/capacitance values for unbuffered mode so that no gain error at the 20-bit level is introduced.

Table 22. External R-C Combination for 20-Bit No Gain Error

Capacitance (pF)	Resistance ($\mathbf{\Omega}$)
50	9 k
100	6 k
500	1.5 k
1000	900
5000	200

The AD7794/AD7795 can be operated in unbuffered mode only when the gain equals 1 or 2 . At higher gains, the buffer is automatically enabled. The absolute input voltage range in buffered mode is restricted to a range between GND +100 mV and $A V_{D D}-100 \mathrm{mV}$. When the gain is set to 4 or higher, the in-amp is enabled. The absolute input voltage range when the inamp is active is restricted to a range between GND +300 mV and $A V_{D D}-1.1 \mathrm{~V}$. Care must be taken in setting up the commonmode voltage so that these limits are not exceeded. Otherwise, there is degradation in linearity and noise performance.
The absolute input voltage in unbuffered mode includes the range between GND -30 mV and AV DD +30 mV as a result of being unbuffered. The negative absolute input voltage limit does allow the possibility of monitoring small, true bipolar signals with respect to GND.

INSTRUMENTATION AMPLIFIER

Amplifying the analog input signal by a gain of 1 or 2 is performed digitally within the AD7794/AD7795. However, when the gain equals 4 or higher, the output from the buffer is applied to the input of the on-chip instrumentation amplifier. This low noise in-amp means that signals of small amplitude can be gained within the AD7794/AD7795 while still maintaining excellent noise performance. For example, when the gain is set to 64 , the rms noise is 40 nV typically, which is equivalent to 21 bits effective resolution or 18.5 bits peak-topeak resolution.
Each AD7794/AD7795 can be programmed to have a gain of 1 , $2,4,8,16,32,64$, and 128 using Bit G2 to Bit G0 in the configuration register. Therefore, with an external 2.5 V reference, the unipolar ranges are from 0 mV to 20 mV to 0 V to 2.5 V and the bipolar ranges are from $\pm 20 \mathrm{mV}$ to $\pm 2.5 \mathrm{~V}$. When the in-amp is active (gain ≥ 4), the common-mode voltage $((\operatorname{AIN}(+)+\operatorname{AIN}(-)) / 2)$ must be greater than or equal to 0.5 V when chop is enabled. With chop disabled, and with the AMP-CM bit set to 1 to prevent degradation in the commonmode rejection, the allowable common-mode voltage is limited to between

$$
0.2+(\text { Gain } / 2 \times(\operatorname{AIN}(+)-\operatorname{AIN}(-)))
$$

and

$$
A V_{D D}-0.2-(\text { Gain } / 2 \times(A I N(+)-A I N(-)))
$$

If the AD7794/AD7795 are operated with an external reference that has a value equal to $A V_{\mathrm{DD}}$, for correct operation, the analog input signal must be limited to 90% of $\mathrm{V}_{\text {REF }} /$ gain when the inamp is active.

BIPOLAR/UNIPOLAR CONFIGURATION

The analog input to the AD7794/AD7795 can accept either unipolar or bipolar input voltage ranges. A bipolar input range does not imply that the parts can tolerate negative voltages with respect to system GND. Unipolar and bipolar signals on the $\operatorname{AIN}(+)$ input are referenced to the voltage on the $\operatorname{AIN}(-)$ input. For example, if $\operatorname{AIN}(-)$ is 2.5 V and the ADC is configured for unipolar mode with a gain of 1 , the input voltage range on the $\mathrm{AIN}(+)$ pin is 2.5 V to 5 V .

If the ADC is configured for bipolar mode, the analog input range on the $\operatorname{AIN}(+)$ input is 0 V to 5 V . The bipolar/unipolar option is chosen by programming the U / \bar{B} bit in the configuration register.

AD7194/AD7795

DATA OUTPUT CODING

When the ADC is configured for unipolar operation, the output code is natural (straight) binary with a zero differential input voltage resulting in a code of $00 \ldots 00$, a miscalled voltage resulting in a code of $100 \ldots 000$, and a full-scale input voltage resulting in a code of $111 \ldots 111$. The output code for any analog input voltage can be represented as

$$
\text { Code }=\left(2^{N} \times A I N \times G A I N\right) / V_{R E F}
$$

When the ADC is configured for bipolar operation, the output code is offset binary with a negative full-scale voltage resulting in a code of $000 \ldots 000$, a zero differential input voltage resulting in a code of $100 \ldots 000$, and a positive full-scale input voltage resulting in a code of $111 \ldots 111$. The output code for any analog input voltage can be represented as

$$
\text { Code }=2^{N-1} \times\left[\left(A I N \times G A I N / V_{R E F}\right)+1\right]
$$

where:
$A I N$ is the analog input voltage.
GAIN is the in-amp setting (1 to 128).
$N=24$.

BURNOUT CURRENTS

The AD7794/AD7795 contain two 100 nA constant current generators, one sourcing current from $\mathrm{AV}_{\mathrm{DD}}$ to $\operatorname{AIN}(+)$, and one sinking current from $\operatorname{AIN}(-)$ to GND. The currents are switched to the selected analog input pair. Both currents are either on or off, depending on the burnout current enable (BO) bit in the configuration register. These currents can be used to verify that an external transducer is still operational before attempting to take measurements on that channel. Once the burnout currents are turned on, they flow in the external transducer circuit, and a measurement of the input voltage on the analog input channel can be taken. If the resulting voltage measured is full scale, the user needs to verify why this is the case. A full-scale reading could mean that the front-end sensor is open circuit. It could also mean that the front-end sensor is overloaded and is justified in outputting full scale, or that the reference may be absent and the NOXREF bit is set, thus clamping the data to all 1 s .
When reading all 1 s from the output, the user needs to check these three cases before making a judgment. If the voltage measured is 0 V , it may indicate that the transducer has short circuited. For normal operation, these burnout currents are turned off by writing a 0 to the BO bit in the configuration register. The current sources work over the normal absolute input voltage range specifications with buffers on.

EXCITATION CURRENTS

The AD7794/AD7795 also contain two matched, software configurable, constant current sources that can be programmed to equal $10 \mu \mathrm{~A}, 210 \mu \mathrm{~A}$, or 1 mA . Both source currents from $A V_{D D}$ are directed to either the IOUT1 or IOUT2 pin of the device. These current sources are controlled via bits in the IO register. The configuration bits enable the current sources and direct the current sources to IOUT1 or IOUT2, along with selecting the value of the current. These current sources can be used to excite external resistive bridge or RTD sensors.

BIAS VOLTAGE GENERATOR

A bias voltage generator is included on the AD7794/AD7795. It biases the negative terminal of the selected input channel to $\mathrm{AV}_{\mathrm{DD}} / 2$. This function is available on inputs AIN1(-) to AIN3(-). It is useful in thermocouple applications, as the voltage generated by the thermocouple must be biased about some dc voltage if the gain is greater than 2 . This is necessary because the instrumentation amplifier requires headroom. If there is no headroom, signals close to GND or $A V_{D D}$ do not convert accurately.
The bias voltage generator is controlled using the VBIAS1 and VBIASO bits in conjunction with the BOOST bit in the configuration register. The power-up time of the bias voltage generator is dependent on the load capacitance. To accommodate higher load capacitances, each AD7794/AD7795 has a BOOST bit. When this bit is set to 1 , the current consumed by the bias voltage generator is increased so that power-up time is reduced considerably. Figure 11 shows the power-up times when BOOST equals 0 and BOOST equals 1 for different load capacitances. The current consumption of the AD7794/AD7795 increases by $40 \mu \mathrm{~A}$ when the bias voltage generator is enabled, and BOOST equals 0 . With the BOOST function enabled, the current consumption increases by $250 \mu \mathrm{~A}$.

REFERENCE

The AD7794/AD7795 have embedded 1.17 V references. These references can be used to supply the ADC or external references can be applied. The embedded references are low noise, low drift references with $4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift typically. For external references, the ADC has a fully differential input capability for the channel. In addition, the user has the option of selecting one of two external reference options (REFIN1 or REFIN2). The reference source for the AD7794/AD7795 is selected using the REFSEL1 and REFSEL0 bits in the configuration register. When the internal reference is selected, it is internally connected to the modulator (it is not available on the REFIN pins).

The common-mode range for these differential inputs is from GND to $A V_{\mathrm{DD}}$. The reference input is unbuffered; therefore, excessive R-C source impedances introduce gain errors. The reference voltage REFIN (REFIN(+) - REFIN(-)) is 2.5 V nominal, but the AD7794/AD7795 are functional with reference voltages from 0.1 V to $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}$. In applications where the excitation (voltage or current) for the transducer on the analog
input also drives the reference voltage for the parts, the effect of the low frequency noise in the excitation source is removed, because the application is ratiometric. If the AD7794/AD7795 are used in nonratiometric applications, a low noise reference should be used.

Recommended 2.5 V reference voltage sources for the AD7794/AD7795 include the ADR381 and ADR391, which are low noise, low power references. Also, note that the reference inputs provide a high impedance, dynamic load. Because the input impedance of each reference input is dynamic, resistor/capacitor combinations on these inputs can cause dc gain errors, depending on the output impedance of the source driving the reference inputs.
Reference voltage sources (for example, the ADR391) typically have low output impedances and are, therefore, tolerant to having decoupling capacitors on REFIN(+) without introducing gain errors in the system. Deriving the reference input voltage across an external resistor means that the reference input sees a significant external source impedance. External decoupling on the REFIN pins is not recommended in this type of circuit configuration.

REFERENCE DETECT

The AD7794/AD7795 include on-chip circuitry to detect if they have a valid reference for conversions or calibrations when the user selects an external reference as the reference source. This feature is enabled when the REF_DET bit in the configuration register is set to 1 . If the voltage between the selected REFIN(+) and REFIN(-) pins goes below 0.3 V, or either the REFIN(+) or REFIN(-) inputs are open circuit, the AD7794/AD7795 detect that they no longer have valid references. In this case, the NOXREF bit of the status register is set to 1. If the AD7794/ AD7795 are performing normal conversions and the NOXREF bit becomes active, the conversion results revert to all 1 s . Therefore, it is not necessary to continuously monitor the status of the NOXREF bit when performing conversions. It is only necessary to verify its status if the conversion result read from the ADC data register is all 1s. If the AD7794/AD7795 are performing either offset or full-scale calibrations and the NOXREF bit becomes active, the updating of the respective calibration registers is inhibited to avoid loading incorrect coefficients to these registers, and the ERR bit in the status register is set. If the user is concerned about verifying that a valid reference is in place every time a calibration is performed, the status of the ERR bit should be checked at the end of the calibration cycle.

RESET

The circuitry and serial interface of the AD7794/AD7795 can be reset by writing 32 consecutive 1 s to the device. This resets the logic, the digital filter, and the analog modulator, and all onchip registers are reset to their default values. A reset is automatically performed on power-up. When a reset is initiated, the user must allow a period of $500 \mu \mathrm{~s}$ before accessing any of
the on-chip registers. A reset is useful if the serial interface becomes asynchronous due to noise on the SCLK line.

AV ${ }_{\text {DD }}$ MONITOR

Along with converting external voltages, the ADC can be used to monitor the voltage on the $A V_{D D}$ pin. When Bit CH2 to Bit CH 0 equals 1 , the voltage on the $A V_{\mathrm{DD}}$ pin is internally attenuated by 6 , and the resulting voltage is applied to the $\Sigma-\Delta$ modulator using an internal 1.17 V reference for analog-to-digital conversion. This is useful because variations in the power supply voltage can be monitored.

CALIBRATION

The AD7794/AD7795 provide four calibration modes that can be programmed via the mode bits in the mode register. These are internal zero-scale calibration, internal full-scale calibration, system zero-scale calibration, and system full-scale calibration, which effectively reduce the offset error and full-scale error to the order of the noise. After each conversion, the ADC conversion result is scaled using the ADC calibration registers before being written to the data register. The offset calibration coefficient is subtracted from the result prior to multiplication by the full-scale coefficient.

To start a calibration, write the relevant value to the MD2 to MD0 bits in the mode register. After the calibration is completed, the contents of the corresponding calibration registers are updated, the $\overline{\mathrm{RDY}}$ bit in the status register is set, the DOUT/RDY pin goes low (if $\overline{\mathrm{CS}}$ is low), and the AD7794/AD7795 revert to idle mode.
During an internal zero-scale or full-scale calibration, the respective zero input and full-scale input are automatically connected internally to the ADC input pins. A system calibration, however, expects the system zero-scale and system full-scale voltages to be applied to the ADC pins before initiating the calibration mode. In this way, external ADC errors are removed.

From an operational point of view, a calibration should be treated like another ADC conversion. A zero-scale calibration, if required, should always be performed before a full-scale calibration. System software should monitor the $\overline{\mathrm{RDY}}$ bit in the status register or the DOUT/ $\overline{\mathrm{RDY}}$ pin to determine the end of calibration via a polling sequence or an interrupt-driven routine.
With chop enabled, both an internal offset calibration and a system offset calibration take two conversion cycles. With chop enabled, an internal offset calibration is not needed because the ADC itself removes the offset continuously. With chop disabled, an internal offset calibration or system offset calibration takes one conversion cycle to complete. Internal offset calibrations are required with chop disabled and should occur before the full-scale calibration.
To perform an internal full-scale calibration, a full-scale input voltage is automatically connected to the selected analog input for this calibration. When the gain equals 1 , a calibration takes two conversion cycles to complete when chop is enabled and

AD7194/AD7795

one conversion cycle when chop is disabled. For higher gains, four conversion cycles are required to perform the full-scale calibration when chop is enabled, and two conversion cycles when chop is disabled. DOUT/ $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale coefficient is placed in the fullscale register of the selected channel. Internal full-scale calibrations cannot be performed when the gain equals 128 . With this gain setting, a system full-scale calibration can be performed. A full-scale calibration is required each time the gain of a channel is changed to minimize the full-scale error.

An internal full-scale calibration can be performed at specified update rates only. For gains of 1,2 , and 4 , an internal full-scale calibration can be performed at any update rate. However, for higher gains, internal full-scale calibrations can be performed only when the update rate is less than or equal to $16.7 \mathrm{~Hz}, 33.3 \mathrm{~Hz}$, and 50 Hz . However, the full-scale error does not vary with update rate, so a calibration at one update is valid for all update rates (assuming the gain or reference source is not changed).

A system full-scale calibration takes two conversion cycles to complete, irrespective of the gain setting when chop is enabled and one conversion cycle when chop is disabled. A system fullscale calibration can be performed at all gains and all update rates. With chop disabled, the offset calibration (internal or system offset) should be performed before the system full-scale calibration is initiated.

GROUNDING AND LAYOUT

Because the analog inputs and reference inputs of the ADC are differential, most of the voltages in the analog modulator are common-mode voltages. The excellent common-mode rejection of the part removes common-mode noise on these inputs. The digital filter provides rejection of broadband noise on the power supply, except at integer multiples of the modulator sampling frequency. The digital filter also removes noise from the analog and reference inputs, provided that these noise sources do not saturate the analog modulator. As a result, the AD7794/AD7795 are more immune to noise interference than conventional high resolution converters. However, because the resolution of the AD7794/AD7795 is so high, and the noise
levels from the AD7794/AD7795 are so low, care must be taken with regard to grounding and layout.
The printed circuit board that houses the AD7794/AD7795 should be designed so that the analog and digital sections are separated and confined to certain areas of the board. A minimum etch technique is generally best for ground planes because it gives the best shielding.

It is recommended that the GND pin of the AD7794/AD7795 be tied to the AGND plane of the system. In any layout, it is important that the user keep in mind the flow of currents in the system, ensuring that the return paths for all currents are as close as possible to the paths the currents took to reach their destinations. Avoid forcing digital currents to flow through the AGND sections of the layout.

The ground plane of the AD7794/AD7795 should be allowed to run under the AD7794/AD7795 to prevent noise coupling. The power supply lines to the AD7794/AD7795 should use as wide a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line. Fast switching signals, such as clocks, should be shielded with digital ground to avoid radiating noise to other sections of the board. In addition, clock signals should never be run near the analog inputs. Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough through the board. A microstrip technique is the best, but it is not always possible with a double-sided board. In this technique, the component side of the board is dedicated to ground planes, while signals are placed on the solder side.

Good decoupling is important when using high resolution ADCs. $A V_{\text {DD }}$ should be decoupled with $10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ capacitors to GND. $\mathrm{DV}_{\mathrm{DD}}$ should be decoupled with $10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ capacitors to the system's DGND plane, with the system's AGND to DGND connection being close to the AD7794/AD7795. To achieve the best from these decoupling components, they should be placed as close as possible to the device, ideally right up against the device. All logic chips should be decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors to DGND.

APPLICATIONS INFORMATION

The AD7794/AD7795 offer low cost, high resolution analog-todigital functions. Because the analog-to-digital function is provided by a $\sum-\Delta$ architecture, it makes the parts more immune to noisy environments, making them ideal for use in sensor measurement, and industrial and process control applications.

FLOWMETER

Figure 24 shows the AD7794/AD7795 being used in a flowmeter application that consists of two pressure transducers, with the rate of flow being equal to the pressure difference. The pressure transducers shown are the BP01 from Sensym. The pressure transducers are arranged in a bridge network and give a differential output voltage between its OUT+ and OUTterminals. With rated full-scale pressure (in this case 300 mmHg) on the transducer, the differential output voltage is $3 \mathrm{mV} / \mathrm{V}$ of the input voltage (that is, the voltage between the $\mathrm{IN}(+)$ and $\mathrm{IN}(-)$ terminals).
Assuming a 5 V excitation voltage, the full-scale output range from the transducer is 15 mV . The excitation voltage for the bridge can be used to directly provide the reference for the ADC , as the reference input range includes the supply voltage.

A second advantage of using the AD7794/AD7795 in transducerbased applications is that the low-side power switch can be fully utilized in low power applications. The low-side power switch is connected in series with the cold side of the bridges. In normal operation, the switch is closed and measurements can be taken. In applications where power is of concern, the AD7794/AD7795 can be placed in standby mode, thus significantly reducing the power consumed in the application. In addition, the low-side power switch can be opened while in standby mode, thus avoiding unnecessary power consumption by the front-end transducers. When the parts are taken out of standby mode, and the low-side power switch is closed, the user should ensure that the front-end circuitry is fully settled before attempting a read from the AD7794/AD7795.

In the diagram, temperature compensation is performed using a thermistor. The on-chip excitation current supplies the thermistor. In addition, the reference voltage for the temperature measurement is derived from a precision resistor in series with the thermistor. This allows a ratiometric measurement so that variation of the excitation current has no effect on the measurement (it is the ratio of the precision reference resistance to the thermistor resistance that is measured).

Figure 24. Typical Application (Flowmeter)

AD7794/AD7795

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AD
Figure 25. 24-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-24$)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD7794BRU	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
AD7794BRU-REEL	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
AD7794BRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
AD7794BRUZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$24-$-Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
AD7794CRUZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$24-$ Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
AD7794CRUZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
AD7795BRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
AD7795BRUZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
EVAL-AD7794EB		Evaluation Board	
EVAL-AD7795EB		Evaluation Board	

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog to Digital Converters - ADC category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
ADC0804LCD ADC0808 MCP37211-200I/TE MAX15511TGTL+ MCP33141-10T-E/MS MCP33141D-05T-E/MS MCP33151D-05T-E/MS MCP3202T-CI/MS MCP33141-05T-E/MS MCP33141D-10T-E/MS MCP33151-10T-E/MS ADE1201ACCZ ADE1202ACCZ LTC1090CN LTC1605IG LTC1605AIG LTC2208IUP ADS1282HPW LTC1297DCN8 LTC1741CFW MCP3422A0-E/MS MCP3426A2-E/MC MCP3427-E/MF TLC0820ACN TLC2543IN TLV2543IDW NCD9830DBR2G ADS5231IPAG ADS7807U ADS7891IPFBT ADS8328IBPW AMC1204BDWR ADS7959QDBTRQ1 ADS7807UB ADS7805UB ADS1220IPWR MCP3426A0-E/MS MCP3423-E/UN MCP3422A0-E/MC AD9220AR MAX11123ATI+ MAX11212AEUB+ MAX11207EEE+ MAX11135ATI+ TLV1570CDW

TLC3574IDWR TLC0838CDWR AD7714ARZ-5REEL AD7914BRUZ-REEL7 AD977ABRZ

[^0]: ${ }^{1}$ Temperature range: B Grade: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, C Grade: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. At the 19.6 Hz and 39.2 Hz update rates, the INL, power supply rejection (PSR), commonmode rejection (CMR), and normal mode rejection (NMR) do not meet the data sheet specification if the voltage on the $\operatorname{AIN}(+)$ or $\operatorname{AIN}(-)$ pins exceeds $A V D D-1.6 \mathrm{~V}$ typically. In addition, the offset error and offset error drift degrade at these update rates when chopping is disabled. When this voltage is exceeded, the INL, for example, is reduced to 18 ppm of FS typically while the PSR is reduced to 69 dB typically. Therefore, for guaranteed performance at these update rates, the absolute voltage on the analog input pins needs to be below AVDD - 1.6 V .
 ${ }^{2}$ Specification is not production tested but is supported by characterization data at initial product release.
 ${ }^{3}$ Following a calibration, this error is in the order of the noise for the programmed gain and update rate selected.
 ${ }^{4}$ Recalibration at any temperature removes these errors.
 ${ }^{5}$ Full-scale error applies to both positive and negative full-scale, and applies at the factory calibration conditions (AV $\mathrm{DD}=4 \mathrm{~V}, \mathrm{gain}=1, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$).
 ${ }^{6} \mathrm{FS}[3: 0]$ are the four bits used in the mode register to select the output word rate.
 ${ }^{7}$ Digital inputs equal to DV ${ }^{D D}$ or GND with excitation currents and bias voltage generator disabled.

[^1]: ' With chop disabled, the update rates remain unchanged, but the settling time for each update rate is reduced by a factor of 2 . The rejection at $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ for a 16.6 Hz update rate degrades to 60 dB .

