Data Sheet

FEATURES

± 4000 V human body model (HBM) ESD

High common-mode voltage range
-2 V to +65 V operating
-3 V to +68 V survival
Buffered output voltage
Wide operating temperature range
8-Lead SOIC: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Excellent ac and dc performance
$6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical offset drift
$-8 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical gain drift
120 dB typical CMRR at dc
Qualified for automotive applications

APPLICATIONS

High-side current sensing
 Motor controls
 Transmission controls
 Engine management
 Suspension controls
 Vehicle dynamic controls
 DC to dc converters

GENERAL DESCRIPTION

The AD8215 is a high voltage, precision current shunt monitor. It features a set gain of $20 \mathrm{~V} / \mathrm{V}$, with a maximum $\pm 0.3 \%$ gain error over the entire temperature range. The buffered output voltage directly interfaces with any typical converter. Excellent common-mode rejection from -2 V to +65 V is independent of the 5 V supply. The AD8215 performs unidirectional current measurements across a shunt resistor in a variety of industrial and automotive applications, such as motor controls, solenoid controls, or battery management.

FUNCTIONAL BLOCK DIAGRAM

Special circuitry is devoted to output linearity being maintained throughout the input differential voltage range of 0 mV to 250 mV , regardless of the common-mode voltage present. The AD8215 has an operating temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and is offered in a small 8-lead SOIC package.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
ESD Caution 4
Pin Configuration and Function Descriptions 5
Typical Performance Characteristics 6
Theory of Operation 10
REVISION HISTORY
12/2016—Rev. A to Rev. B
Changes to Features Section and Applications Section 1
Changes to Figure 30 12
10/2011—Rev. 0 to Rev. A
Change to Applications Section. 1
Updated Outline Dimensions 13
Changes to Ordering Guide 13
Added Automotive Products Section 13
Application Notes. 11
Output Linearity 11
Applications Information 12
High-Side Current Sensing with a Low-Side Switch 12
High-Side Current Sensing 12
Low-Side Current Sensing 12
Outline Dimensions 13
Ordering Guide 13
Automotive Products 13

SPECIFICATIONS

Operating temperature range $\left(T_{\text {OPR }}\right)=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega\left(\mathrm{R}_{\mathrm{L}}\right.$ is the output load resistor), unless otherwise noted.

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
GAIN Initial Accuracy Accuracy Over Temperature Drift	0	20 -8	$\begin{aligned} & \pm 0.15 \\ & \pm 0.3 \\ & -15 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \% \\ & \% \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	```Output voltage \(\left(\mathrm{V}_{\mathrm{O}}\right) \geq 0.1 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}\) Topr Topr```
VOLTAGE OFFSET Offset Voltage, Referred to Input (RTI) Over Temperature (RTI) Drift	-15	+6	$\begin{aligned} & \pm 1 \\ & \pm 2.5 \\ & +18 \\ & \hline \end{aligned}$	mV mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	T_{A} Topr Topr
INPUT Input Impedance Differential Common Mode Common-Mode Input Voltage Range Differential Input Voltage Range Common-Mode Rejection Ratio	$\begin{aligned} & -2 \\ & 100 \\ & 80 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 3.5 \\ & 250 \\ & 120 \\ & 90 \end{aligned}$	+65	$\mathrm{k} \Omega$ $\mathrm{M} \Omega$ k Ω V mV dB dB	Common-mode voltage $>5 \mathrm{~V}$ Common-mode voltage $<5 \mathrm{~V}$ Common-mode continuous Differential input voltage Topr, $\mathrm{f}=\mathrm{dc}$ to $50 \mathrm{kHz}, \mathrm{V}_{\mathrm{cm}}>5 \mathrm{~V}$ $\mathrm{T}_{\text {OPR },} \mathrm{f}=\mathrm{dc}$ to $40 \mathrm{kHz}, \mathrm{V}_{\mathrm{cm}}<5 \mathrm{~V}$
OUTPUT Output Voltage Range Low Output Voltage Range High Output Impedance	0.10	$\begin{aligned} & 0.03 \\ & 4.95 \\ & 2 \end{aligned}$	4.90	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \Omega \end{aligned}$	T_{A} Topr T_{A} Topr
DYNAMIC RESPONSE Small Signal -3 dB Bandwidth Slew Rate		$\begin{aligned} & 450 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\text {OPR }} \\ & \mathrm{T}_{\mathrm{A}} \\ & \hline \end{aligned}$
NOISE 0.1 Hz to 10 Hz , RTI Spectral Density, 1 kHz, RTI		$\begin{aligned} & 7 \\ & 70 \end{aligned}$		$\mu \mathrm{V}$ p-p $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
POWER SUPPLY Operating Range Quiescent Current Over Temperature Power Supply Rejection Ratio	$\begin{aligned} & 4.5 \\ & 75 \end{aligned}$	1.3	$\begin{aligned} & 5.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & V_{C M}>5 \mathrm{~V}^{1} \text {, } \mathrm{Topr} \\ & \text { Topr } \end{aligned}$
TEMPERATURE RANGE For Specified Performance	-40		+125	${ }^{\circ} \mathrm{C}$	

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	12.5 V
Continuous Input Voltage (Survival)	-3 V to +68 V
Continuous Differential Input Voltage	0.5 V
Reverse Supply Voltage	-0.3 V
ESD Rating	
\quad HBM	$\pm 4000 \mathrm{~V}$
\quad Charged Device Model (CDM)	$\pm 1000 \mathrm{~V}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Output Short-Circuit Duration	Indefinite

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Data Sheet

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Metallization Diagram

Figure 3. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	X	Y	Description
1	- IN	-228	+519	Inverting Input
2	GND	-273	-251	Ground
$3,4,7$	NC	Not applicable	Not applicable	No Connect
5	OUT	+265	-466	Buffered Output
6	V+	+273	-266	Supply
8	+ IN	+229	+519	Noninverting Input

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Typical Offset Drift (Vosi) vs. Temperature

Figure 5. Typical CMRR vs. Frequency

Figure 6. Typical Gain Error vs. Temperature

Figure 7. Typical Small Signal Bandwidth ($V_{\text {out }}=200 \mathrm{mV}$ p-p)

Figure 8. Total Output Error vs. Differential Input Voltage

Figure 9. Input Bias Current vs. Differential Input Voltage, $V_{C M}=0 \mathrm{~V}$

Figure 10. Input Bias Current vs. Differential Input Voltage, $V_{C M}=5 \mathrm{~V}$

Figure 11. Input Bias Current vs. Input Common-Mode Voltage

Figure 12. Supply Current vs. Input Common-Mode Voltage

Figure 13. Fall Time

Figure 14. Rise Time

Figure 15. Differential Overload Recovery (Falling)

Figure 16. Differential Overload Recovery (Rising)

Figure 17. Settling Time (Falling)

Figure 18. Settling Time (Rising)

Figure 19. Maximum Output Sink Current vs. Temperature

Figure 20. Maximum Output Source Current vs. Temperature

Figure 21. Output Voltage Range vs. Output Source Current

Figure 22. Output Voltage Range from GND vs. Output Sink Current

Figure 23. Offset Distribution (Vos)

Figure 24. Gain Drift Distribution

Figure 25. Offset Drift

THEORY OF OPERATION

In typical applications, the AD8215 amplifies a small differential input voltage generated by the load current flowing through a shunt resistor. The AD8215 rejects high common-mode voltages (up to 65 V) and provides a ground-referenced, buffered output that interfaces with an analog-to-digital converter (ADC).
Figure 26 shows a simplified schematic of the AD8215.

Figure 26. Simplified Schematic

A load current flowing through the external shunt resistor produces a voltage at the input terminals of the AD8215. R and R1 connect the input terminals to A1. The inverting terminal, which has very high input impedance, is held to

$$
\left(V_{C M}\right)-\left(I_{S H U N T} \times R_{S H U N T}\right)
$$

because negligible current flows through R. A1 forces the noninverting input to the same potential. Therefore, the current that flows through R1 is equal to

$$
I_{I N}=\left(I_{\text {SHUNT }} \times R_{\text {SHUNT }}\right) / R 1
$$

This current ($\mathrm{I}_{\text {IN }}$) is converted back to a voltage via Rout. The output buffer amplifier has a gain of $20 \mathrm{~V} / \mathrm{V}$ and offers excellent accuracy as the internal gain setting resistors are precision trimmed to within 0.01% matching. The resulting output voltage is equal to

$$
\text { OUT }=\left(I_{\text {SHUNT }} \times R_{\text {SHUNT }}\right) \times 20
$$

APPLICATION NOTES

OUTPUT LINEARITY

In all current sensing applications, and especially in automotive and industrial environments where the common-mode voltage can vary significantly, it is important that the current sensor maintain the specified output linearity, regardless of the input differential or common-mode voltage. The AD8215 contains specific circuitry on the input stage, which ensures that even when the differential input voltage is very small and the common-mode voltage is also low (below the 5 V supply), the input-to-output linearity is maintained. Figure 27 shows the differential input voltage vs. the corresponding output voltage at different common modes.

Figure 27. Gain Linearity due to Differential and Common-Mode Voltage

Regardless of the common mode, the AD8215 provides a correct output voltage when the differential input is at least 2 mV , which is due to the voltage range of the output amplifier that can go as low as 33 mV typical. The specified minimum output amplifier voltage is 100 mV to provide sufficient guardbands. The ability of the AD8215 to work with very small differential inputs, regardless of the common-mode voltage, allows more dynamic range, accuracy, and flexibility in any current sensing application.

APPLICATIONS INFORMATION
 HIGH-SIDE CURRENT SENSING WITH A LOW-SIDE SWITCH

In such load control configurations, the PWM-controlled switch is ground referenced. An inductive load (solenoid) is tied to a power supply. A resistive shunt is placed between the switch and the load (see Figure 28). An advantage of placing the shunt on the high side is that the entire current, including the recirculation current, can be measured because the shunt remains in the loop when the switch is off. In addition, diagnostics can be enhanced because shorts to ground can be detected with the shunt on the high side. In this circuit configuration, when the switch is closed, the common-mode voltage moves down to near the negative rail. When the switch is opened, the voltage reversal across the inductive load causes the common-mode voltage to be held one diode drop above the battery by the clamp diode.

HIGH-SIDE CURRENT SENSING

In this configuration, the shunt resistor is referenced to the battery. High voltage is present at the inputs of the current sense amplifier. In this mode, the recirculation current is again measured and shorts to ground can be detected. When the shunt is battery referenced, the AD8215 produces a linear ground-referenced analog output. An AD8214 can also provide an overcurrent detection signal in as little as 100 ns (see Figure 29). This feature is useful in high current systems where fast shutdown in overcurrent conditions is essential.

Figure 29. Battery-Referenced Shunt Resistor

LOW-SIDE CURRENT SENSING

In systems where low-side current sensing is preferred, the AD8215 provides an integrated solution with great accuracy. Ground noise is rejected, CMRR is typically higher than 90 dB , and output linearity is not compromised, regardless of the input differential voltage.

Figure 30. Ground-Referenced Shunt Resistor

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MIL LIMETER EQUIVAL ENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 31. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model 1,2	Temperature Range	Package Description	Package Option
AD8215YRZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	R-8
AD8215YRZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N], 13"Tape and Reel	R-8
AD8215YRZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N], 7 "Tape and Reel	R-8
AD8215WYRZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	R-8
AD8215WYRZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N], 7 "Tape and Reel	R-8
AD8215WYRZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N],13"Tape and Reel	R-8

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2} \mathrm{~W}=$ Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The AD8215WYRZ models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Current Sense Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
TSC210ICT INA212BIDCKR MAX4372HEBT+T NTE955M INA240A3PWR INA199C3DCKT LT6100IDD\#PBF LT1217CN8\#PBF
INA212CIDCKR INA212CIRSWT LMP8481AHQDGKRQ1 INA211CIRSWT LT6108AHMS8-1\#PBF INA214CIRSWR
LT1620CMS8\#PBF INA215CIDCKR INA214CIDCKT LT6106HS5\#PBF NTE1609 NTE926 NTE955MC NTE955S NTE955SM NTE978
NTE978C NTE978SM AD8213WHRMZ AD8214ARMZ AD8214ARMZ-R7 AD8290ACPZ-R2 AD8290ACPZ-R7 AD8418AWBRMZ-
RL AD22057RZ AD8215YRZ AD8417WHRZ AD8210YRZ AD22057RZ-RL AD8210YRZ-REEL7 AD8215WYRZ AD8210WYRZ-R7
LT1999HMS8-10F\#WPBF LT6106CS5\#TRMPBF LTC6102HVIMS8\#PBF LTC6102CMS8-1\#PBF LT1620CS8\#PBF LTC6115HMS\#PBF
LTC6115IMS\#PBF MCP6C04T-100E/CHY LT6119IMS-2\#PBF LT6119HMS-1\#PBF

[^0]: ${ }^{1}$ When the common-mode input voltage is less than 5 V , the supply current increases, which can be calculated by $\mathrm{I}_{\mathrm{S}}=-0.275\left(\mathrm{~V}_{\mathrm{CM}}\right)+2.5$.

