Data Sheet

FEATURES

Low power amplifiers provide low noise and low distortion, ideal for xDSL modem receiver
Wide supply range: $+5 \mathrm{~V}, \pm 2.5 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$ voltage supply
Low power consumption: $\mathbf{4 . 0 \mathrm { mA } / \mathrm { Amp }}$
Voltage feedback
Ease of Use
Lower total noise (insignificant input current noise contribution compared to current feedback amps)
Low noise and distortion
2.5 nV/ $\sqrt{\mathrm{Hz}}$ voltage noise @ 100 kHz
$1.2 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$ current noise
MTPR <-66 dBc (G = +7)
SFDR 110 dB @ 200 kHz
High speed
130 MHz bandwidth (-3 dB), $\mathbf{G}=+1$
Settling time to 0.1%, 68 ns
$50 \mathrm{~V} / \mu \mathrm{s}$ slew rate
High output swing: $\pm 10.1 \mathrm{~V}$ on $\pm 12 \mathrm{~V}$ supply
Low offset voltage, $\mathbf{1 . 5} \mathbf{~ m V}$ typical

APPLICATIONS

Receiver for ADSL, VDSL, HDSL, and proprietary xDSL systems
Low noise instrumentation front end
Ultrasound preamps
Active filters
16-bit ADC buffers

GENERAL DESCRIPTIONS

The AD8022 consists of two low noise, high speed, voltage feedback amplifiers. Each amplifier consumes only 4.0 mA of quiescent current, yet has only $2.5 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ of voltage noise. These dual amplifiers provide wideband, low distortion performance, with high output current optimized for stability when driving capacitive loads. Manufactured on ADI's high voltage generation of XFCB bipolar process, the AD8022 operates on a wide range of supply voltages. The AD8022 is available in both an 8-lead MSOP and an 8-lead SOIC. Fast over voltage recovery and wide bandwidth make the AD8022 ideal as the receive channel front end to an ADSL, VDSL, or proprietary xDSL transceiver design.

In an xDSL line interface circuit, the AD8022's op amps can be configured as the differential receiver from the line transformer or as independent active filters.

Rev. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Figure 2. Current and Voltage Noise vs. Frequency

IMPORTANT LINKS for the AD8022*

Last content update 08/18/2013 07:23 pm

PARAMETRIC SELECTION TABLES

Find Similar Products By Operating Parameters
High Speed Amplifiers Selection Table

DOCUMENTATION

AN-649: Using the Analog Devices Active Filter Design Tool
AN-581: Biasing and Decoupling Op Amps in Single Supply Applications
AN-356: User's Guide to Applying and Measuring Operational Amplifier Specifications
AN-402: Replacing Output Clamping Op Amps with Input Clamping Amps
AN-417: Fast Rail-to-Rail Operational Amplifiers Ease Design Constraints in Low Voltage High Speed Systems
CN-0048: AD7265 12-Bit, 3-Channel SAR ADC in Differential and Single-Ended Configurations Using the AD8022 High Speed Op Amp
CN-0039: AD7266 SAR ADC in DC-Coupled Differential and SingleEnded Applications
MT-060: Choosing Between Voltage Feedback and Current Feedback Op Amps
MT-059: Compensating for the Effects of Input Capacitance on VFB and CFB Op Amps Used in Current-to-Voltage Converters
MT-058: Effects of Feedback Capacitance on VFB and CFB Op Amps
MT-056: High Speed Voltage Feedback Op Amps
MT-053: Op Amp Distortion: HD, THD, THD + N, IMD, SFDR, MTPR
MT-052: Op Amp Noise Figure: Don't Be Mislead
MT-050: Op Amp Total Output Noise Calculations for Second-Order System
MT-049: Op Amp Total Output Noise Calculations for Single-Pole System
MT-048: Op Amp Noise Relationships: 1/f Noise, RMS Noise, and Equivalent Noise Bandwidth
MT-033: Voltage Feedback Op Amp Gain and Bandwidth
MT-032: Ideal Voltage Feedback (VFB) Op Amp
A Stress-Free Method for Choosing High-Speed Op Amps
UG-129: Evaluation Board User Guide
UG-128: Universal Evaluation Board for Dual High Speed Op Amps in SOIC Packages
Maximize Performance When Driving Differential ADCs

PRODUCT RECOMMENDATIONS \& REFERENCE DESIGNS

CN-0039: AD7266 SAR ADC in DC-Coupled Differential and SingleEnded Applications
CN-0048: AD7265 12-Bit, 3-Channel SAR ADC in Differential and Single-Ended Configurations Using the AD8022 High Speed Op Amp

DESIGN TOOLS, MODELS, DRIVERS \& SOFTWARE

dBm/dBu/dBv Calculator
Analog Filter Wizard 2.0
Power Dissipation vs Die Temp
ADIsimOpAmp ${ }^{\text {m }}$
OpAmp Stability
AD8022 SPICE Macro-Model

EVALUATION KITS \& SYMBOLS \& FOOTPRINTS

View the Evaluation Boards and Kits page for the AD8022 Symbols and Footprints

DESIGN COLLABORATION COMMUNITY

Collaborate Online with the ADI support team and other designers about select ADI products.

Follow us on Twitter: www.twitter.com/ADI_News
Like us on Facebook: www.facebook.com/AnalogDevicesInc

DESIGN SUPPORT

Submit your support request here:
Linear and Data Converters
Embedded Processing and DSP
Telephone our Customer Interaction Centers toll free:
Americas: 1-800-262-5643
Europe: 00800-266-822-82
China: 4006-100-006
India:
1800-419-0108
Russia:
8-800-555-45-90
Quality and Reliability
Lead(Pb)-Free Data

SAMPLE \& BUY

AD8022

- View Price \& Packaging
- Request Evaluation Board
- Request Samples Check Inventory \& Purchase

Find Local Distributors

TABLE OF CONTENTS

Specifications. 3
Absolute Maximum Ratings 5
Maximum Power Dissipation 5
ESD Caution 5
Typical Performance Characteristics 6
Theory of Operation 12
Applications 13
REVISION HISTORY
8/11-Rev. B to Rev. C
Changes to Figure 40 14
Updated Outline Dimensions. 16
Changes to Ordering Guide 16
5/05—Rev. A to Rev. B
Changes to Format

\qquad
Universal
Deleted Evaluation Boards Section 14
Deleted Generating DMT Section. 14
Changes to Ordering Guide 16
Updated Outline Dimensions 16
9/02-Rev. 0 to Rev. A
Changes to Features 1
Changes to Applications 1
Changes to Product Description 1
Changes to Functional Block Diagram 1
Changes to Figure 1 1
Changes to Specifications Table 2
Edits to TPCs 1, 2, 3, 6 5
New TPCs 7, 8 6
Edits to TPCs $16,17,18$ 7
Edits to TPC 19. 8
Edits to TPC 28 9
Edits to Figure 3 11
Edits to Figure 6 14
Updated Outline Dimensions 16
DMT Modulation and Multitone Power Ratio (MTPR) 13
Channel Capacity and SNR. 13
Power Supply and Decoupling. 13
Layout Considerations 15
Outline Dimensions 16
Ordering Guide 16

SPECIFICATIONS

At $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{G}=+1, \mathrm{~T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Small Signal Bandwidth Bandwidth for 0.1 dB Flatness Large Signal Bandwidth ${ }^{1}$ Slew Rate Rise and Fall Time Settling Time 0.1\% Overdrive Recovery Time	$\begin{aligned} & V_{\text {out }}=50 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\text {out }}=50 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\text {out }}=4 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\text {out }}=150 \% \text { of max output } \\ & \text { voltage, } \mathrm{G}=+2 \end{aligned}$	$\begin{aligned} & 110 \\ & 40 \end{aligned}$	$\begin{aligned} & 130 \\ & 25 \\ & 4 \\ & 50 \\ & 30 \\ & 62 \\ & 200 \end{aligned}$		MHz MHz MHz V/ $\mu \mathrm{s}$ ns ns ns
NOISE/DISTORTION PERFORMANCE Distortion Second Harmonic Third Harmonic Multitone Input Power Ratio ${ }^{2}$ Voltage Noise (RTI) Input Current Noise	$\begin{aligned} & \text { Vout }=2 \mathrm{~V} \text { p-p } \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz} \\ & \mathrm{G}=+7 \text { differential } \\ & 26 \mathrm{kHz} \text { to } 132 \mathrm{kHz} \\ & 144 \mathrm{kHz} \text { to } 1.1 \mathrm{MHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -95 \\ & -100 \\ & \\ & -67.2 \\ & -66 \\ & 2.5 \\ & 1.2 \end{aligned}$		dBc dBc dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Offset Voltage Input Offset Current Input Bias Current Open-Loop Gain	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		$\begin{aligned} & -1.5 \\ & \pm 120 \\ & 2.5 \\ & 72 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 6 \\ & \pm 7.25 \\ & \\ & 5.0 \\ & \pm 7.5 \end{aligned}$	mV mV nA $\mu \mathrm{A}$ $\mu \mathrm{A}$ dB
INPUT CHARACTERISTICS Input Resistance (Differential) Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$\mathrm{V}_{\text {cm }}= \pm 3 \mathrm{~V}$		$\begin{aligned} & 20 \\ & 0.7 \\ & -11.25 \text { to }+11.75 \\ & 98 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \mathrm{~V} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage Swing Linear Output Current Short-Circuit Output Current Capacitive Load Drive	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{G}=+1, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{dc} \text { error }=1 \% \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega,<3 \mathrm{~dB} \text { of peaking } \end{aligned}$		$\begin{aligned} & \pm 10.1 \\ & \pm 10.6 \\ & \pm 55 \\ & 100 \\ & 75 \end{aligned}$		V V mA mA pF
POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{V}_{\mathrm{s}}= \pm 5 \mathrm{~V} \text { to } \pm 12 \mathrm{~V}$	$+4.5$	$\begin{aligned} & 4.0 \\ & 80 \end{aligned}$	$\begin{aligned} & \pm 13.0 \\ & 5.5 \\ & 6.1 \end{aligned}$	V mA/Amp mA/Amp dB
OPERATING TEMPERATURE RANGE		-40		+85	${ }^{\circ} \mathrm{C}$

[^0]
AD8022

At $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{G}=+1, \mathrm{~T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Small Signal Bandwidth Bandwidth for 0.1 dB Flatness Large Signal Bandwidth ${ }^{1}$ Slew Rate Rise and Fall Time Settling Time 0.1\% Overdrive Recovery Time	$\begin{aligned} & V_{\text {out }}=50 \mathrm{mV} \text { p-p } \\ & \mathrm{V}_{\text {out }}=50 \mathrm{mV} \text { p-p } \\ & \mathrm{V}_{\text {out }}=3 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\text {out }}=2 \mathrm{Vp-p,G}=+2 \\ & \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\text {out }}=150 \% \text { of max output } \\ & \text { voltage, } \mathrm{G}=+2 \end{aligned}$	100 30	$\begin{aligned} & 120 \\ & 22 \\ & 4 \\ & 42 \\ & 40 \\ & 75 \\ & 225 \end{aligned}$		MHz MHz MHz V/ $\mu \mathrm{s}$ ns ns ns
NOISE/DISTORTION PERFORMANCE Distortion Second Harmonic Third Harmonic Multitone Input Power Ratio ${ }^{2}$ Voltage Noise (RTI) Input Current Noise	$\begin{aligned} & \text { Vout }=2 \mathrm{~V} \text { p-p } \\ & \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz} \\ & \mathrm{G}=+7 \text { differential, } \mathrm{V}_{\mathrm{s}}= \pm 6 \mathrm{~V} \\ & 26 \mathrm{kHz} \text { to } 132 \mathrm{kHz} \\ & 144 \mathrm{kHz} \text { to } 1.1 \mathrm{MHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -77.5 \\ & -94 \\ & \\ & -69 \\ & -66.7 \\ & 2.3 \\ & 1 \end{aligned}$		dBc dBc dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Offset Voltage Input Offset Current Input Bias Current Open-Loop Gain	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		$\begin{aligned} & -0.8 \\ & \pm 65 \\ & 2.0 \\ & \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 5.0 \\ & \pm 6.25 \\ & \\ & 5.0 \\ & 7.5 \end{aligned}$	mV mV nA $\mu \mathrm{A}$ $\mu \mathrm{A}$ dB
INPUT CHARACTERISTICS Input Resistance (Differential) Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}= \pm 5.0 \mathrm{~V}$		$\begin{aligned} & 20 \\ & 0.7 \\ & -1.83 \text { to }+2.0 \\ & 98 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \mathrm{~V} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage Swing Linear Output Current Short-Circuit Output Current Capacitive Load Drive	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{G}=+1, \mathrm{R}_{\mathrm{L}}=100 \Omega \text {, dc error }=1 \% \\ & \mathrm{R}_{\mathrm{s}}=0 \Omega,<3 \mathrm{~dB} \text { of peaking } \end{aligned}$		$\begin{aligned} & -1.38 \text { to }+1.48 \\ & \pm 32 \\ & 80 \\ & 75 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\Delta \mathrm{V}_{\mathrm{s}}= \pm 1 \mathrm{~V}$	+4.5	3.5 86	$\begin{aligned} & \pm 13.0 \\ & 4.25 \\ & 4.4 \end{aligned}$	V mA/Amp $m A / A m p$ dB
OPERATING TEMPERATURE RANGE		-40		+85	${ }^{\circ} \mathrm{C}$

${ }^{1}$ FPBW $=$ Slew Rate/ $\left(2 \pi V_{\text {PEAK }}\right)$.
${ }^{2}$ Multitone testing performed with 800 mV rms across a 500Ω load at Point A and Point B on the circuit of Figure 23.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage (+ V_{s} to $-\mathrm{V}_{\mathrm{s}}$)	26.4 V
Internal Power Dissipation ${ }^{1}$	
\quad 8-Lead SOIC (R)	1.6 W
\quad 8-Lead MSOP (RM)	1.2 W
Input Voltage (Common Mode)	$\pm \mathrm{V}_{\mathrm{s}}$
Differential Input Voltage	$\pm 0.8 \mathrm{~V}$
Output Short-Circuit Duration	Observe Power Derating Curves
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range \quad (A Grade)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature Range	$300^{\circ} \mathrm{C}$
\quad (Soldering 10 sec)	

[^1]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD8022 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately $150^{\circ} \mathrm{C}$. Temporarily exceeding this limit may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of $175^{\circ} \mathrm{C}$ for an extended period can result in device failure.

While the AD8022 is internally short-circuit protected, this may not be sufficient to guarantee that the maximum junction temperature $\left(150^{\circ} \mathrm{C}\right)$ is not exceeded under all conditions. To ensure proper operation, it is necessary to observe the maximum power derating curves.

Figure 3. Maximum Power Dissipation vs. Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Frequency Response vs. $R_{F}, G=+1, V_{S}= \pm 12 V, V_{I N}=63 \mathrm{mV} p-p$

Figure 5. Fine-Scale Gain Flatness vs. Frequency, G = +2

Figure 6. Fine-Scale Gain Flatness vs. Frequency, $G=+1$

Figure 7. Frequency Response vs. Signal Level, $V_{s}= \pm 12 \mathrm{~V}, \mathrm{G}=+1$

Figure 8. Frequency Response vs. Capacitive Load; $C_{L}=0 p F$ and $50 p F ; R s=0 \Omega$

Figure 9. Bandwidth vs. Supply, $R_{L}=500 \Omega, V_{I N}=200 \mathrm{mV}$ p-p

Figure 10. Open-Loop Gain vs. Frequency

Figure 11. Open-Loop Phase vs. Frequency

Figure 12. Noninverting Small Signal Pulse Response, $R_{L}=500 \Omega, V_{S}= \pm 12 \mathrm{~V}, G=+1, R_{F}=0 \Omega$

INPUT OUTPUT

Figure 13. Noninverting Small Signal Pulse Response, $R_{L}=500 \Omega, V_{S}= \pm 2.5 \mathrm{~V}, \mathrm{G}=+1, R_{F}=0 \Omega$

Figure 14. Noninverting Large Signal Pulse Response, $R_{L}=500 \Omega, V_{S}= \pm 12 \mathrm{~V}, G=+1, R_{F}=0 \Omega$

Figure 15. Noninverting Large Signal Pulse Response, $R_{L}=500 \Omega, V_{S}= \pm 2.5 \mathrm{~V}, G=+1, R_{F}=0 \Omega$

Figure 16. Settling Time to $0.1 \%, V_{S}= \pm 12 \mathrm{~V}$,
Step Size $=2 \mathrm{~V} p-p, G=+2, R_{L}=500 \Omega$

Figure 17. Settling Time to $0.1 \%, V_{s}= \pm 2.5 \mathrm{~V}$, Step Size $=2 \mathrm{~V} p-p$,
$G=+2, R_{L}=500 \Omega$

Figure 18. Slew Rate vs. Supply Voltage, $G=+2$

Figure 19. Distortion vs. Frequency, $V_{S}= \pm 12 V, R_{L}=500 \Omega$,
$R_{F}=0 \Omega, V_{\text {OUT }}=2 \mathrm{Vp}-p, G=+1$

Figure 20. Distortion vs. Frequency, $V_{s}= \pm 2.5 \mathrm{~V}$, $R_{L}=500 \Omega, R_{F}=0 \Omega, V_{\text {Out }}=2 \mathrm{~V} p-p, G=+1$

Figure 21. Distortion vs. Output Voltage, $V_{S}= \pm 12 \mathrm{~V}$,
$G=+2, f=1 \mathrm{MHz}, R_{L}=500 \Omega, R_{F}=715 \Omega$

Figure 22. Distortion vs. Output Voltage, $V_{S}= \pm 2.5 \mathrm{~V}$, $G=+1, f=1 \mathrm{MHz}, R_{L}=500 \Omega, R_{F}=0 \Omega$

Figure 23. Multitone Power Ratio Test Circuit

Figure 24. Multitone Power Ratio: $V_{S}= \pm 12 \mathrm{~V}, R_{L}=500 \Omega$, Full Rate ADSL (DMT), Downstream

Figure 25. Multitone Power Ratio: $V_{S}= \pm 12 \mathrm{~V}, R_{L}=500 \Omega$, Full Rate ADSL (DMT), Upstream

Figure 26. Multitone Power Ratio: $V_{S}= \pm 6 V, R_{L}=500 \Omega$, Full Rate ADSL (DMT), Downstream

Figure 27. Multitone Power Ratio: $V_{s}= \pm 6 V, R_{L}=500 \Omega$, Full Rate ADSL (DMT), Upstream

Figure 28. Voltage Offset vs. Temperature

Figure 29. Bias Current vs. Temperature

Figure 30. Voltage Offset vs. Input Common-Mode Voltage

Figure 31. CMRR vs. Frequency

Figure 32. Total Supply Current vs. Temperature

Figure 33. Power Supply Rejection vs. Frequency $V_{s}= \pm 12 \mathrm{~V}$

Figure 34. Power Supply Rejection vs. Frequency $V_{S}= \pm 2.5 \mathrm{~V}$

Figure 35. Output-to-Output Crosstalk vs. Frequency, $V_{s}= \pm 12 \mathrm{~V}$

Figure 36. Output-to-Output Crosstalk vs. Frequency, $V_{s}= \pm 2.5 \mathrm{~V}$

Figure 37. Output Impedance vs. Frequency, $V_{s}= \pm 12 \mathrm{~V}$

THEORY OF OPERATION

The AD8022 is a voltage-feedback op amp designed especially for ADSL or other applications requiring very low voltage and current noise along with low supply current, low distortion, and ease of use.

The AD8022 is fabricated on Analog Devices' proprietary eXtra-Fast Complementary Bipolar (XFCB) process, which enables the construction of PNP and NPN transistors with similar fTs in the 4 GHz region. The process is dielectrically isolated to eliminate the parasitic and latch-up problems caused by junction isolation. These features enable the construction of high frequency, low distortion amplifiers with low supply currents.

Figure 38. Simplified Schematic

As shown in Figure 38, the AD8022 input stage consists of an NPN differential pair in which each transistor operates a $300 \mu \mathrm{~A}$ collector current. This gives the input devices a high transconductance and therefore gives the AD8022 a low input noise of $2.5 \mathrm{nV} / \sqrt{ } \mathrm{Hz} @ 100 \mathrm{kHz}$. The input stage drives a folded cascode that consists of a pair of PNP transistors. These PNPs then drive a current mirror that provides a differential input to single-ended output conversion. The output stage provides a high current gain of 10,000 so that the AD8022 can maintain a high dc open-loop gain, even into low load impedances.

APPLICATIONS

The low noise AD8022 dual xDSL receiver amplifier is specifically designed for the dual differential receiver amplifier function within xDSL transceiver hybrids, as well as other low noise amplifier applications. The AD8022 can be used in receiving modulated signals including discrete multitone (DMT) on either end of the subscriber loop. Communication systems designers can be challenged when designing an xDSL modem transceiver hybrid capable of receiving the smallest signals embedded in noise that inherently exists on twisted-pair phone lines. Noise sources include near-end crosstalk (NEXT), far-end crosstalk (FEXT), background, and impulse noise, all of which are fed, to some degree, into the receiver front end. Based on a Bellcore noise survey, the background noise level for typical twisted-pair telephone loops is $-140 \mathrm{dBm} / \sqrt{ } \mathrm{Hz}$ or $31 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$. It is therefore important to minimize the noise added by the receiver amplifiers to preserve as much signal-tonoise ratio (SNR) as possible. With careful transceiver hybrid design, using the AD8022 dual, low noise, receiver amplifier to maintain power density levels lower than $-140 \mathrm{dBm} / \sqrt{ } \mathrm{Hz}$ in ADSL modems is easily achieved.

DMT MODULATION AND MULTITONE POWER RATIO (MTPR)

ADSL systems rely on discrete multitone DMT modulation to carry digital data over phone lines. DMT modulation appears in the frequency domain as power contained in several individual frequency subbands, sometimes referred to as tones or bins, each of which is uniformly separated in frequency. (See Figure 24 to Figure 27 for MTPR results while the AD8022 receives DMT driving 800 mV rms across a 500Ω differential load.) A uniquely encoded quadrature amplitude modulation (QAM) signal occurs at the center frequency of each subband or tone. Difficulties exist when decoding these subbands if a QAM signal from one subband is corrupted by the QAM signal(s) from other subbands, regardless of whether the corruption comes from an adjacent subband or harmonics of other subbands. Conventional methods of expressing the output signal integrity of line receivers, such as spurious-free dynamic range (SFDR), single tone harmonic distortion (THD), twotone intermodulation distortion (IMD), and third-order intercept (IP3), become significantly less meaningful when amplifiers are required to process DMT and other heavily modulated waveforms. A typical xDSL downstream DMT signal can contain as many as 256 carriers (subbands or tones) of QAM signals. MTPR is the relative difference between the measured power in a typical subband (at one tone or carrier) vs. the power at another subband specifically selected to contain no QAM data.

In other words, a selected subband (or tone) remains open or void of intentional power (without a QAM signal) yielding an
empty frequency bin. MTPR, sometimes referred to as the empty bin test, is typically expressed in dBc , similar to expressing the relative difference between single tone fundamentals and second or third harmonic distortion components. Measurements of MTPR are typically made at the output of the receiver directly across the differential load. Other components aside, the receiver function of an ADSL transceiver hybrid is affected by the turns ratio of the selected transformers within the hybrid design. Since a transformer reflects the secondary voltage back to the primary side by the inverse of the turns ratio, $1 / \mathrm{N}$, increasing the turns ratio on the secondary side reduces the voltage across the primary side inputs of the differential receiver. Increasing the turns ratio of the transformers can inadvertently cause a reduction of the SNR by reducing the received signal strength.

CHANNEL CAPACITY AND SNR

The efficiency of an ADSL system in delivering the digital data embedded in the DMT signals can be compromised when the noise power of the transmission system increases. Figure 39 shows the relationship between SNR and the relative maximum number of bits per tone or subband while maintaining a bit error rate at 10^{-7} errors per second.

Figure 39. ADSL DMT SNR vs. Bits/Tone

POWER SUPPLY AND DECOUPLING

The AD8022 should be powered with a good quality (that is, low noise) dual supply of $\pm 12 \mathrm{~V}$ for the best overall performance. The AD8022 circuit also functions at voltages lower than $\pm 12 \mathrm{~V}$. Careful attention must be paid to decoupling the power supply pins. A pair of $10 \mu \mathrm{~F}$ capacitors located in near proximity to the AD8022 is required to provide good decoupling for lower frequency signals. In addition, $0.1 \mu \mathrm{~F}$ decoupling capacitors should be located as close to each of the power supply pins as is physically possible.

Figure 40. DMT Signal Generator Schematic

Figure 41. Differential Input Sallen-Key Filter Using AD8022 on Single Supply, +12 V

Figure 42. Frequency Response of Sallen-Key Filter

LAYOUT CONSIDERATIONS

As is the case with all high speed amplifiers, careful attention to printed circuit board layout details prevent associated board parasitics from becoming problematic. Proper RF design technique is mandatory. The PCB should have a ground plane covering all unused portions of the component side of the board to provide a low impedance return path. Removing the ground plane from the area near the input signal lines reduces stray capacitance. Chip capacitors should be used for supply bypassing. One end of the capacitor should be connected to the ground plane, and the other should be connected no more than $1 / 8$ inch away from each supply pin. An additional large ($0.47 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$) tantalum capacitor should be connected in parallel, although not necessarily as close, in order to supply current for fast, large signal changes at the AD8022 output. Signal lines connecting the feedback and gain resistors should be as short as possible, minimizing the inductance and stray capacitance associated with these traces. Locate termination resistors and loads as close as possible to the input(s) and output, respectively. Adhere to stripline design techniques for long signal traces (greater than about 1 inch). Following these generic guidelines improves the performance of the AD8022 in all applications.

OUTLINE DIMENSIONS

gure 44. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)—Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD8022AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8
AD8022ARZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8
AD8022ARZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8
AD8022ARZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8
AD8022ARMZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8
AD8022ARMZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8
AD8022ARMZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8
AD8022ARM-EBZ		Evaluation Board	
AD8022AR-EBZ	Evaluation Board		

[^2]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Operational Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NJU7047RB1-TE2 LTC6226IS8\#PBF LTC6226HS8\#PBF LT1058ACN LT1206CR LT1058ISW THS4222DGNR OPA2677IDDAR THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT6202IS5\#TRMPBF LT1206CR\#PBF LTC6253CMS8\#PBF LT1813CDD\#PBF ADA4851-4YRUZ-RL LT1037IN8\#PBF LTC6401CUD-20\#PBF LT1192CN8\#PBF LTC6401IUD-26\#PBF LT1037ACN8\#PBF LTC6253CTS8\#TRMPBF LT1399HVCS\#PBF LT1993CUD-2\#PBF LT6203CDD\#PBF LT1722CS8\#PBF LT1208CN8\#PBF LT1222CN8\#PBF LT6203IDD\#PBF LT6411IUD\#PBF LTC6400CUD-26\#PBF LTC6400CUD-8\#PBF LT6211IDD\#PBF OP27EN8\#PBF LT1810IMS8\#PBF OP37EN8\#PBF LTC6253IMS8\#PBF LT1360CS8 OPA2132PAG4 OPA2353UA/2K5 OPA2691I-14D OPA4353UA/2K5 OPA690IDRG4 LMH6723MFX/NOPB ADP5302ACPZ-3-R7 AD8007AKSZ-REEL7 AD8008ARMZ AD8009JRTZREEL7 AD8010ANZ

[^0]: ${ }^{1}$ FPBW = Slew Rate/(2π V Peak).
 ${ }^{2}$ Multitone testing performed with 800 mV rms across a 500Ω load at Point A and Point B on the circuit of Figure 23.

[^1]: ${ }^{1}$ Specification is for the device in free air: 8 -Lead SOIC: $\theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{W}$.
 8 -Lead MSOP: $\theta_{J A}=200^{\circ} \mathrm{C} / \mathrm{W}$.

[^2]: ${ }^{1} Z=$ RoHS Compliant Part.

