Known Good Die

FEATURES

High speed
$190 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth ($\mathrm{G}=+1$)
$100 \mathrm{~V} / \mu \mathrm{s}$ slew rate
Low distortion
120 dBc @ 1 MHz SFDR
80 dBc @ 5 MHz SFDR

Selectable input crossover threshold

Low noise
$4.3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
$1.6 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Low offset voltage: $900 \boldsymbol{\mu V}$ max
Low power: $6.5 \mathrm{~mA} / \mathrm{amplifier}$ supply current
Disable mode
Wide supply range: 2.7 V to 12 V
Known good die (KGD): these die are fully guaranteed to data sheet specifications

APPLICATIONS

Filters

ADC drivers
Level shifting
Buffering
Professional video
Low voltage instrumentation

GENERAL DESCRIPTION

The AD8028-KGD-CHIP ${ }^{1}$ is a high speed amplifier with rail-torail input and output that operates on low supply voltages and is optimized for high performance and wide dynamic signal range. The AD8028-KGD-CHIP has low noise ($4.3 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$, $1.6 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$) and low distortion (120 dBc at 1 MHz). In applications that use a fraction of or the entire input dynamic range and require low distortion, the AD8028-KGD-CHIP is an ideal choice.

Many rail-to-rail input amplifiers have an input stage that switches from one differential pair to another as the input signal crosses a threshold voltage, which causes distortion. The AD8028-KGDCHIP has a unique feature that allows the user to select the input crossover threshold voltage through the SELECT pin. This feature controls the voltage at which the complementary transistor input pairs switch. The AD8028-KGD-CHIP also has intrinsically low crossover distortion. With its wide supply voltage range (2.7 V to 12 V) and wide bandwidth (190 MHz), the AD8028-KGD-CHIP amplifier is designed to work in a variety of applications where speed and performance are needed on low supply voltages. The AD8028-KGD-CHIP has a disable mode that is controlled via the SELECT pin.

The AD8028-KGD-CHIP is rated to work over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Additional application and technical information can be found in the AD8028 data sheet.

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 6
REVISION HISTORY
11/12-Rev. A to Rev. B
Changed AD8028-KGD-CHIPS to
AD8028-KGD-CHIP
\qquadUniversal
Changes to Table 1 3
Changes to Table 2 4
Changes to Table 3 5
9/12—Rev. 0 to Rev. A
Changes to Table 1 3
Changes to Table 2 4
Changes to Table 3 5
Updated Outline Dimensions 8
Changes to Ordering Guide 8
ESD Caution 6
Pad Configuration and Function Descriptions 7
Outline Dimensions 8
Die Specifications and Assembly Recommendations 8
Ordering Guide 8

7/12-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{s}}= \pm 5 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to midsupply, $\mathrm{G}=1$, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Status ${ }^{1}$	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1\%	$\begin{aligned} & \mathrm{G}=1, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=2, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } / \mathrm{G}=-1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \\ & \mathrm{G}=2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \end{aligned}$	$\begin{aligned} & 138 \\ & 20 \end{aligned}$	$\begin{aligned} & 190 \\ & 32 \\ & 16 \\ & 90 / 100 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { GBD } \\ & \text { GBD } \end{aligned}$	MHz MHz MHz $\mathrm{V} / \mu \mathrm{s}$ ns
NOISE/DISTORTION PERFORMANCE Spurious-Free Dynamic Range (SFDR) Input Voltage Noise Input Current Noise Differential Gain Error Differential Phase Error Crosstalk, Output to Output	$\begin{aligned} & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{RF}=24.9 \Omega \\ & \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{RF}=24.9 \Omega \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \text { NTSC, } \mathrm{G}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \text { NTSC, } \mathrm{G}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V} @ 1 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 120 \\ & 80 \\ & 4.3 \\ & 1.6 \\ & 0.1 \\ & 0.2 \\ & -93 \end{aligned}$			dBc dBC $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ \% Degrees dB
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Offset Current Open-Loop Gain	SELECT = three-state or open, PNP active SELECT = high NPN active $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $V_{C M}=0 \mathrm{~V}$, NPN active $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, PNP active TMIN to $\mathrm{T}_{\text {MAX }}$ $\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$		$\begin{aligned} & 200 \\ & 240 \\ & 1.50 \\ & 4 \\ & 4 \\ & -8 \\ & -8 \\ & \pm 0.1 \\ & 110 \end{aligned}$	6 -11 ± 0.9	Tested Tested Tested	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ dB
INPUT CHARACTERISTICS Input Impedance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$\mathrm{VCM}= \pm 2.5 \mathrm{~V}$		$\begin{aligned} & 6 \\ & 2 \\ & -5.2 \text { to } 5.2 \\ & 110 \end{aligned}$			$\mathrm{M} \Omega$ pF V dB
SELECT PIN Crossover Low, Selection Input Voltage Crossover High, Selection Input Voltage Disable Input Voltage Disable Switching Speed Enable Switching Speed	Three-state $< \pm 20 \mu \mathrm{~A}$ 50% of input to $<10 \%$ of final $V_{\text {out }}$		$\begin{aligned} & -3.3 \text { to }+5 \\ & -3.9 \text { to }-3.3 \\ & -5 \text { to }-3.9 \\ & 980 \\ & 45 \end{aligned}$			V V V ns ns
OUTPUT CHARACTERISTICS Output Overdrive Recovery Time (Rising/Falling Edge) Output Voltage Swing Short-Circuit Output Off Isolation Capacitive Load Drive	$\mathrm{V}_{\mathrm{IN}}=+6 \mathrm{~V} \text { to }-6 \mathrm{~V}, \mathrm{G}=-1$ Sinking and Sourcing $\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V} p-\mathrm{p}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{SELECT}=\text { low }$ 30% overshoot	$-V_{s}+0.20$	40/45 $\begin{aligned} & +V_{s}-0.06 \\ & -V_{s}+0.06 \\ & 120 \\ & -49 \\ & 20 \end{aligned}$	+ V_{s}	Tested	ns V mA dB pF
```POWER SUPPLY Operating Range Quiescent Current/Amplifier Quiescent Current (Disabled) +V -V Power Supply Rejection Ratio```	$\begin{aligned} & \mathrm{SELECT}=\mathrm{low} \\ & \mathrm{~V}_{\mathrm{s} \pm 1 \mathrm{~V}} \end{aligned}$	$2.7$ $-0.9$	$6.5$   0.8   -0.6 $110$	$\begin{aligned} & 12 \\ & 8.5 \\ & 3 \end{aligned}$	Tested   Tested   Tested	V   mA   mA   mA   dB

## AD8028-KGD-CHIP

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to midsupply, unless otherwise noted.
Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Status ${ }^{1}$	Unit
DYNAMIC PERFORMANCE   -3 dB Bandwidth   Bandwidth for 0.1 dB Flatness Slew Rate   Settling Time to 0.1\%	$\begin{aligned} & \mathrm{G}=1, \mathrm{~V}_{\text {Out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=2, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } / \mathrm{G}=-1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \\ & \text { step } \\ & \mathrm{G}=2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \end{aligned}$	$\begin{aligned} & 131 \\ & 18 \end{aligned}$	$\begin{aligned} & 185 \\ & 28 \\ & 12 \\ & 85 / 100 \\ & 40 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \text { GBD } \\ \text { GBD } \end{array}$	MHz   MHz   MHz   $\mathrm{V} / \mu \mathrm{s}$   ns
NOISE/DISTORTION PERFORMANCE   Spurious-Free Dynamic Range (SFDR)   Input Voltage Noise   Input Current Noise   Differential Gain Error   Differential Phase Error   Crosstalk, Output to Output	$\begin{aligned} & \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}, \mathrm{Vout}^{2} \mathrm{~V} \text { p-p, } \mathrm{RF}=24.9 \Omega \\ & \mathrm{f}_{\mathrm{c}}=5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{RF}=24.9 \Omega \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{NTSC}, \mathrm{G}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{NTSC}, \mathrm{G}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{~V}_{\mathrm{s}}= \pm \pm \mathrm{V} @ 1 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 90 \\ & 64 \\ & 4.3 \\ & 1.6 \\ & 0.1 \\ & 0.2 \\ & -92 \end{aligned}$			dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ \% Degrees dB
DC PERFORMANCE Input Offset Voltage   Input Offset Voltage Drift Input Bias Current   Input Offset Current Open-Loop Gain	SELECT = three-state or open, PNP active   SELECT = high NPN active   $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$   $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$, NPN active   $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$   $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$, PNP active   $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$ $V_{\text {OUT }}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}$		$\begin{aligned} & 200 \\ & 240 \\ & 2 \\ & 4 \\ & 4 \\ & -8 \\ & -8 \\ & \pm 0.1 \\ & 105 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 900 \end{aligned}$	Tested   Tested	$\mu \mathrm{V}$   $\mu \mathrm{V}$   $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$   $\mu \mathrm{A}$   dB
INPUT CHARACTERISTICS   Input Impedance   Input Capacitance   Input Common-Mode Voltage Range   Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 2.5 V		$\begin{aligned} & 6 \\ & 2 \\ & -0.2 \text { to }+5.2 \\ & 105 \end{aligned}$			$\mathrm{M} \Omega$   pF   V   dB
SELECT PIN   Crossover Low, Selection Input Voltage Crossover High, Selection Input Voltage Disable Input Voltage Disable Switching Speed Enable Switching Speed	Three-state $< \pm 20 \mu \mathrm{~A}$   $50 \%$ of input to $<10 \%$ of final Vout		$\begin{aligned} & 1.7 \text { to } 5 \\ & 1.1 \text { to } 1.7 \\ & 0 \text { to } 1.1 \\ & 1100 \\ & 50 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
OUTPUT CHARACTERISTICS   Overdrive Recovery Time (Rising/Falling Edge) Output Voltage Swing   Off Isolation Short-Circuit Current Capacitive Load Drive	$\begin{aligned} & V_{\mathbb{N}}=-1 \mathrm{~V} \text { to }+6 \mathrm{~V}, \mathrm{G}=-1 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathbb{I}}=0.2 \mathrm{~V} \text { p-p, } \mathrm{f}=1 \mathrm{MHz}, \mathrm{SELECT}=\text { low } \\ & \text { Sinking and sourcing } \\ & 30 \% \text { overshoot } \end{aligned}$	-Vs + 0.12	50/50 $\begin{aligned} & +V S-0.04, \\ & -V s+0.04 \\ & -49 \\ & 105 \\ & 20 \end{aligned}$	+Vs	Tested	ns   v   dB   mA   pF
POWER SUPPLY   Operating Range   Quiescent Current/Amplifier   Quiescent Current (Disabled)   Power Supply Rejection Ratio	$\begin{aligned} & \text { SELECT = low } \\ & \mathrm{V}_{\mathrm{s} \pm 1 \mathrm{~V}} \end{aligned}$	2.7	$\begin{aligned} & 6 \\ & 320 \\ & 105 \\ & \hline \end{aligned}$	12	GBD	V   mA   $\mu \mathrm{A}$   dB

[^0]$\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to midsupply, unless otherwise noted.
Table 3.

Parameter	Test Conditions/Comments	Min	Typ	Max	Status ${ }^{1}$	Unit
DYNAMIC PERFORMANCE   -3 dB Bandwidth   Bandwidth for 0.1 dB Flatness   Slew Rate   Settling Time to 0.1\%	$\begin{aligned} & \mathrm{G}=1, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=2, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } / \mathrm{G}=-1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \\ & \text { step } \\ & \mathrm{G}=2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \end{aligned}$	$\begin{aligned} & 125 \\ & 19 \end{aligned}$	180   29   10   73/100   48		$\begin{aligned} & \text { GBD } \\ & \text { GBD } \end{aligned}$	MHz   MHz   MHz   $\mathrm{V} / \mu \mathrm{s}$   ns
NOISE/DISTORTION PERFORMANCE   Spurious-Free Dynamic Range (SFDR)   Input Voltage Noise   Input Current Noise   Differential Gain Error   Differential Phase Error   Crosstalk, Output to Output	$\begin{aligned} & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{R}_{\mathrm{F}}=24.9 \Omega \\ & \mathrm{f}_{\mathrm{c}}=5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{R}_{\mathrm{F}}=24.9 \Omega \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{NTSC}, \mathrm{G}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{NTSC}, \mathrm{G}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \end{aligned}$ $\text { @ } 1 \text { MHz }$		$\begin{aligned} & 85 \\ & 64 \\ & 4.3 \\ & 1.6 \\ & 0.15 \\ & 0.20 \\ & -89 \end{aligned}$			dBc   dBc   $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$   $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$   \%   Degrees   dB
DC PERFORMANCE   Input Offset Voltage   Input Offset Voltage Drift Input Bias Current   Input Offset Current Open-Loop Gain	```SELECT = three-state or open, PNP active SELECT = high NPN active \(\mathrm{T}_{\text {MIN }}\) to \(\mathrm{T}_{\text {MAX }}\) \(\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}\), NPN active \(\mathrm{T}_{\text {MIN }}\) to \(\mathrm{T}_{\text {MAX }}\) \(\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}\), PNP active \(\mathrm{T}_{\text {MIN }}\) to \(\mathrm{T}_{\text {MAX }}\) Vout \(=1 \mathrm{~V}\) to 2 V```		$\begin{aligned} & 200 \\ & \\ & 240 \\ & 2 \\ & 4 \\ & 4 \\ & -8 \\ & -8 \\ & \pm 0.1 \\ & 100 \\ & \hline \end{aligned}$			$\mu \mathrm{V}$   $\mu \mathrm{V}$   $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$   $\mu \mathrm{A}$   dB
INPUT CHARACTERISTICS   Input Impedance   Input Capacitance   Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 6 \\ & 2 \\ & -0.2 \text { to }+3.2 \\ & 100 \end{aligned}$			$\mathrm{M} \Omega$   pF   V   dB
SELECT PIN   Crossover Low, Selection Input Voltage   Crossover High, Selection Input Voltage   Disable Input Voltage   Disable Switching Speed   Enable Switching Speed	Three-state $< \pm 20 \mu \mathrm{~A}$   $50 \%$ of input to $<10 \%$ of final $V_{\text {out }}$		1.7 to 3   1.1 to 1.7   0 to 1.1   1150   50			V   V   V   ns   ns
OUTPUT CHARACTERISTICS   Output Overdrive Recovery Time (Rising/Falling Edge)   Output Voltage Swing   Short-Circuit Current   Off Isolation   Capacitive Load Drive	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-1 \mathrm{~V} \text { to }+4 \mathrm{~V}, \mathrm{G}=-1 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$   Sinking and sourcing $\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{SELECT}=$ low   $30 \%$ overshoot	$-V_{s}+0.09$	$\begin{aligned} & 55 / 55 \\ & +V_{s}-0.03 \\ & -V_{s}+0.03 \\ & 72 \\ & -49 \\ & 20 \\ & \hline \end{aligned}$	$+\mathrm{V}_{\mathrm{s}}$	Tested	ns   V   mA   dB   pF
POWER SUPPLY   Operating Range   Quiescent Current/Amplifier   Quiescent Current (Disabled)   Power Supply Rejection Ratio	$\begin{aligned} & \text { SELECT = low } \\ & \mathrm{V}_{\mathrm{s}} \pm 1 \mathrm{~V} \end{aligned}$	2.7	$\begin{aligned} & 6.0 \\ & 300 \\ & 100 \end{aligned}$	12	GBD	V   mA   $\mu \mathrm{A}$   dB

${ }^{1} \mathrm{GBD}$ is guaranteed by design.

## AD8028-KGD-CHIP

## ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	12.6 V
Common-Mode Input Voltage	$\pm \mathrm{V}_{\mathrm{s}} \pm 0.5 \mathrm{~V}$
Differential Input Voltage	$\pm 1.8 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality

## PAD CONFIGURATION AND FUNCTION DESCRIPTIONS



Table 5. Pad Function Descriptions

Pad No.	X-Axis	Y-Axis	Mnemonic	Description
1	-326	+491	Vouta	Output A.
2	-547	-212	- IN A	Inverting Input A.
3	-590	-346	+ IN A	Noninverting Input A.
4	-592	-490	- V $_{\text {s }}$	Negative Supply.
5	-286	-492	Disable Control/Select A	Disable Control/Select Mode A.
6	+325	-489	Disable Control/Select B	Disable Control/Select Mode B.
7	+593	-490	+ IN B	Noninverting Input B.
8	+596	-350	- IN B	Inverting Input B
9	+324	+491	VoutB	Output B.
10	+86	+492	+ Vs	Positive Supply.

## AD8028-KGD-CHIP

## OUTLINE DIMENSIONS



Figure 2. 10-Pad Bare Die [CHIP] (C-10-3)
Dimensions shown in millimeters
DIE SPECIFICATIONS AND ASSEMBLY RECOMMENDATIONS
Table 6. Typical Die Specifications

Parameter	Value	Unit
Chip Size	$1420 \times 1290$	$\mu \mathrm{~m}$
Scribe Line Width	75	$\mu \mathrm{~m}$
Die Size	$55.7 \times 47.4$	Mil
Thickness	305	$\mu \mathrm{~m}$
Bond Pads (Min Size)	$76 \times 76$	$\mu \mathrm{~m}$
Bond Pad Composition	$1 \%$ Copper Doped Aluminum	$\%$
Backside	Si	Not Applicable
Passivation	Doped oxide/SiN	Not Applicable
ESD	HBM 2000	V

Table 7. Assembly Recommendations

Assembly Component	Recommendation
Die Attach	Ablestik 84-1LMIS R4
Bonding Method	1 mil gold

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8028-KGD-CHIP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10-$ Pad Bare Die	$\mathrm{C}-10-3$

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Operational Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NJU7047RB1-TE2 LTC6226IS8\#PBF LTC6226HS8\#PBF LT1058ACN LT1206CR LT1058ISW THS4222DGNR OPA2677IDDAR THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT6202IS5\#TRMPBF LT1206CR\#PBF LTC6253CMS8\#PBF LT1813CDD\#PBF ADA4851-4YRUZ-RL LT1037IN8\#PBF LTC6401CUD-20\#PBF LT1192CN8\#PBF LTC6401IUD-26\#PBF LT1037ACN8\#PBF LTC6253CTS8\#TRMPBF LT1399HVCS\#PBF LT1993CUD-2\#PBF LT6203CDD\#PBF LT1722CS8\#PBF LT1208CN8\#PBF LT1222CN8\#PBF LT6203IDD\#PBF LT6411IUD\#PBF LTC6400CUD-26\#PBF LTC6400CUD-8\#PBF LT6211IDD\#PBF OP27EN8\#PBF LT1810IMS8\#PBF OP37EN8\#PBF LTC6253IMS8\#PBF LT1360CS8 OPA2132PAG4 OPA2691I-14D OPA4353UA/2K5 OPA690IDRG4 LMH6723MFX/NOPB 5962-9151901MPA ADP5302ACPZ-3-R7 AD8007AKSZ-REEL7 AD8008ARMZ AD8009JRTZREEL7 AD8010ANZ


[^0]:    ${ }^{1}$ GBD is guaranteed by design.

