FEATURES

Adjustable output common-mode voltage
Low harmonic distortion
-94 dBc SFDR @ 5 MHz

- 85 dBc SFDR @ 20 MHz
- 3 dB bandwidth of $320 \mathrm{MHz}, \mathbf{G}=+1$

Fast settling to 0.01% of 16 ns
Fast overdrive recovery of 4 ns
Low input voltage noise of $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
Low power 90 mW on 5 V

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC)
Extended temperature range $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

ADC drivers

Single-ended-to-differential converters
IF and baseband gain blocks
Differential buffers
Line drivers

GENERAL DESCRIPTION

The AD8138-EP is a major advancement over op amps for differential signal processing. The AD8138-EP can be used as a single-ended-to-differential amplifier or as a differential-todifferential amplifier. The AD8138-EP is as easy to use as an op amp and greatly simplifies differential signal amplification and driving. Manufactured on Analog Devices, Inc., proprietary XFCB bipolar process, the AD8138-EP has a -3 dB bandwidth of 320 MHz and delivers a differential signal with the lowest harmonic distortion available in a differential amplifier. The AD8138-EP has a unique internal feedback feature that provides balanced output gain and phase matching, suppressing even order harmonics. The internal feedback circuit also minimizes any gain error that would be associated with the mismatches in the external gain setting resistors.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

PIN CONFIGURATION

TYPICAL APPLICATION CIRCUIT

The AD8138-EP's differential output helps balance the input to the differential ADCs, maximizing the performance of the ADC.

The AD8138-EP eliminates the need for a transformer with high performance ADCs, preserving the low frequency and dc information. The common-mode level of the differential output is adjustable by a voltage on the Vосм pin, easily level-shifting the input signals for driving single-supply ADCs. Fast overload recovery preserves sampling accuracy.

The AD8138-EP distortion performance makes it an ideal ADC driver for communication systems, with distortion performance good enough to drive state-of-the-art 10-bit to 16-bit converters at high frequencies. The AD8138-EP's high bandwidth and IP3 also make it appropriate for use as a gain block in IF and baseband signal chains. The AD8138-EP offset and dynamic performance make it well suited for a wide variety of signal processing and data acquisition applications. The AD8138-EP is available in the MSOP package for operation over $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperatures.

Full details about this enhanced product are available in the AD8138 data sheet, which should be consulted in conjunction with this data sheet.

AD8138-EP

TABLE OF CONTENTS

\qquad
Enhanced Product Features 1
Applications. 1
General Description 1
Pin Configuration 1
Typical Application Circuit 1
Revision History 2
Specifications. 3
$\pm \mathrm{D}_{\text {IN }}$ to \pm OUT Specifications 3
Vocm to \pm OUT Specifications 4
$\pm \mathrm{D}_{\text {IN }}$ to \pm OUT Specifications 5
$V_{\text {осм }}$ to \pm OUT Specifications 6
Absolute Maximum Ratings 7
Thermal Resistance 7
Maximum Power Dissipation 7
ESD Caution 7
Maximum Output Voltage Swing 8
Pin Configuration and Function Descriptions 9
Outline Dimensions 10
Ordering Guide 10

REVISION HISTORY

4/10—Revision 0: Initial Version

SPECIFICATIONS

$\pm \mathrm{D}_{\text {IN }}$ TO \pm OUT SPECIFICATIONS

At $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {осм }}=0 \mathrm{~V}, \mathrm{G}=+1, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=500 \Omega$, unless otherwise noted. All specifications refer to single-ended input and differential outputs, unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Small Signal Bandwidth Bandwidth for 0.1 dB Flatness Large Signal Bandwidth Slew Rate Settling Time Overdrive Recovery Time	$\mathrm{V}_{\text {Out }}=0.5 \mathrm{~V} p-\mathrm{p}, \mathrm{C}_{\mathrm{F}}=0 \mathrm{pF}$ $\mathrm{T}_{\text {min }}$ to Tmax^{1} $V_{\text {Out }}=0.5 \mathrm{~V} p-\mathrm{p}, \mathrm{C}_{\mathrm{F}}=1 \mathrm{pF}$ $V_{\text {OUt }}=0.5 \mathrm{~V} p-\mathrm{p}, \mathrm{C}_{\mathrm{F}}=0 \mathrm{pF}$ $V_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{C}_{\mathrm{F}}=0 \mathrm{pF}$ $V_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{C}_{\mathrm{F}}=0 \mathrm{pF}$ $0.01 \%, V_{\text {out }}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{C}_{\mathrm{F}}=1 \mathrm{pF}$ $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ to 0 V step, $\mathrm{G}=+2$	$\begin{aligned} & 290 \\ & 256 \end{aligned}$	$\begin{aligned} & 320 \\ & 225 \\ & 30 \\ & 265 \\ & 1150 \\ & 16 \\ & 4 \end{aligned}$		MHz MHz MHz MHz MHz V/ $\mu \mathrm{s}$ ns ns
NOISE/HARMONIC PERFORMANCE Second Harmonic Third Harmonic IMD IP3 Voltage Noise (RTI) Input Current Noise			$\begin{aligned} & -94 \\ & -87 \\ & -62 \\ & -114 \\ & -85 \\ & -57 \\ & -77 \\ & 37 \\ & 5 \\ & 2 \end{aligned}$		dBc dBm $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
INPUT CHARACTERISTICS Offset Voltage Input Bias Current Input Resistance Input Capacitance Input Common-Mode Voltage CMRR	$\mathrm{V}_{\mathrm{OS}, \mathrm{dm}}=\mathrm{V}_{\text {OUT, } \mathrm{dm}} / 2 ; \mathrm{V}_{\mathrm{DIN+}+}=\mathrm{V}_{\mathrm{DIN}-}=\mathrm{V}_{\mathrm{OCM}}=0 \mathrm{~V}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}{ }^{1}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ variation Differential Common mode $\Delta \mathrm{V}_{\text {out }, \mathrm{dm}} / \Delta \mathrm{V}_{\mathbb{I N}, \mathrm{cm}} ; \Delta \mathrm{V}_{\mathrm{IN}, \mathrm{cm}}= \pm 1 \mathrm{~V}$, $\mathrm{T}_{\text {min }}$ to Tmax^{1}	$\begin{aligned} & -2.5 \\ & -4.8 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & 3.5 \\ & -0.01 \\ & 6 \\ & 3 \\ & 1 \\ & -4.7 \text { to }+3.4 \\ & -77 \end{aligned}$	$\begin{aligned} & +2.5 \\ & +4.8 \end{aligned}$ 7 $\begin{aligned} & -70 \\ & -69 \end{aligned}$	mV mV $\mu \mathrm{A}$ $\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$ $\mathrm{M} \Omega$ $M \Omega$ pF V dB dB
OUTPUT CHARACTERISTICS Output Voltage Swing ${ }^{2}$ Output Balance Error	Maximum $\Delta \mathrm{V}_{\text {out; }}$ single-ended output $\Delta \mathrm{V}_{\text {out, } \mathrm{cm}} / \Delta \mathrm{V}_{\text {out, }} \mathrm{dm} ; \Delta \mathrm{V}_{\text {out, }} \mathrm{dm}=1 \mathrm{~V}$		$\begin{aligned} & 7.75 \\ & -66 \end{aligned}$		$\begin{aligned} & \text { Vp-p } \\ & d B \end{aligned}$

[^0]
AD8138-EP

$\mathbf{V}_{\text {OCM }} \mathbf{T O} \pm$ OUT SPECIFICATIONS

At $25^{\circ} \mathrm{C}, \mathrm{V}_{s}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {ocm }}=0 \mathrm{~V}, \mathrm{G}=+1, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=500 \Omega$, unless otherwise noted. All specifications refer to single-ended input and differential outputs, unless otherwise noted.
Table 2.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Slew Rate			$\begin{aligned} & 250 \\ & 330 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
INPUT VOLTAGE NOISE (RTI)	$\mathrm{f}=0.1 \mathrm{MHz}$ to 100 MHz		17		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Voltage Range Input Resistance Input Offset Voltage Input Bias Current Vocm CMRR Gain	$\mathrm{V}_{\mathrm{OS}, \mathrm{cm}}=\mathrm{V}_{\mathrm{OUT}, \mathrm{cm} ;} \mathrm{V}_{\mathrm{DIN}+}=\mathrm{V}_{\mathrm{DIN}-}=\mathrm{V}_{\mathrm{OCM}}=0 \mathrm{~V}$ $\mathrm{T}_{\text {min }}$ to Tmax^{1} $\Delta \mathrm{V}_{\text {OUT, }} / \mathrm{dm} / \Delta \mathrm{V}_{\text {Oсм }} ; \Delta \mathrm{V}_{\text {Oсм }}= \pm 1 \mathrm{~V}$ $\Delta \mathrm{V}_{\text {out }, \text { cm }} / \Delta \mathrm{V}_{\text {осм }} ; \Delta \mathrm{V}_{\text {осм }}= \pm 1 \mathrm{~V}, \mathrm{~T}_{\text {Min }}$ to $\mathrm{T}_{\text {Max }}{ }^{1}$	$\begin{aligned} & -3.5 \\ & -10.2 \\ & 0.9955 \end{aligned}$	$\begin{aligned} & \pm 3.8 \\ & 200 \\ & \pm 1 \\ & \\ & 0.5 \\ & -75 \\ & 1 \end{aligned}$	$\begin{aligned} & +3.5 \\ & +10.2 \\ & \\ & 1.0045 \end{aligned}$	V $\mathrm{k} \Omega$ mV mV $\mu \mathrm{A}$ dB V/V
POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}{ }^{1}$ $\Delta \mathrm{V}_{\text {out, }} \mathrm{dm} / \Delta \mathrm{V}_{\mathrm{s}} ; \Delta \mathrm{V}_{\mathrm{s}}= \pm 1 \mathrm{~V}_{\text {, }} \mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAx }}{ }^{1}$	$\begin{aligned} & \pm 1.4 \\ & 18 \\ & 13.2 \end{aligned}$	20 -90	$\begin{aligned} & \pm 5.5 \\ & 23 \\ & -70 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~dB} \end{aligned}$
OPERATING TEMPERATURE RANGE		-55		+105	${ }^{\circ} \mathrm{C}$

[^1]
$\pm \mathrm{D}_{\text {IN }}$ TO \pm OUT SPECIFICATIONS

At $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~V}_{\text {осм }}=2.5 \mathrm{~V}, \mathrm{G}=+1, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=500 \Omega$, unless otherwise noted. All specifications refer to single-ended input and differential output, unless otherwise noted.
Table 3.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Small Signal Bandwidth	$\mathrm{V}_{\text {OUt }}=0.5 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{C}_{\mathrm{F}}=0 \mathrm{pF}$	280	310		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	$\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {Max }}{ }^{1}$	242			
	$\mathrm{V}_{\text {Out }}=0.5 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{C}_{\mathrm{F}}=1 \mathrm{pF}$	225			MHz
Bandwidth for 0.1 dB Flatness	$\mathrm{V}_{\text {OUt }}=0.5 \mathrm{~V}-\mathrm{p}, \mathrm{C}_{\mathrm{F}}=0 \mathrm{pF}$	29			MHz
Large Signal Bandwidth	$V_{\text {OUT }}=2 \mathrm{Vp-p}, \mathrm{C}_{\mathrm{F}}=0 \mathrm{pF}$	265			MHz
Slew Rate	$\mathrm{V}_{\text {OUt }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{C}_{\mathrm{F}}=0 \mathrm{pF}$	950			V/us
Settling Time	$0.01 \%, \mathrm{~V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{C}_{\mathrm{F}}=1 \mathrm{pF}$	16			ns
Overdrive Recovery Time	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to 0 V step, $\mathrm{G}=+2$	4			ns
NOISE/HARMONIC PERFORMANCE					
Second Harmonic	$V_{\text {out }}=2 \mathrm{Vp}-\mathrm{p}, 5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$	-90			dBc
	$V_{\text {Out }}=2 \mathrm{~V}$ p-p, $20 \mathrm{MHz}, \mathrm{RL}, \mathrm{dm}=800 \Omega$	-79			dBC
	$V_{\text {Out }}=2 \mathrm{~V}$ p-p, $70 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$	-60			dBc
Third Harmonic	$\mathrm{V}_{\text {out }}=2 \mathrm{~V}$ p-p, $5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$	-100			dBC
	$V_{\text {OUt }}=2 \mathrm{~V}$ p-p, $20 \mathrm{MHz}, \mathrm{RL}, \mathrm{dm}=800 \Omega$	-82			dBC
	$\mathrm{V}_{\text {Out }}=2 \mathrm{~V}$ p-p, $70 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$	-53			dBc
IMD	20 MHz	-74			dBc
IP3	20 MHz	35			dBm
Voltage Noise (RTI)	$\mathrm{f}=100 \mathrm{kHz}$ to 40 MHz	5			$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Current Noise	$\mathrm{f}=100 \mathrm{kHz}$ to 40 MHz	2			$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
INPUT CHARACTERISTICS					
Offset Voltage		-2.5-5.1	± 1	+2.5	mV
	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}{ }^{1}$			+5.1	mV
Input Bias Current		-5.1	3.5	7	$\mu \mathrm{A}$
	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ variation		-0.01		$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Input Resistance	Differential		6		$\mathrm{M} \Omega$
	Common mode		3		$\mathrm{M} \Omega$
Input Capacitance			1		pF
Input Common-Mode VoltageCMRR			-0.3 to +3.2		V
	$\Delta \mathrm{V}_{\text {out, }} \mathrm{dm} / \Delta \mathrm{V}_{\text {IN, cm }} ; \Delta \mathrm{V}_{\text {IN, cm }}=1 \mathrm{~V}$		-77	-70	dB
	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}{ }^{1}$			-69.5	dB
OUTPUT CHARACTERISTICS					
Output Voltage Swing ${ }^{2}$	Maximum $\Delta \mathrm{V}_{\text {out; }}$; single-ended output		2.9		$\checkmark \mathrm{p}$-p
Output Balance Error	$\Delta \mathrm{V}_{\text {OUT, }} / \mathrm{mm} / \Delta \mathrm{V}_{\text {OUT, }} \mathrm{dm} ; ~ \Delta \mathrm{~V}_{\text {OUT, }} \mathrm{dm}=1 \mathrm{~V}$		-65		dB

[^2]
AD8138-EP

$\mathbf{V}_{\text {ocm }} \mathbf{T O} \pm$ OUT SPECIFICATIONS

At $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~V}_{\text {осм }}=2.5 \mathrm{~V}, \mathrm{G}=+1, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=500 \Omega$, unless otherwise noted. All specifications refer to single-ended input and differential output, unless otherwise noted.
Table 4.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Slew Rate			$\begin{aligned} & 220 \\ & 250 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
INPUT VOLTAGE NOISE (RTI)	$\mathrm{f}=0.1 \mathrm{MHz}$ to 100 MHz		17		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Voltage Range Input Resistance Input Offset Voltage Input Bias Current Vocm CMRR Gain	$\mathrm{V}_{\mathrm{OS}, \mathrm{cm}}=\mathrm{V}_{\mathrm{OUT}, \mathrm{cm} ;} \mathrm{V}_{\mathrm{DIN+}}=\mathrm{V}_{\mathrm{DIN}-}=\mathrm{V}_{\mathrm{OCM}}=0 \mathrm{~V}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{Tmax}^{1}{ }^{1}$ $\Delta \mathrm{V}_{\text {OUT, } \mathrm{dm}} / \Delta \mathrm{V}_{\text {OcM }} ; \Delta \mathrm{V}_{\text {OCM }}=2.5 \mathrm{~V} \pm 1 \mathrm{~V}$ $\Delta \mathrm{V}_{\text {out }, \mathrm{cm}} / \Delta \mathrm{V}_{\text {OCM }} ; \Delta \mathrm{V}_{\text {OCM }}=2.5 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~T}_{\text {Min }}$ to $\mathrm{T}_{\text {MAX }}{ }^{1}$	$\begin{aligned} & -5 \\ & -9.7 \\ & \\ & 0.9968 \end{aligned}$	$\begin{aligned} & 1.0 \text { to } 3.8 \\ & 100 \\ & \pm 1 \\ & \\ & 0.5 \\ & -70 \\ & 1 \end{aligned}$	$\begin{aligned} & +5 \\ & +9.7 \\ & \\ & 1.0032 \end{aligned}$	V $\mathrm{k} \Omega$ mV mV $\mu \mathrm{A}$ dB V/V
POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}{ }^{1}$ $\Delta \mathrm{V}_{\text {out }, \mathrm{dm}} / \Delta \mathrm{V}_{\mathrm{s}} ; \Delta \mathrm{V}_{\mathrm{s}}= \pm 1 \mathrm{~V}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {Max }}{ }^{1}$	$\begin{aligned} & 2.7 \\ & 15 \\ & 10.6 \end{aligned}$	20 -90	$\begin{aligned} & 11 \\ & 21 \\ & -70 \\ & -57 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
OPERATING TEMPERATURE RANGE		-55		+105	${ }^{\circ} \mathrm{C}$

[^3]
ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Rating
Supply Voltage	$\pm 5.5 \mathrm{~V}$
Vocm	$\pm \mathrm{V}_{\mathrm{s}}$
Output Voltage Swing	See Figure 4 and Figure 5
Internal Power Dissipation	550 mW
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, θ_{JA} is specified for the device soldered in a circuit board in still air.
Table 6.

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
8-Lead MSOP/4-Layer	145	${ }^{\circ} \mathrm{C} / \mathrm{W}$

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation in the AD8138-EP package is limited by the associated rise in junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ on the die. At approximately $150^{\circ} \mathrm{C}$, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the AD8138-EP. Exceeding a junction temperature of $150^{\circ} \mathrm{C}$ for an extended period can result in changes in the silicon devices, potentially causing failure.

The power dissipated in the package (P_{D}) is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins (V_{s}) times the quiescent current (I s). The load current consists of the differential and common-mode currents flowing to the load, as well as currents flowing through the external feedback networks and internal common-mode feedback loop. The internal resistor tap used in the common-mode feedback loop places a negligible differential load on the output. RMS voltages and currents should be considered when dealing with ac signals.

Airflow reduces θ_{JA}. In addition, more metal directly in contact with the package leads from metal traces, through holes, ground, and power planes reduces the θ_{JA}.

Figure 3 shows the maximum safe power dissipation vs. the ambient temperature for the 8 -lead MSOP $\left(\theta_{\text {JA }}=145^{\circ} \mathrm{C} / \mathrm{W}\right)$ package on a JEDEC standard 4-layer board. $\theta_{\text {JA }}$ values are approximations.

Figure 3. Maximum Power Dissipation vs. Ambient Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

AD8138-EP

MAXIMUM OUTPUT VOLTAGE SWING

The maximum output voltage swing must be considered in order for the AD8138-EP to remain current density compliant over the extended temperature range. The maximum output swing is dependent on the load resistance and operating temperatures. Figure 4 shows the maximum output swing over operating temperatures for various loads at $\pm 5 \mathrm{~V}$ operation.

Figure 4. Differential Output Voltage Swing vs. Ambient Temperature, $V_{s}= \pm 5 \mathrm{~V}$
The following equation can be used to determine the maximum output voltage swing for $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$:

$$
\text { Output }=\left(38.21 \times \ln \left(R_{L}\right)-169.26\right) \times e^{\left(-0.0293 \times T_{A}\right)}
$$

where:
Output is the maximum output voltage swing that cannot exceed 7.75 V p-p.
R_{L} is the load resistance (Ω).
T_{A} is the ambient temperature (${ }^{\circ} \mathrm{C}$).

Figure 5 shows the maximum output swing over operating temperatures for various loads at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ operation.

Figure 5. Differential Output Voltage Swing vs. Ambient Temperature, $V_{s}=5 \mathrm{~V}$
The following equation can be used to determine the maximum output voltage swing for $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$:

$$
\text { Output }=\left(24.36 \times \ln \left(R_{L}\right)-82.34\right) \times e^{\left(-0.028 \times T_{A}\right)}
$$

where:
Output is the maximum output voltage swing that cannot exceed 2.9 V p-p.
R_{L} is the load resistance (Ω).
T_{A} is the ambient temperature (${ }^{\circ} \mathrm{C}$).

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	- IN	Negative Input Summing Node.
2	Vocm	Voltage applied to this pin sets the common-mode output voltage with a ratio of 1:1. For example, 1 V dc on
3	V+	Vocm sets the dc bias level on +OUT and -OUT to 1 V.
4	Positive Supply Voltage.	
5	+OUT	Positive Output. Note that the voltage at - Din is inverted at +OUT. 6
6	V-	Negative Output. Note that the voltage at +DiN is inverted at -OUT.
7	NC	Negative Supply Voltage.
8	+ No Connect.	

AD8138-EP

OUTLINE DIMENSIONS

$$
\begin{aligned}
& \text { COMPLIANT TO JEDEC STANDARDS MO-187-AA } \\
& \text { Figure 7. 8-Lead Mini Small Outline Package [MSOP] } \\
& \text { (RM-8) }
\end{aligned}
$$

Dimensions shown in millimeter

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
AD8138SRMZ-EP-R7	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	8 -Lead MSOP, 7 " Tape and Reel	RM-8	H27

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

NOTES

AD8138-EP

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Differential Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
LT6604IUFF-2.5\#PBF INA149AMDREP LT6600CS8-15\#PBF LT6604IUFF-15\#PBF LT6604CUFF-5\#PBF THS4552IRTWT LTC19922IMS8\#PBF AD8138SRMZ-EP-R7 LT6376IMS\#PBF AD626ANZ AD626BNZ AD629ANZ AD629BNZ AD8129ARMZ AD8131ARMZREEL7 AD8132ARMZ-REEL7 AD8137WYCPZ-R7 AD8138AARZ AD8138ARMZ AD8139ACPZ-REEL7 AD8139ARDZ AD8139ARDZ-REEL7 AD8202WYRMZ AD8203YRMZ AD8208WBRMZ AD8209AWBRMZ AD8209WBRMZ AD8209WHRMZ AD8271ARMZ AD8274ARMZ AD8278ARMZ AD8278ARMZ-R7 AD8278BRMZ-R7 AD830ANZ AD8350ARMZ15 AD8350ARMZ20 AD8366ACPZ-R7 AD8475BRMZ AD8476ACPZ-R7 AD8476ARMZ-R7 AD8476BCPZ-R7 AD8476BCPZ-WP AD8147ACPZ-R2 ADA4930-2YCPZ-R2 ADA4938-2ACPZ-R7 ADL5331ACPZ-R7 ADA4939-2YCPZ-R7 AD8133ACPZ-R2 AD8133ACPZ-REEL7 AD8148ACPZ-R7

[^0]: ${ }^{1}$ Specified to ± 6 sigma over the $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ operating temperature range.
 ${ }^{2}$ Output swing capabilities vary over operating temperature. See Figure 4 for more information.

[^1]: ${ }^{1}$ Specified to ± 6 sigma over the $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ operating temperature range.

[^2]: ${ }^{1}$ Specified to ± 6 sigma over the $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ operating temperature range.
 ${ }^{2}$ Output swing capabilities vary over operating temperature. See Figure 5 for more information.

[^3]: ${ }^{1}$ Specified to ± 6 sigma over the $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ operating temperature range.

