Low Power, 350 MHz Voltage Feedback Amplifier

FEATURES

```
Low power: }1\textrm{mA}\mathrm{ quiescent current per amplifier
High speed
    -3 dB bandwidth (G = +1): 350 MHz
    Slew rate: 425 V/\mus
Low cost
Low noise
    8 nV/\sqrt{}{Hz}\mathrm{ at 100 kHz}
    600 fA/\sqrt{}{Hz}\mathrm{ at }100\textrm{kHz}
Low input bias current: 750 nA maximum
Low distortion
    -90 dB SFDR at 1 MHz
    -65 dB SFDR at 5 MHz
Wide supply range: 3 V to 12 V
Small packaging: 8-lead SOIC
Supports defense and aerospace applications (AQEC standard)
Extended temperature range: -55'⿳ \ to +105'⿳
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request
```


APPLICATIONS

Battery-powered instrumentation

Filters
ADC drivers
Level shifting
Buffering
Photo multipliers

GENERAL DESCRIPTION

The AD8039-EP dual amplifier is a high speed (350 MHz) voltage feedback amplifier with an exceptionally low quiescent current of 1.0 mA per amplifier typical (1.5 mA maximum). Despite its low power and low cost, the amplifier provides excellent overall performance. Additionally, it offers a high slew rate of $425 \mathrm{~V} / \mu \mathrm{s}$ and a low input offset voltage of 3 mV maximum.

The Analog Devices, Inc., proprietary XFCB process allows low noise operation ($8 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ and $600 \mathrm{fA} / \sqrt{ } \mathrm{Hz}$) at extremely low quiescent currents. Given its wide supply voltage range (3 V to 12 V), wide bandwidth, and small packaging, the AD8039-EP amplifier is designed to work in a variety of applications where power and space are at a premium.

FUNCTIONAL BLOCK DIAGRAM

Figure 2. Small Signal Frequency Response for Various Gains, $V_{\text {out }}=500 \mathrm{mV} p-p, V_{s}= \pm 5 \mathrm{~V}$

The AD8039-EP amplifier has a wide input common-mode range of 1 V from either rail and swings to within 1 V of each rail on the output. This amplifier is optimized for driving capacitive loads up to 20 pF . If driving larger capacitive loads, a small series resistor is needed to avoid excessive peaking or overshoot.

The AD8039-EP amplifier is available in an 8-lead SOIC package and is rated to work over the extended temperature range of $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Additional application and technical information can be found in the AD8038/AD8039 data sheet.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

AD8039-EP

TABLE OF CONTENTS

Features .. 1
Applications... 1
Functional Block Diagram .. 1
General Description ... 1
Revision History .. 2
Specifications... 3
Absolute Maximum Ratings 5
Maximum Power Dissipation 5
Output Short Circuit 5
ESD Caution 5
Typical Performance Characteristics 6
Outline Dimensions 7
Ordering Guide 7

REVISION HISTORY

2/11-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, gain $=+1$, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Overdrive Recovery Time Settling Time to 0.1%	$\begin{aligned} & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \text { p-p, } \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step, } \mathrm{RL}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \mathrm{G}=+2,1 \mathrm{~V} \text { overdrive } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \end{aligned}$	$\begin{aligned} & 300 \\ & \\ & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 350 \\ & 175 \\ & 100 \\ & 45 \\ & 425 \\ & 325 \\ & 50 \\ & 18 \end{aligned}$		MHz MHz MHz MHz $\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ ns ns
NOISE/HARMONIC PERFORMANCE SFDR Second Harmonic Third Harmonic Second Harmonic Third Harmonic Crosstalk, Output-to-Output Input Voltage Noise Input Current Noise	$\begin{aligned} & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp} \mathrm{p}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{f}=5 \mathrm{MHz}, \mathrm{G}=+2 \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -90 \\ & -92 \\ & -65 \\ & -70 \\ & -70 \\ & 8 \\ & 600 \end{aligned}$		dBc dBc dBc dBc dB $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ fA/V Hz
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Bias Current Drift Input Offset Current Open-Loop Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $V_{\text {out }}= \pm 2.5 \mathrm{~V}$		$\begin{aligned} & 0.5 \\ & 4.5 \\ & 400 \\ & 3 \\ & \pm 25 \\ & 70 \end{aligned}$	$\begin{aligned} & 3 \\ & 4.5 \\ & \\ & 750 \\ & 2.0 \end{aligned}$	mV mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ nA $\mu \mathrm{A}$ $n A /{ }^{\circ} \mathrm{C}$ nA dB
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}, \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{array}{r} 61 \\ 59 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 2 \\ & \pm 4 \\ & 67 \end{aligned}$		$M \Omega$ pF V dB dB
OUTPUT CHARACTERISTICS DC Output Voltage Swing Capacitive Load Drive	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, saturated output 30% overshoot, $G=+2$		$\begin{aligned} & \pm 4 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLY Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio -Supply +Supply	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	$\begin{aligned} & 3 \\ & \\ & \\ & 71 \\ & 63 \\ & 64 \\ & 63 \end{aligned}$	1.0 77 70	$\begin{aligned} & 12 \\ & 1.5 \\ & 2.6 \end{aligned}$	V mA mA dB dB dB dB

AD8039-EP

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V} / 2$, gain $=+1$, unless otherwise noted.
Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Overdrive Recovery Time Settling Time to 0.1\%	$\begin{aligned} & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p, } \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step, } \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \mathrm{G}=+2,1 \mathrm{~V} \text { overdrive } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \end{aligned}$	$\begin{aligned} & 275 \\ & \\ & 340 \\ & 275 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & 30 \\ & 45 \\ & 365 \\ & 305 \\ & 50 \\ & 18 \end{aligned}$		MHz MHz MHz MHz V/ $\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ ns ns
NOISE/HARMONIC PERFORMANCE SFDR Second Harmonic Third Harmonic Second Harmonic Third Harmonic Crosstalk, Output-to-Output Input Voltage Noise Input Current Noise	$\begin{aligned} & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{Vp} \mathrm{p}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{f}=5 \mathrm{MHz}, \mathrm{G}=+2 \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -82 \\ & -79 \\ & -60 \\ & -67 \\ & -70 \\ & 8 \\ & 600 \end{aligned}$		dBc dBc dBc dBc dB $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ fA/VHz
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Bias Current Drift Input Offset Current Open-Loop Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\text { Vout }= \pm 2.5 \mathrm{~V}$		$\begin{aligned} & 0.8 \\ & 3 \\ & 400 \\ & 3 \\ & \pm 30 \\ & 70 \end{aligned}$	$\begin{aligned} & 3 \\ & 4.5 \\ & \\ & 750 \\ & 2.0 \end{aligned}$	mV mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ nA $\mu \mathrm{A}$ $\mathrm{nA} /{ }^{\circ} \mathrm{C}$ nA dB
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	$\begin{aligned} & 59 \\ & 59 \end{aligned}$	$\begin{aligned} & 10 \\ & 2 \\ & 1.0 \text { to } 4.0 \\ & 65 \end{aligned}$		$\mathrm{M} \Omega$ pF V dB dB
OUTPUT CHARACTERISTICS DC Output Voltage Swing Capacitive Load Drive	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, saturated output 30% overshoot, $G=+2$		$\begin{aligned} & 0.9 \text { to } 4.1 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLY Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min }} \text { to } \mathrm{T}_{\text {max }} \end{aligned}$	3 65	$\begin{aligned} & 0.9 \\ & 71 \end{aligned}$	$\begin{aligned} & 12 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	12.6 V
Power Dissipation	See Figure 3
Common-Mode Input Voltage	$\pm \mathrm{V}$
Differential Input Voltage	$\pm 4 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation in the AD8039-EP package is limited by the associated rise in junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ on the die. The plastic encapsulating the die locally reaches the junction temperature. At approximately $150^{\circ} \mathrm{C}$, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit may change the stresses that the package exerts on the die, permanently shifting the parametric performance of the AD8039-EP. Exceeding a junction temperature of $175^{\circ} \mathrm{C}$ for an extended time can result in changes in the silicon devices, potentially causing failure.
The still-air thermal properties of the package and $\operatorname{PCB}\left(\theta_{\mathrm{JA}}\right)$, ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$, and total power dissipated in the package $\left(P_{D}\right)$ determine the junction temperature of the die. The junction temperature can be calculated as

$$
T_{J}=T_{A}+\left(P_{D} \times \theta_{I A}\right)
$$

The power dissipated in the package $\left(\mathrm{P}_{\mathrm{D}}\right)$ is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins (V_{s}) multiplied by the quiescent current (I_{s}). Assuming the load (R_{L}) is referenced to midsupply, the total drive power is $\mathrm{V}_{\mathrm{s}} / 2 \times$ Iout, some of which is dissipated in the package and some in the load (Vout \times Iout). The difference between the total drive power and the load power is the drive power dissipated in the package.

$$
\begin{aligned}
& P_{D}=\text { quiescent power }+(\text { total drive power }- \text { load power }) \\
& P_{D}=\left[V_{S} \times I_{S}\right]+\left[\left(V_{S} / 2\right) \times\left(V_{\text {out }} / R_{L}\right)\right]-\left[V_{\text {out }} / 2 / R_{L}\right]
\end{aligned}
$$

Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board
RMS output voltages should be considered. If R_{L} is referenced to $-\mathrm{V}_{\mathrm{S}}$, as in single-supply operation, then the total drive power is $\mathrm{V}_{\mathrm{S}} \times$ Iout. If the rms signal levels are indeterminate, consider the worst case, when $V_{\text {out }}=V_{S} / 4$ for R_{L} to midsupply.

$$
P_{D}=\left(V_{S} \times I_{S}\right)+\left(V_{S} / 4\right)^{2} / R_{L}
$$

In single-supply operation with R_{L} referenced to $-\mathrm{V}_{\mathrm{S}}$, worst case is $V_{\text {out }}=\mathrm{V}_{\mathrm{s}} / 2$.

Airflow increases heat dissipation, effectively reducing $\theta_{J A}$. In addition, more metal directly in contact with the package leads from metal traces, throughholes, ground, and power planes reduces $\theta_{J A}$.
Figure 3 shows the maximum safe power dissipation in the package vs. the ambient temperature for the 8-lead SOIC_N $\left(125^{\circ} \mathrm{C} / \mathrm{W}\right)$ on a JEDEC standard 4-layer board. θ_{JA} values are approximations.

OUTPUT SHORT CIRCUIT

Shorting the output to ground or drawing excessive current from the AD8039-EP will likely cause a catastrophic failure.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

AD8039-EP

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, frequency $=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 4. Small Signal Frequency Response vs. Temperature, Gain $=+1, V_{s}= \pm 5$ V, Vout $=500 \mathrm{mV}$ p-p

Figure 5. Large Signal Frequency Response vs. Temperature, Gain $=+2, V_{s}= \pm 5$ V, Vout $=2 V p-p$

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 6. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body

Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD8039SRZ-EPR7	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	R-8
${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.			

AD8039-EP

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Amplifier IC Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
EVAL-ADCMP566BCPZ EVAL-ADCMP606BKSZ AD8013AR-14-EBZ AD8033AKS-EBZ AD8044AR-EBZ AD8225-EVALZ ADA4859-3ACP-EBZ ADA4862-3YR-EBZ DEM-OPA-SO-2B AD744JR-EBZ AD8023AR-EBZ AD8030ARJ-EBZ AD8040ARU-EBZ AD8073JR-EBZ AD813AR-14-EBZ AD848JR-EBZ ADA4858-3ACP-EBZ ADA4922-1ACP-EBZ 551600075-001/NOPB DEM-OPA-SO2E THS7374EVM EVAL-ADCMP553BRMZ EVAL-ADCMP608BKSZ MIOP 42109 EVAL-ADCMP609BRMZ MAX9928EVKIT+ MAX9636EVKIT+ MAX9611EVKIT MAX9937EVKIT+ MAX9934TEVKIT+ MAX44290EVKIT\# MAX2644EVKIT MAX4073EVKIT+ DEM-OPA-SO-2C MAX2643EVKIT ISL28158EVAL1Z MAX40003EVKIT\# MAX2473EVKIT MAX2472EVKIT MAX4223EVKIT MAX9700BEVKIT MADL-011014-001SMB DC1685A DEM-OPA-SO-2D MAX2670EVKIT\# DEM-OPA-SO-1E AD8137YCP-EBZ EVAL-ADA4523-1ARMZ MAX44242EVKIT\# EVAL-LT5401_32FDAZ

